Multilevel Modeling:

A Second Course

A 3-Day Remote Seminar Taught by
Kristopher Preacher, Ph.D.

Read reviews of this course

To see a sample of the course materials, click here.

Hierarchically clustered (multilevel or nested) data are common in the social sciences, medical fields, and business research. Clustered data violate the assumption of independence required by ordinary statistical methods. Increasingly complex research designs and hypotheses have created a need for sophisticated methods that go beyond standard multilevel modeling (MLM).

This “second course” in MLM will introduce a variety of MLM extensions, including cutting-edge multilevel structural equation modeling (MSEM) to handle complex designs and modeling objectives. Throughout the seminar, empirical examples will be presented to illustrate key concepts. A background in structural equation modeling (SEM) is not necessary.

Starting October 21, we are offering this seminar as a 3-day synchronous*, remote workshop. Each day will consist of a 4-hour live lecture held via the free video-conferencing software Zoom. You are encouraged to join the lecture live, but will have the opportunity to view the recorded session later in the day if you are unable to attend at the scheduled time.

Each lecture session will conclude with a hands-on exercise reviewing the content covered, to be completed on your own. An additional lab session will be held Thursday and Friday afternoons, where you can review the exercise results with the instructor and ask any questions.

*We understand that scheduling is difficult during this unpredictable time. If you prefer, you may take all or part of the course asynchronously. The video recordings will be made available within 24 hours of each session and will be accessible for four weeks after the seminar, meaning that you will get all of the class content and discussions even if you cannot participate synchronously. 

Closed captioning is available for all live and recorded sessions.


We will begin the seminar by reviewing the basics of MLM, including

  • The motivation for MLM
  • Key concepts
  • Equation conventions
  • The univariate two-level MLM with fixed and random coefficients

Mplus will be introduced as a flexible and powerful software environment for fitting basic and advanced multilevel models. Next, we will cover several advanced MLM topics, including

  • Estimating, plotting, and probing interaction effects
  • Modeling cross-classified data
  • Modeling discrete (e.g., binary, count) dependent variables
  • Conducting power analysis for MLM using a general Monte Carlo technique
  • Fitting multivariate multilevel models

Nextmultilevel structural equation modeling will be introduced as a general approach for more complex modeling tasks. After a brief overview of single-level SEM, we will turn to the development of MSEM and the important advantages of MSEM over MLM (e.g. inclusion of latent variables, complex causal pathways, upper-level outcomes, and model fit assessment). Standard SEM and MLM will be recast as special cases of MSEM. Next we will cover a variety of MSEM topics:

  • Multilevel exploratory and confirmatory factor analysis
  • Multilevel path analysis
  • Multilevel structural models with latent variables
  • Multilevel mediation analysis
  • Multilevel reliability estimation
  • Applications to cross-classified and three-level data

Throughout the course, models will be presented in several formats—path diagrams, equations, and software syntax. Data and Mplus syntax for all of the examples will be included in the workshop materials.

Participants in this seminar can expect to gain:

  • Mastery of advanced topics in MLM
  • A deeper understanding of the relationship between MLM and SEM
  • The ability to use multilevel SEM to test complex structural hypotheses
  • Resources to conduct power analysis for virtually any multilevel design
  • The ability to fluently interpret and translate among path diagrams, model equations, and Mplus syntax for advanced MLM and MSEM
  • Documented Mplus syntax templates for fitting a variety of multilevel models.


Mplus will be used for all worked examples, but prior knowledge of Mplus is not essential. You are welcome and encouraged to use your own laptop computer with Mplus installed (including the multilevel or combination add-on). However, this is not required. Participants will still benefit from the comprehensive set of slides and syntax that they can apply at a later time.

WHO SHOULD Register?

This seminar is designed for researchers who have some prior experience with multilevel modeling (e.g., in a seminar, workshop, or course) and who want to deepen and extend their knowledge. At a minimum, participants should have a good working knowledge of basic principles of statistical inference (e.g. standard errors, hypothesis tests, confidence intervals), and should also have a good understanding of the theory and practice of linear regression.

This seminar covers much of the same content as Kristopher Preacher’s 6-day remote Multilevel Structural Equation Modeling seminar.


Day 1

  • Introduction
  • Review of MLM
  • Orientation to Mplus for MLM
  • Univariate MLM in Mplus
  • Overview of single-level SEM
  • Orientation to Mplus for SEM
  • SEM examples in Mplus  

Day 2

  • Introduction to multilevel SEM
  • MSEM equations and path diagrams
  • Orientation to Mplus for MSEM
  • Multivariate MLM
  • Multilevel path analysis
  • Multilevel confirmatory factor analysis
  • Model fit in MSEM
  • Multilevel exploratory factor analysis

Day 3

  • General multilevel SEM with latent variables
  • Multiple group multilevel models
  • Estimating, plotting, and probing interactions
  • Moderation in MSEM
  • Mediation in MLM and MSEM
  • Power analysis for MLM
  • Interval estimates for nonnormal statistics

REviews of Multilevel Modeling: A Second Course

“I signed up for this workshop with a background in SEM, but had no knowledge of multilevel modeling. However, after just an introduction into multilevel modeling by Dr. Preacher, I understood the essential assumptions and logic of multilevel models and how they are related to SEM. By the second day of the workshop, I could anticipate how and why multilevel modeling is a subsect of SEM. Kristopher made the light bulbs go off in my head.”
  Horace Bartilow, University of Kentucky

“The course was well-structured, starting with some basics to help everyone understand as it got into more advanced levels. Invaluable for researchers as it not only enhances your use of statistical tools but also brings to mind many different ways research could be designed and demonstrated in the extensive use of examples.”
  Ramous Agyare, University of Shanghai for Science and Technology

“Exceptionally detailed but straightforward and clear explanation about MSEM, with lots of hands-on examples!”
  SeungYong Han, Arizona State University

“This course is really informative, and it is such a great course for multilevel analysis beginners. This course also provides hands-on practice, so we can apply this method right away.”
  Huiying Jin, Rutgers University

“The multilevel modeling course provided great content that can be directly applied and used in my research. Dr. Preacher explained the content very clearly and provided good examples.”
  Shanon Harmon, The Chicago School of Professional Psychology

“The course was really helpful in extending my knowledge about MLM and MSEM. It does require some prior background information about MLM/SEM, but Kris did a great job reviewing key things before introducing new information. I would strongly recommend this course!”
  Kai Kuang, Bloomsburg University 

“Dr. Preacher explains the complex concept in a very friendly, approachable way. He is very knowledgeable on so many methodologies to address any side track yet relevant questions which help people group the method from different perspectives.”
  Yang Yang, University of Louisiana at Lafayette

“The course was very informative. The best thing was the material that comes with taking the course. A handout with detailed slides was provided along with data and syntax to run the discussed analyses. The handout and the syntax allow you to rework the material over and over again to reinforce the learned concepts for future use.”
  Julia Fulmore, University of Dallas

“It can be overwhelming to adapt with the changing times and venture into new software but this course has ignited a passion to learn more! I am excited to ask new questions given the skills that I have learned from this course.”
  Royette Dubar, Wesleyan University