Linear Regression - Online Course
A 4-Week On-Demand Seminar Taught by
Paul AllisonEach Monday you will receive an email with instructions for the following week.
All course materials are available 24 hours a day. Materials will be accessible for an additional 2 weeks after the official close on October 17.
Linear regression is the most widely-used method for the statistical analysis of non-experimental (observational) data. It’s also the essential foundation for understanding more advanced methods like logistic regression, survival analysis, multilevel modeling, structural equation modeling, and even machine learning. Without a thorough mastery of linear regression, there’s little point in trying to learn more complex regression methods.
In this on-demand seminar, Dr. Paul Allison will teach everything you really need to know about linear regression. Based on his book Multiple Regression, the course provides a very practical, intuitive, and non-mathematical introduction to the topic.
This course takes place in a series of four weekly installments of videos, quizzes, readings, and assignments, and requires about 6-8 hours/week. You can participate at your own convenience; there are no set times when you are required to be online. The course can be accessed with any recent web browser on almost any platform, including iPhone, iPad, and Android devices. It consists of 10 modules:
- Introduction to Linear Regression
- Trivariate Regression
- Statistical Inference in Regression
- Dummy Variables and Standardized Coefficients
- Non-linearity
- Interaction
- Heteroscedasticity and Multicollinearity
- Missing Data
- Maximum Likelihood and Multiple Imputation
- Model Building and Variable Selection
The modules contain videos of the live, 2-day version of the course in its entirety. Each module is followed by a short multiple-choice quiz to test your knowledge. There are also weekly exercises that ask you to apply what you’ve learned to a real data set.
Each week, there are 2-3 assigned articles to read. There is also an online discussion forum where you can post questions or comments about any aspect of the course. All questions will be promptly answered by Dr. Allison.
Downloadable course materials include the following PDF files:
- All slides displayed in the videos.
- Exercises for each week.
- Readings for each week.
- Computer code for all exercises (in SAS, Stata, and R formats).
- A certificate of completion.
More details about the course content
If you’ve never had a course on linear regression, or if you took one so long ago that you have forgotten most of it, this seminar will get you up to speed. Over four weeks, we’ll cover almost a semester’s worth of material. When it’s over, you’ll be a knowledgeable and effective user of regression methods. And you will have the necessary preparation to take most of Statistical Horizons’ more advanced seminars.
The seminar will begin by focusing on the two major goals of linear regression: prediction and hypothesis testing. We’ll look at several examples from published articles to see how linear regression is used in practice and how to interpret regression tables.
Next we’ll consider all the things that can go wrong when using linear regression, and we’ll see how to critique the analyses done by others.
We’ll delve into the mathematical theory behind linear regression, focusing on the essential assumptions, and on the implied properties of the least squares method. We’ll also spend considerable time on techniques for building non-linearity into linear regression by way of transformations, interactions, and dummy (indicator) variables.
There will be lots of hands-on exercises using SAS, Stata, or R.
If you’ve never had a course on linear regression, or if you took one so long ago that you have forgotten most of it, this seminar will get you up to speed. Over four weeks, we’ll cover almost a semester’s worth of material. When it’s over, you’ll be a knowledgeable and effective user of regression methods. And you will have the necessary preparation to take most of Statistical Horizons’ more advanced seminars.
The seminar will begin by focusing on the two major goals of linear regression: prediction and hypothesis testing. We’ll look at several examples from published articles to see how linear regression is used in practice and how to interpret regression tables.
Next we’ll consider all the things that can go wrong when using linear regression, and we’ll see how to critique the analyses done by others.
We’ll delve into the mathematical theory behind linear regression, focusing on the essential assumptions, and on the implied properties of the least squares method. We’ll also spend considerable time on techniques for building non-linearity into linear regression by way of transformations, interactions, and dummy (indicator) variables.
There will be lots of hands-on exercises using SAS, Stata, or R.
Computing
Because this is a hands-on course, you should have your own computer loaded with a recent version of SAS (release 9.2 or later), Stata (release 13 or later), or R. You should have basic familiarity with the use of SAS, Stata, or R, including opening and executing data files and programs.
Seminar participants who are not yet ready to purchase Stata could take advantage of StataCorp’s free 30-day evaluation offer or their 30-day software return policy.
There is now a free version of SAS, called SAS OnDemand for Academics, that works in your web browser.
If you’d like to use R for this course but don’t yet have much experience with that package, here are some excellent on-line resources for building your R skills.
Because this is a hands-on course, you should have your own computer loaded with a recent version of SAS (release 9.2 or later), Stata (release 13 or later), or R. You should have basic familiarity with the use of SAS, Stata, or R, including opening and executing data files and programs.
Seminar participants who are not yet ready to purchase Stata could take advantage of StataCorp’s free 30-day evaluation offer or their 30-day software return policy.
There is now a free version of SAS, called SAS OnDemand for Academics, that works in your web browser.
If you’d like to use R for this course but don’t yet have much experience with that package, here are some excellent on-line resources for building your R skills.
Who should register?
This seminar is designed for people who have a basic background in statistics, and who want to learn more about the theory and practice of linear regression. You’ll need to have taken an introductory course in statistics, and be comfortable with such concepts as random sampling, measures of center and variability, correlation, sampling distributions, standard errors, confidence intervals, and hypothesis testing. Neither matrix algebra nor calculus will be used.
Although the course is relatively non-mathematical, considerable emphasis will be placed on the underlying assumptions and their implications. Upon completion of this seminar, you should be able to run your own linear regressions, build and evaluate regression models, and interpret and critique regression results.
This seminar is designed for people who have a basic background in statistics, and who want to learn more about the theory and practice of linear regression. You’ll need to have taken an introductory course in statistics, and be comfortable with such concepts as random sampling, measures of center and variability, correlation, sampling distributions, standard errors, confidence intervals, and hypothesis testing. Neither matrix algebra nor calculus will be used.
Although the course is relatively non-mathematical, considerable emphasis will be placed on the underlying assumptions and their implications. Upon completion of this seminar, you should be able to run your own linear regressions, build and evaluate regression models, and interpret and critique regression results.
Registration instructions
The fee of $695 (USD) includes all course materials. All major credit cards are accepted.
This course is hosted on a platform called DigitalChalk. To register, you’ll need to go to statisticalhorizons.digitalchalk.com and click on Create Account. Then you will enter your name and email address, and create a password. Be sure to save your password because you will need it to logon to the course itself.
When you have created your account, you’ll be taken to your new home page. Click on the Register Now button (or click the Catalog icon on the left-hand column), and you’ll see “Linear Regression” as one of the available courses. At the bottom of the box for that course, click the green button Add to Cart. Next click the green button at the top that says Checkout. You will then be prompted for your credit card information.
When you have finished the payment process, you will be taken back to your home page. Click on Dashboard to see Linear Regression. When the course begins on September 17, you can click the play button to get started.
The fee of $695 (USD) includes all course materials. All major credit cards are accepted.
This course is hosted on a platform called DigitalChalk. To register, you’ll need to go to statisticalhorizons.digitalchalk.com and click on Create Account. Then you will enter your name and email address, and create a password. Be sure to save your password because you will need it to logon to the course itself.
When you have created your account, you’ll be taken to your new home page. Click on the Register Now button (or click the Catalog icon on the left-hand column), and you’ll see “Linear Regression” as one of the available courses. At the bottom of the box for that course, click the green button Add to Cart. Next click the green button at the top that says Checkout. You will then be prompted for your credit card information.
When you have finished the payment process, you will be taken back to your home page. Click on Dashboard to see Linear Regression. When the course begins on September 17, you can click the play button to get started.