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Abstract. Panel data make it possible both to control for unobserved confounders
and to include lagged, endogenous regressors. However, trying to do both simulta-
neously leads to serious estimation difficulties. In the econometric literature, these
problems have been addressed by using lagged instrumental variables together
with the generalized method of moments, while in sociology the same problems
have been dealt with using maximum likelihood estimation and structural equa-
tion modeling. While both approaches have merit, we show that the maximum
likelihood–structural equation models method is substantially more efficient than
the generalized method of moments method when the normality assumption is
met and that the former also suffers less from finite sample biases. We introduce
the command xtdpdml, which has syntax similar to other Stata commands for
linear dynamic panel-data estimation. xtdpdml greatly simplifies the structural
equation model specification process; makes it possible to test and relax many of
the constraints that are typically embodied in dynamic panel models; allows one
to include time-invariant variables in the model, unlike most related methods; and
takes advantage of Stata’s ability to use full-information maximum likelihood for
dealing with missing data. The strengths and advantages of xtdpdml are illustrated
via examples from both economics and sociology.

Keywords: st0523, xtdpdml, linear dynamic panel-data, structural equation mod-
eling, maximum likelihood

c© 2018 StataCorp LLC st0523



294 Linear dynamic panel-data estimation

1 Introduction

Panel data make it possible both to control for unobserved confounders and to include
lagged, endogenous regressors.1 However, trying to do both simultaneously leads to
serious estimation difficulties. In the econometric literature, these problems have been
addressed by using lagged instrumental variables together with the generalized method
of moments (GMM). In Stata, commands such as xtabond, xtdpdsys, and xtdpd have
been used for these models.

Perhaps reflecting historical disciplinary differences, sociologists (Allison 2009;
Bollen and Brand 2010) have often taken a different approach. As Allison and his
colleagues show (Allison 2009; Allison, Williams, and Moral-Benito 2017), the same
problems can be dealt with using maximum likelihood (ML) estimation of structural
equation models (SEM). The ML–SEM method is substantially more efficient than the
GMM method when the normality assumption is met and suffers less from finite sample
biases. In Stata, the sem command can be used for this purpose. Unfortunately, the
process for specifying these models with sem is tedious and error-prone.

In this article, we introduce a new command, xtdpdml, that fits dynamic panel-data
models using ML. It works as a shell for sem, generating the necessary commands. It can
also generate code for running these models in Mplus—a popular stand-alone package
for structural equation modeling. xtdpdml tends to work best when panels are strongly
balanced, the number of time points is relatively small (for example, fewer than 10),
and there are no missing data. But it can also work well when these conditions are
not met. Conversely, xtdpdml tends to be slower and have more convergence problems
than popular alternatives, but there are ways to minimize these problems. We illustrate
the multidisciplinary strengths and advantages of xtdpdml via examples from both
economics and sociology.

xtdpdml greatly simplifies the SEM model specification process; makes it possible to
test and relax many of the constraints that are typically embodied in dynamic panel
models; allows one to include time-invariant variables in the model, unlike most related
fixed-effects methods; and takes advantage of Stata’s ability to use full-information
maximum likelihood (FIML) for dealing with missing data. xtdpdml can also fit models
involving lagged reciprocal causation and is sometimes superior to the xtreg command
when data are missing or when time-invariant variables are used. By default, xtdpdml
also reports a likelihood-ratio test of all overidentifying restrictions and provides access
to other fit measures via the sem postestimation command estat gof, stats(all).
Many other sem postestimation commands can be used as well.

1. The terms “exogenous” and “endogenous” are defined in different ways in different research litera-
ture. Here we define them how the literature on structural equation modeling typically does, which
is also how the Stata sem command does when fitting our models: endogenous variables are those
that appear as dependent variables in at least one equation (including those that might also be
independent variables in another equation), and exogenous variables are those that never appear as
dependent variables. We elaborate below on how exogenous variables are further subdivided into
different types in our models.
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2 The cross-lagged panel model2

2.1 The GMM approach

Panel data have two major attractions for making causal inferences: the ability to
control for unobserved, time-invariant confounders and the ability to fit models with
lagged, endogenous regressors—which can be helpful in making inferences about causal
direction.

Controlling for unobservables can be accomplished with well-known fixed-effects
methods (such as the linear fixed-effects model that can be optionally fit with xtreg).
For examining causal direction, the most popular approach has long been the cross-
lagged panel model. In cross-lagged panel models, x and y at time t affect both x and
y at time t + 1. Economists typically refer to such models as dynamic panel models
because of the lagged effect of the dependent variable on itself.

Unfortunately, attempting to combine fixed-effects models with cross-lagged panel
models leads to serious estimation problems. The estimation difficulties include error
terms that are correlated with predictors, the so-called incidental parameters prob-
lem, and uncertainties about the treatment of initial conditions (Allison, Williams, and
Moral-Benito [2017]; also see Wooldridge [2010], Baltagi [2013], or Hsiao [2014] for
additional review of the extensive literature on dynamic panel-data models).

The most popular econometric method for fitted dynamic panel models is the GMM,
which relies on lagged variables as instruments. This method has been incorporated into
several commercial software packages, usually named Arellano–Bond (AB) estimators.
For example, Stata has the built-in xtabond command and the community-contributed
xtabond2 command (Roodman 2009).

While the AB approach provides consistent estimators of the coefficients, there is
substantial evidence that the estimators are not fully efficient (Ahn and Schmidt 1995)
and often perform poorly when the autoregressive parameter (the effect of a variable on
itself at a later point in time) is near 1.0.

2. Parts of this section borrow heavily from Allison, Williams, and Moral-Benito (2017). See that
article, freely available at http://journals.sagepub.com/doi/suppl/10.1177/2378023117710578, for
an extended discussion. Also, because the xtdpdml model is a special case of the sem model, the
Stata manuals contain additional technical information.
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2.2 The ML–SEM alternative

Moral-Benito (2013; Moral-Benito, Allison, and Williams [2018]; also see Bai [2013])
shows that ML estimation can be accomplished in a way that eliminates the incidental
parameters problem without the need for special assumptions about initial conditions.
Moral-Benito uses two equations to specify his model.3 They are

yit = λyit−1 + x′
itβ +w′

iδ + αi + ξt + υit (t = 1, . . . , T )(i = 1, . . . , N) (1)

where

yit is the value of y for individual i at time t,

yi0 is the initial observation of yit, treated as an exogenous variable,

xit is a vector of sequentially exogenous and predetermined time-varying variables,

wi is a vector of time-invariant, strictly exogenous variables,

αi is the unobservable time-invariant fixed effect,

ξt captures unobserved common factors across units in the panel,

υit is the time-varying error term,

and
E(υit|yt−1

i ,xti,wi, αi) = 0 ∀i, t (2)

where xti denotes a vector of the observations accumulated up to t and yt−1
i denotes

a vector of y values accumulated up to t − 1. This implies, for example, that the
disturbance for y5 is uncorrelated with predetermined variable x at times 1–5 but could
be correlated with x at later times, for example, x6, x7, etc. Put another way, the
predetermined variable x could be affected by earlier values of the dependent variable.
The meaning of each type of variable will become clearer as we proceed. Further details
on the econometric specification and the resulting likelihood function are provided by
Moral-Benito, Allison, and Williams (2018).

Condition (2) is the only assumption required for consistency and asymptotic nor-
mality (under fixed T when N tends to infinity). Although Moral-Benito’s (2013) model
does not explicitly include strictly exogenous time-varying predictors, such predictors
are just a special case.

Allison, Williams, and Moral-Benito (2017) show that Moral-Benito’s method can
be implemented with SEM software. The essential features of the ML–SEM method
for cross-lagged panel models with fixed effects were previously described by Allison
(2000, 2005a, 2005b, 2009), but his approach was largely pragmatic and computational.
Moral-Benito provided a rigorous theoretical foundation for this method.

3. Here and elsewhere, we have slightly modified Moral-Benito’s notation to make it consistent with
xtdpdml’s.
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The justification for using SEM software rests on the fact that (1) and (2) are a
special case of the linear SEM proposed by Jöreskog (1978) and generalized by Bentler
and Weeks (1980). In its most general form, their model may be compactly specified as

y = μ+By + Γx (3)

where y is a p× 1 vector of endogenous variables that may be either observed or latent,
x is a k × 1 vector of exogenous variables that also may be either observed or latent
(including any disturbance terms in the model), μ is a vector of intercepts, and B and
Γ are matrices of coefficients. The endogenous vector y and any latent variables in
x are assumed to have a multivariate normal distribution conditional on the observed
exogenous variables. The B matrix has zeros on the main diagonal, and both B and
Γ may have many additional restrictions. Most commonly, these restrictions are to
set certain parameters equal to 0, but there may also be equality restrictions. The
remaining parameter Θ is the variance matrix for x, which usually has many elements
set to 0.

Equations (1) and (2) are a special case of (3), in that without loss of generality,
we treat xit and wi as scalars rather than vectors. We then have y′ = (yi1, . . . , yiT ),
x′ = (αi, wi, yi0, xi1, . . . , xiT , υi1, . . . , υiT ), and μ′ = (ξ1, . . . , ξT ). For Γ, we have

Γ =

⎡⎢⎢⎢⎢⎢⎣
1 δ λ β 0 · · · 0 1 0 · · · 0
1 δ 0 0 β · · · 0 0 1 · · · 0
1 δ 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

. . . 0 0 0
. . . 0

1 δ 0 0 0 · · · β 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦
and for B,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
λ 0 0 · · · 0 0
0 λ 0 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . . 0 0
0 0 0 0 λ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
For Θ, the following covariances are set to 0:

• α with w

• α with all υ

• w with all υ

• all υ with each other

• xit with υis whenever s ≥ t
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All other elements of Θ are left unrestricted. Note that α is allowed to correlate
with x and x is allowed to correlate with all prior realizations of υ as a consequence
of (2). The restriction that cov(α,w) = 0, while perhaps undesirable, is essential for
identification. That is, we must assume that the fixed effects are uncorrelated with any
time-invariant variables.4

Figure 1 displays a path diagram of this model for the case in which T = 3, with no
w variables.5 That is, we have only the y variables and the predetermined x variables.
Notice that all the x variables are allowed to freely correlate with each other and with
y0, which is treated like any other exogenous variable. Similarly, the latent variable α
(enclosed in a circle) is allowed to correlate with all the exogenous variables, including
y0. α affects each y variable (with a coefficient of 1, not shown). The coefficients for
the effects of the x’s on the y’s are constrained to be the same at all three time points,
but this constraint can be easily relaxed.

Figure 1. Path diagram for dynamic panel model with T = 3

What makes x predetermined in this diagram are the correlations between υ1 and
both x2 and x3 and the correlations between υ2 and x3. If these correlations were
omitted, x would be strictly exogenous rather than predetermined. Again, the rule is
that, for any predetermined variable, x at time t is allowed to correlate with the error
term for y at any prior time point.

4. For an alternative parameterization and a derivation of the likelihood function, see Moral-Benito,
Allison, and Williams (2018).

5. The path diagram in figure 1 was produced by Mplus version 7.4.
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How do the assumptions of ML–SEM differ from those of AB? ML–SEM makes stronger
assumptions in three respects. First, and most importantly, ML–SEM assumes multi-
variate normality for all observed endogenous and exogenous variables, while AB makes
no distributional assumptions.6 However, ML–SEM produces consistent estimators even
when the normality assumption is violated (Moral-Benito 2013). And if there is concern
about normality, robust standard errors and other methods (see section 4.4) can be used
for constructing confidence intervals and hypothesis tests. Second, to identify the ef-
fects of time-invariant variables, we introduced the assumption that cov(α,w) = 0. But
if you have any reason to doubt that assumption, you can just exclude time-invariant
variables from the model. They will still be controlled as part of the α term. Lastly,
ML–SEM uses the moment restrictions implied by the assumption that there is no serial
correlation in the error terms in (1). Although using these restrictions was recom-
mended by Ahn and Schmidt (1995) to improve efficiency, they have generally not been
incorporated into AB estimation, because they imply nonlinear estimating equations.

On the other hand, ML–SEM makes it possible to relax many assumptions that are
built into AB. Most notably, the default in xtdpdml is to allow for an unrestricted effect
of time itself and different error variances at each time point. It is also possible to
allow α, the latent variable for the individual effects, to have different coefficients at
different time points. Also, as shown, a fixed-effects model is fit. But by constraining
the correlations between Alpha and the exogenous variables to be zero, the fixed-effects
model becomes a random-effects model. Section 4 provides examples of how relaxing
and imposing constraints greatly enhances the power and flexibility of the xtdpdml

approach. Note that options that make it possible to impose or relax constraints do not
fundamentally alter the underlying model; rather, they make it possible to fit and test
special cases of it.

Allison, Williams, and Moral-Benito (2017) and Moral-Benito (2013) claim that the
SEM approach has several advantages over both GMM methods and previous ML meth-
ods: there is no “incidental parameters” problem; initial conditions are treated as com-
pletely exogenous and do not need to be modeled; no difficulties arise when the au-
toregressive parameter (the effect of lagged y on y) is at or near 1.0; missing data are
easily handled by FIML; coefficients can be estimated for time-invariant predictors (the
standard AB method cannot do this, because it uses difference scores, which causes all
time-invariant variables to drop out); and many model constraints can be easily relaxed,
tested, or both.

6. More specifically, the Stata 15 Structural Equation Modeling Reference Manual (2017; 46) says
that standard linear SEMs generally assume that the observed endogenous variables, the observed
exogenous variables, the latent endogenous variables, and the latent exogenous variables have a
joint normal distribution. We do not have latent endogenous variables in our models, but the error
terms and Alpha are latent exogenous variables. Page 46 further clarifies that “although it is typical
to assume joint normality of all variables when deriving the standard linear SEM, joint normality
is not strictly necessary. The lesser assumption of joint normality conditional on the observed
exogenous variables is sufficient. Even the normality assumption can be relaxed and replaced with
i.i.d., and even the i.i.d. assumption can be relaxed.” Section 4.4 of this article shows how the
independent and identically distributed assumption can be relaxed.
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Further, it is well known that likelihood-based approaches (for example, ML) are
preferred to method-of-moments (for example, GMM) counterparts in terms of finite-
sample performance (see Anderson, Kunitomo, and Sawa [1982]) and that ML is more
efficient than GMM under normality. Moral-Benito (2013) compares the widely used
panel GMM estimator of Arellano and Bond (1991) with its likelihood-based counterpart
and confirms these results in the case of dynamic panel models with predetermined
regressors.

Allison, Williams, and Moral-Bento (2017) and Moral-Benito, Allison, and Williams
(2018) ran several simulation studies to compare AB and ML–SEM under a wide variety
of plausible conditions. In their examples, the ML approach generally works at least as
well as AB and is often better. They find that ML–SEM produces approximately unbiased
estimates under all the studied conditions; confidence interval coverage was excellent;
for the autoregressive parameter, the downward bias in the AB estimator was much
more substantial than ML–SEM; and AB’s relative efficiency was also poorer. Further,
the larger the autoregressive parameter, the larger the AB bias. They also found that
ML was less biased than AB when the disturbances were not normally distributed.

2.3 The basic xtdpdml command

To show specifically how the SEM approach can be used in Stata, Allison, Williams, and
Moral-Benito (2017) reanalyze data described by Cornwell and Rupert (1988) for 595
household heads who reported a nonzero wage in each of 7 years from 1976 to 1982.
The variables are wks = number of weeks employed in each year; union = 1 if wage set
by union contract, else 0, in each year; lwage = ln(wage) in each year; and ed = years
of education in 1976. The model to be fit is

wksit = λwksit−1 + β2lwageit−1 + β3unionit−1 + δedi + αi + ξt + υit

with union treated as predetermined and lwage and ed treated as strictly exogenous.
Here is the Stata sem code (adapted from Allison, Williams, and Moral-Benito [2017]):

use https://www3.nd.edu/~rwilliam/statafiles/wages, clear
keep wks lwage union ed id t
xtset id t
reshape wide wks lwage union, i(id) j(t)
sem (wks2 <- wks1@b1 lwage1@b2 union1@b3 ed@b4 Alpha@1 E2@1) ///

(wks3 <- wks2@b1 lwage2@b2 union2@b3 ed@b4 Alpha@1 E3@1) ///
(wks4 <- wks3@b1 lwage3@b2 union3@b3 ed@b4 Alpha@1 E4@1) ///
(wks5 <- wks4@b1 lwage4@b2 union4@b3 ed@b4 Alpha@1 E5@1) ///
(wks6 <- wks5@b1 lwage5@b2 union5@b3 ed@b4 Alpha@1 E6@1) ///
(wks7 <- wks6@b1 lwage6@b2 union6@b3 ed@b4 Alpha@1), ///
var(e.wks2@0 e.wks3@0 e.wks4@0 e.wks5@0 e.wks6@0) var(Alpha) ///
cov(Alpha*(ed)@0) cov(Alpha*(E2 E3 E4 E5 E6)@0) ///
cov(_OEx*(E2 E3 E4 E5 E6)@0) cov(E2*(E3 E4 E5 E6)@0) ///
cov(E3*(E4 E5 E6)@0) cov(E4*(E5 E6)@0) cov(E5*(E6)@0) ///
cov(union3*(E2)) cov(union4*(E2 E3)) cov(union5*(E2 E3 E4)) ///
cov(union6*(E2 E3 E4 E5)) ///
iterate(250) technique(nr 25 bhhh 25) noxconditional
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We will explain the different components of the model in a moment, but even just
glancing at the code underscores the difficulty of the task. For the SEM approach,
data need to be in wide format; note that most dynamic panel datasets will be in
long format. Coding is lengthy and error prone; there is a separate equation for each
time period, there are many constraints across equations, and getting the covariance
structure right is especially difficult. Output (not shown) is voluminous and highly
repetitive because of the many equality constraints across time. Stata’s limitations
make the coding less straightforward than we might like. Stata will not allow covariances
between predetermined x’s (to be defined shortly) and the y residuals. The xtdpdml

command therefore fixes the variances of most of the y residuals at 0 (in effect, dropping
them from the model) and creates new latent exogenous variables (E2, E3, etc.) that
replace the residuals and can be correlated with the predetermined x’s.

xtdpdml avoids most of these problems. Below is equivalent coding using xtdpdml

and the resulting output:

. use https://www3.nd.edu/~rwilliam/statafiles/wages, clear

. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 7

delta: 1 unit

. xtdpdml wks L.lwage, inv(ed) predetermined(L.union)

Highlights: Dynamic Panel Data Model using ML for outcome variable wks

OIM
wks Coef. Std. Err. z P>|z| [95% Conf. Interval]

wks
wks
L1. .1871266 .0201939 9.27 0.000 .1475473 .2267059

lwage
L1. .6417879 .4842304 1.33 0.185 -.3072862 1.590862

union
L1. -1.191361 .5168944 -2.30 0.021 -2.204455 -.1782663

ed -.1122268 .0559478 -2.01 0.045 -.2218824 -.0025712

# of units = 595. # of periods = 7. First dependent variable is from period 2.
Constants are free to vary across time periods
LR test of model vs. saturated: chi2(71) = 110.23, Prob > chi2 = 0.0020
IC Measures: BIC = 25470.43 AIC = 24772.64
Wald test of all coeff = 0: chi2(4) = 90.09, Prob > chi2 = 0.0000

One short command generates the equivalent of the 13 lines of sem code shown
earlier. xtdpdml also temporarily reshaped the data to wide format.

Unless the user requests otherwise, only the most critical output is shown. By
default, all variable coefficients (but not the constants or the error variances) are con-
strained to be equal across time. Therefore, only the first equation (in this case for
time 2) must be presented. The likelihood-ratio statistic provides an overall goodness-
of-fit test. This tests all the constraints on the variances and covariances that are
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implied by the model. The Bayesian information criterion (BIC) and Akaike informa-
tion criterion (AIC) statistics (which could also be obtained via the estat ic command)
are included in the output. Note that these statistics could not be computed correctly
if you were using a highlights-only file, which we describe shortly. The Wald statistic
tests the null hypothesis that all the variables in the model have coefficients of zero. In
this case, where coefficients are constrained to be the same across all time periods, it
produces the same results as the sem postestimation command estat eqtest. When
some coefficients are free to differ across time periods, estat eqtest tests for each time
period separately, whereas xtdpdml tests all coefficients for all times simultaneously.

xtdpdml obviously provides a much simpler syntax. The reason it is not even simpler
(and why the sem coding is so difficult) is that there are several possible types of
independent variables in the model:

The lag 1 value of y (for example, L1.wks) is included by default. This can be
changed with the ylags() option, for example, ylags(1 2), ylags(2 4). Specifying
ylags(0) excludes all lagged values of y.

Strictly exogenous time-varying predictors are those that (by assumption) are uncor-
related with the error terms at all points in time. These variables are listed immediately
after the dependent variable, before the comma. Time-series notation can be used; for
example, xtdpdml y L1.lwage L2.lwage would include the first and second lagged
values of wages as independent variables.

Predetermined variables, also known as sequentially or weakly exogenous, are vari-
ables that might be affected by prior values of the dependent variables or are correlated
with them for some other reason.7 In the current example, we allow for the possibility
that weeks worked in one year can affect union status in later years. Predetermined
variables are specified with the predetermined() option. Mechanically, the y residuals
are allowed to correlate with the later-in-time values of the predetermined variables.

Time-invariant variables are variables whose values are constant across time, such
as year born. In the current example, years of education do not vary across time. These
variables are specified with the inv() option. The ability to use time-invariant variables
in the model is one of the advantages of the SEM approach over methods based on first
differences like AB.

7. We consider predetermined variables to be exogenous because they are not dependent variables in
any equation. Allowing variables to correlate does not necessarily mean that one is a cause of the
other; for example, they might be correlated because of some omitted common cause. Further,
predetermined variables are labeled as exogenous in Stata’s sem output. But other terminologies
might label predetermined variables as endogenous if it is definitely believed that earlier values of
the dependent variables are affecting later values of the independent variables.
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Also automatically included in each model is the latent exogenous variable α (which
the sem code calls Alpha). Alpha represents the “fixed effects” that are common to
all equations across time. Alpha can freely covary with all the time-varying observed
exogenous variables (both strictly exogenous and predetermined) but not with the time-
invariant observed exogenous variables. As Allison, Williams, and Moral-Benito (2017)
say, “This is exactly what we want to achieve in order for Alpha to truly behave as a
set of fixed effects”. To further clarify, Allison (2009, 2–3) explains that

[i]n a random-effects model, the unobserved variables are assumed to be
uncorrelated with (or, more strongly, statistically independent of) all the
observed variables. In a fixed-effects model, the unobserved variables are al-
lowed to have any association whatever with the observed variables (which
turns out to be equivalent to treating the unobserved variables as fixed
parameters). Unless you allow for such associations, you haven’t really con-
trolled for the effects of the unobserved variables. This is what makes the
fixed effects approach so attractive.

3 The xtdpdml command and syntax

The general syntax is

xtdpdml y
[
varlist

] [
, inv(varlist) predetermined(varlist) ylags(numlist) wide

staywide tfix std std2(varlist) evars alphafree xfree xfree2(varlist)

yfree yfree2(numlist) constinv nocsd errorinv re title(string) details

showcmd gof tsoff display options coeflegend decimals(integer)

mplus(filenamestub
[
, mplus options

]
) lavaan(filenamestub

[
, replace

]
)

semfile(filename
[
, replace

]
) store(stubname) dryrun iterate(#)

technique(methods) maximize options semopts(options) fiml v12

skipcfatransform skipconditional altstart method(method) vce(vcetype)
]

varlist is time-varying strictly exogenous variables.

3.1 Options

The following is a description of the command’s options:

Independent variables (other than strictly exogenous)

inv(varlist) specifies time-invariant exogenous variables, for example, year of birth.
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predetermined(varlist) specifies predetermined variables, also known as sequentially
exogenous variables. Predetermined variables can be affected by prior values of the
dependent variable. Time-series notation can be used.

ylags(numlist) specifies lagged values of y to be included in the model. The default
is ylags(1). Different or multiple lags can be specified; for example, ylags(1 2)

would include lags 1 and 2 of y. ylags(0) will cause no lagged value of y to be
included in the model.

Dataset options

wide should be used if data are already in wide format. By default, data are assumed
to be xtset long with both time and panel ID variables specified. The dataset is
temporarily converted to wide format for use with sem. However, note that the file
must have been created by a reshape wide command, using a file that is in long
format and that was xtset, or else it will not have information that xtdpdml needs.
Using this option is generally discouraged.

staywide keeps the data in wide format after running xtdpdml. This may be necessary
if you want to use postestimation commands like predict. If you use staywide, be
careful you do not accidentally save the wide .dta file and overwrite a file you want
to keep!

tfix recodes time to equal 1, 2, . . . , T and sets delta = 1. Time should be coded
t = 1, 2, . . . , T , where T = number of time points. By default, units such as years
(for example, 1990, 1991, 1992) will cause errors or incorrect results. There will
also be errors or incorrect results if delta does not equal 1; for example, t = 1, 3, 5.
However, you can still have problems if delta was not specified correctly in the source
dataset or if interval width is not consistent. It is safest if you correctly code time
yourself, but tfix should work in most cases.

std standardizes all the variables in the model to have mean 0 and variance 1. It does
this while the dataset is in long format. Hence, the standardization does not differ by
time period; for example, at all time periods, you might subtract 10 from a variable
and divide by 7. By standardizing this way, you keep the coefficients comparable
across time. You probably will not want to use this option in most cases, but it can
sometimes help when the model is having trouble converging.

std2(varlist) standardizes only the selected variables to have mean 0 and variance 1. It
does not work if the wide option has been specified. Do not use time-series notation;
just list the names of the variables you want standardized.

Model specification and constraints options

evars is an alternative and usually less efficient but sometimes helpful way of specifying
the error terms. As noted earlier, Stata will not allow covariances between predeter-
mined x’s and the y residuals. Therefore, when there are predetermined variables,
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xtdpdml drops most of the y residuals and replaces them with latent exogenous
variables (E2, E3, etc.) that can be correlated with predetermined variables. When
there are no predetermined variables, xtdpdml skips this step because it is no longer
necessary. evars causes this step to be done anyway, which sometimes helps with
convergence.

alphafree lets the coefficients of Alpha (fixed effects) differ across time. By default,
they are all constrained to equal 1. Note that if this option is used, Alpha will be nor-
malized by fixing its variance at 1; otherwise, the model sometimes has convergence
problems.

xfree lets the coefficients of all the independent variables (except lagged y) freely differ
across time.

xfree2(varlist) lets the coefficients of the specified independent variables freely differ
across time.

yfree lets all lagged y coefficients freely differ across time.

yfree2(numlist) allows the specified lagged y coefficients to freely differ across time.

nocsd (alias is constinv) specifies that cross-sectional dependence is not allowed; that
is, constants are constrained to be equal across time periods. This is equivalent to
no effect of time. This option sometimes causes convergence problems.

errorinv constrains error variances to be equal across waves. The default is to let them
freely differ. This option may cause convergence problems.

re specifies the random-effects model (where Alpha is uncorrelated with all observed
Xs).

Reporting options

title(string) gives a title to the analysis. This title will appear in both the high-
lights results and (if requested) the Mplus code (described later). For example,
title(Baseline Model).

details shows all the output generated by the sem command. Otherwise, only a high-
lights version is presented. This can be useful if you want to ensure the model
specification is correct or if you want information not contained in the highlights.
You can also replay all the results just by typing sem after running xtdpdml.

showcmd shows the sem command generated by xtdpdml. This can be useful to make
sure the fitted model is what you wanted.

gof reports several goodness-of-fit measures after model estimation. It has the same
effect as running the sem postestimation command estat gof, stats(all) after
xtdpdml.

tsoff will turn off the use of time-series notation in the highlights printout and show the
names of the variables actually used in the reshaped wide data. This may be useful



306 Linear dynamic panel-data estimation

if you are going to hand-modify the code generated by xtdpdml. By default, when
possible, the highlights output produced by xtdpdml will use time-series notation
similar to what you see with commands like xtabond; for example, L3.xvar will
represent the lag 3 value of xvar. Because the data are reshaped wide, this is not
the same as the name of the variable that was actually used; for example, it might
be that L3.xvar corresponds to xvar2.

display options: noci, nopvalues, noomitted, vsquish, noemptycells,
cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estima-
tion options.

coeflegend displays the names of the coefficients instead of the inferential statistics.
This can be useful if, say, you are trying to use postestimation test commands to
test hypotheses about effects.

decimals(integer) specifies the number of decimal places to display for the coeffi-
cients, standard errors, and confidence limits. It is a shorthand way of specifying
cformat(); for example, decimals(3) is the same as specifying cformat(%9.3f).
You will get an error if you specify both decimals() and cformat(). The value
specified must range between 0 and 8; 3 is often a good choice for making the output
easier to read.

Other options

mplus(filenamestub
[
, mplus options

]
) create .inp and data files that can be used

by Mplus (the command has been tested only with Mplus 7.4). This command is
adapted (with permission) from UCLA and Michael Mitchell’s stata2mplus com-
mand (Statistical Consulting Group 2015) but does not require that it be installed.
The filenamestub must be specified; it will be used to name the Mplus .inp and
.dat files. Everything else is optional. mplus optionsmay be replace, missing(#),
analysis(string), and output(string). replace will cause existing .inp and .dat

files to be overwritten. missing() specifies the missing value for all variables. The
default is missing(-9999). analysis() and output() specify options to be passed
to the Mplus analysis() and output() options. As is the case in Mplus, multi-
ple analysis() and output() options should be separated by semicolons. xtdpdml
cannot check your Mplus syntax, so be careful. As with Stata, the generated Mplus
code will specify listwise deletion unless you have also used the fiml option. The
mplus() option, of course, requires that you have Mplus and know how to use it.
Because that will not be true of some Stata users, those interested in the option
should consult the help file and examples provided on the support page for xtdpdml
for additional details.

lavaan(filenamestub
[
, replace

]
) creates R commands and Stata .dta files that can

be used by R’s lavaan package. The filenamestub must be specified; it will be used
to name the lavaan .R and .dta files. replace will cause existing .R and .dta

files by those names to be overwritten. Of course, you must have R installed and
know how to use it. You may want to edit the generated code if you want to change



R. Williams, P. D. Allison, and E. Moral-Benito 307

or add options. So, for example, if the user-specified lavaan(myfile, replace),
lav myfile.R and lav myfile.dta would be created (replacing any existing files
by those names). R is free and sometimes executes more quickly than Stata (but
not as quickly as Mplus), which may make this a useful option for those who like to
use R.

semfile(filename
[
, replace

]
) specifies that the generated sem commands will be

output to a file named filename.do. The replace option can be specified to replace
an existing do-file by that name. This is useful if you want to try to modify the sem
commands in ways that are not easily done with xtdpdml. You may wish to also
specify the staywide option so that data remain correctly formatted for use with
the generated do-file.

store(stubname) generates two sets of results: the full results, generated by sem, and
a highlights-only set of results that can be used with programs like esttab. The
stored results have the names stubname f and stubname h; for example, if you specify
store(model1), the results will be stored as model1 f and model1 h. The default
stubname is xtdpdml, so after running xtdpdml without the store() option, you
should have stored results xtdpdml f and xtdpdml h. You should not try to do
most postestimation commands with the highlights version (for example, predict,
margins) because necessary information may not be stored in the file; use the full
version instead.

dryrun keeps sem from actually being executed. This will catch some errors immediately
and can be useful if you want to see the sem command that is generated or wish to
specify staywide to reformat the data from long to wide or just want to generate
Mplus or lavaan code and data files.. This will often be combined with the showcmd,
mplus(), semfile(), lavaan(), or staywide option.

iterate(#) specifies the maximum number of iterations allowed. The current default
(subject to change) is iterate(250). You can increase this number or change the
maximization technique if the model is having trouble converging.

technique(methods) specifies the maximization techniques used. The default is
technique(nr 25 bhhh 25) unless method(adf) is specified. You can change this
if the model is having trouble converging. If you use method(adf) (asymptotic
distribution free), the default is technique(nr 25 bfgs 10) because adf and the
bhhh technique do not seem to work together.

maximize options; see [R] maximize for details and information on options that can be
used, for example, difficult.

semopts(options) specifies that other options allowed by sem will be included in the
generated sem command.
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fiml causes FIML to be used for missing data. This is the equivalent of specifying
method(mlmv) on the sem command. fiml sometimes dramatically slows down ex-
ecution, so be patient if you use it.8

v12 allows xtdpdml to run under Stata 12.1. It has not been extensively tested, so use
it at your own risk. The xtdpdml command was written and tested using Stata 13,
14, and 15.

skipcfatransform and skipconditional causes Stata to compute starting values the
same way as it did before Stata 14.2 when used together. Stata 14.2 changed the
way starting values are computed by sem. Usually the new procedures work better,
especially when fiml is used, but sometimes the old start values speed up execution,
are better for getting models to converge, or both. These options are ignored in
Stata 14.1 or earlier.

altstart is a convenient way to specify both skipcfatransform and skipconditional.

method(method) specifies estimation methods supported by sem, for example, ml, mlmv,
and adf. You likely will not use this option unless you want to specify method(adf).
Remember that method(ml) (maximum likelihood) is the default and that fiml is
a shorthand way of specifying method(mlmv) (ML with missing values, also known
as full-information maximum likelihood). If you use method(adf) (asymptotic dis-
tribution free), the default technique is set to technique(nr 25 bfgs 10) because
adf and the bhhh technique do not seem to work together.

vce(vcetype) specifies vcetypes supported by sem, for example, oim, robust. Not all
vcetypes have been tested with xtdpdml, so we recommend caution if you use this
option.

4 Examples

We have already provided one example that illustrates the key features of xtdpdml.
For many purposes, that one example may be enough. Here we illustrate additional
capabilities of xtdpdml that will often be useful. With many of the examples, we will
contrast the abilities of the ML or xtdpdml approach with those of the popular AB or
xtabond method. Specifically, our examples will illustrate xtdpdml’s capabilities to
1) use FIML to better fit models with missing data; 2) use goodness-of-fit measures to
improve model specification; 3) compare and contrast fixed versus random effects, using
likelihood-ratio tests that avoid many of the problems that can occur with Hausman
tests; and 4) fit models with nonnormally distributed data. We will also show other

8. As the Stata 15 Structural Equation Modeling Reference Manual (2017, 574) explains when
method(mlmv) is specified, sem groups the data according to missing-value patterns. Each missing-
value pattern will have its own summary data. The log likelihood for a missing-value pattern
is computed using this summary data. The overall log likelihood is computed by summing the
log-likelihood values from each missing-value pattern. This process can be time consuming and
can have problems producing solutions when there are many missing-data patterns or when some
missing-data patterns have few cases. For an extended discussion of FIML, see Newman (2003),
Finkbeiner (1979), and Enders and Bandalos (2001).
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important features of xtdpdml, such as its ability to estimate the effects of time-invariant
variables in a fixed-effects model.

All the examples are adapted from Bollen and Brand (2010). They examine data
from the National Longitudinal Survey of Youth. Respondents were 14 to 22 years old
when first interviewed in 1979, and they were interviewed annually or biannually for
several years thereafter. Bollen and Brand (2010) originally analyzed data from the
years 1983–1993 at two-year intervals. The dependent variable (lnwg) is log hourly
wages in current job. The main independent variable (hchild) is total number of chil-
dren the respondent had at the time of the interview. Other variables in the model
include whether or not the respondent was married (mar) or divorced (div); the respon-
dent’s level of educational attainment (eduatt); whether the respondent was currently
in school (cursc); several measures of the respondent’s part-time and full-time work
experience (snrpt, snrft, exppt, and expft); and breaks in the respondent’s employ-
ment history (break). See Bollen and Brand (2010) for more details on the variables
and sample selection.

4.1 Missing data

We have previously noted that several simulations demonstrate the superiority of ML

over AB in many situations. Of course, real data often offer complications that are not
present in simulations. The Bollen–Brand dataset is strongly balanced, but many cases
have missing data on one or more variables. Also, the model is a fixed-effects model but
includes time-invariant variables.

Here we compare the results from xtdpdml and xtabond. First, we give the code
and then excerpts from the output.

*** Section 4.1 -- Comparisons with AB, real data, using fiml and listwise
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500
xtabond lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break ///

black hisp
estimates store gmm
* FIML
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv fiml tfix store(fiml) ///
inv(black hisp) title(Adapted from Bollen & Brand Social Forces 2010)

* Listwise
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv tfix store(normal) ///
inv(black hisp) gof

Both xtabond and xtdpdml require that the data first be xtset. But this dataset
was previously saved after invoking the command xtset id year, so there is no need
to repeat the command for any of the examples shown here.

For xtdpdml, the options constinv and errorinv were used to ensure comparabil-
ity with xtabond, which presumes constant intercepts and constant variance by default.
However, in most applications, these constraints would be both unnecessary and unde-
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sirable. tfix is necessary because the year variable starts at 83 and increments by 2
for each period. The output includes the following:

. xtabond lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break black
> hisp
note: black dropped from div() because of collinearity
note: hisp dropped from div() because of collinearity

Arellano-Bond dynamic panel-data estimation Number of obs = 8,915
Group variable: id Number of groups = 3,488
Time variable: year

Obs per group:
min = 1
avg = 2.555906
max = 4

Number of instruments = 21 Wald chi2(11) = 3315.32
Prob > chi2 = 0.0000

One-step results

lnwg Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnwg
L1. -.0072789 .0402023 -0.18 0.856 -.086074 .0715163

hchild -.0091342 .0090602 -1.01 0.313 -.0268919 .0086236
marr .0468352 .0168387 2.78 0.005 .0138321 .0798384
div .0747365 .0225606 3.31 0.001 .0305184 .1189545

eduatt .0575892 .0102432 5.62 0.000 .0375128 .0776656
cursc -.081103 .0153101 -5.30 0.000 -.1111103 -.0510956
snrpt .0132922 .0054544 2.44 0.015 .0026018 .0239826
snrft .0140817 .0027054 5.21 0.000 .0087792 .0193842
exppt .056597 .0055597 10.18 0.000 .0457002 .0674937
expft .0608082 .004636 13.12 0.000 .0517219 .0698946
break .0200741 .0069791 2.88 0.004 .0063953 .0337528
black 0 (omitted)
hisp 0 (omitted)
_cons .6280031 .1360759 4.62 0.000 .3612993 .894707

Instruments for differenced equation
GMM-type: L(2/.).lnwg
Standard: D.hchild D.marr D.div D.eduatt D.cursc D.snrpt D.snrft

D.exppt D.expft D.break
Instruments for level equation

Standard: _cons
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. xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break,
> constinv errorinv fiml tfix store(fiml) inv(black hisp)
> title(Adapted from Bollen & Brand Social Forces 2010)

Highlights: Adapted from Bollen & Brand Social Forces 2010

OIM
lnwg Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnwg
lnwg
L1. .3378925 .0124879 27.06 0.000 .3134166 .3623684

hchild -.0209521 .0063606 -3.29 0.001 -.0334186 -.0084856
marr .0359839 .012841 2.80 0.005 .0108161 .0611517
div .0617287 .017081 3.61 0.000 .0282505 .095207

eduatt .0583252 .0072068 8.09 0.000 .0442001 .0724503
cursc -.1075845 .0132218 -8.14 0.000 -.1334988 -.0816701
snrpt .0088462 .0043731 2.02 0.043 .0002751 .0174173
snrft .0174143 .0021041 8.28 0.000 .0132904 .0215383
exppt .0308717 .0037348 8.27 0.000 .0235517 .0381917
expft .0307015 .0022474 13.66 0.000 .0262966 .0351064
break .0370938 .0043345 8.56 0.000 .0285983 .0455893
black -.0074612 .0103375 -0.72 0.470 -.0277223 .0127999
hisp .0730661 .012675 5.76 0.000 .0482236 .0979086

# of units = 5285. # of periods = 6. First dependent variable is from period 2.
Constants are invariant across time periods
LR test of model vs. saturated: chi2(218) = 831.04, Prob > chi2 = 0.0000
IC Measures: BIC = 345115.17 AIC = 334921.02
Wald test of all coeff = 0: chi2(13) = 6701.90, Prob > chi2 = 0.0000

The results are strikingly different. Almost 21,000 records have data on at least one
variable in the model, and all of these observations are used by xtdpdml (with the fiml
option). However, only 8,915 records are used by xtabond because it deletes any record
with missing data. Perhaps for this reason, xtabond produces a highly implausible
estimate of almost zero effect of lagged wages on current wages and also says that the
effect of the main independent variable (number of children) is statistically insignificant.
In the xtdpdml results, both effects are highly significant, and the signs of the effects are
in the expected direction. Many other variables have larger z statistics in xtdpdml than
they do in xtabond. xtabond cannot estimate effects for the time-invariant variables
black and hisp. xtdpdml can and shows that the effect of hisp is highly significant.
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Even if we leave out the fiml option, thereby deleting all persons who have missing
data at any time point, the results from xtdpdml seem somewhat more plausible.

. * Listwise deletion used instead of fiml

. xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break,
> constinv errorinv tfix store(normal) inv(black hisp) gof

Highlights: Dynamic Panel Data Model using ML for outcome variable lnwg

OIM
lnwg Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnwg
lnwg
L1. .2776779 .0171863 16.16 0.000 .2439933 .3113624

hchild -.0144888 .0099824 -1.45 0.147 -.034054 .0050765
marr .0590625 .0186809 3.16 0.002 .0224486 .0956763
div .0577631 .0253645 2.28 0.023 .0080495 .1074767

eduatt .0763835 .0108579 7.03 0.000 .0551024 .0976647
cursc -.0923283 .0191093 -4.83 0.000 -.1297819 -.0548747
snrpt .0150824 .0059555 2.53 0.011 .0034099 .0267549
snrft .0101602 .0027619 3.68 0.000 .004747 .0155734
exppt .04097 .0054855 7.47 0.000 .0302186 .0517215
expft .0379746 .0030576 12.42 0.000 .0319817 .0439675
break .0195759 .0075289 2.60 0.009 .0048195 .0343322
black -.0299847 .017994 -1.67 0.096 -.0652523 .0052829
hisp .0737694 .0220227 3.35 0.001 .0306056 .1169331

# of units = 1229. # of periods = 6. First dependent variable is from period 2.
Constants are invariant across time periods
LR test of model vs. saturated: chi2(218) = 612.60, Prob > chi2 = 0.0000
IC Measures: BIC = 113801.75 AIC = 105870.00
Wald test of all coeff = 0: chi2(13) = 3171.73, Prob > chi2 = 0.0000

(output omitted )

As we would expect, with listwise deletion the smaller sample size causes effects to
be less statistically significant, but the effect of lagged wages continues to be positive
and highly significant.

In fairness, xtdpdml took far longer to run than xtabond, especially when FIML was
used. Further, there will be other situations where the two methods will yield more
similar results, and when panels are far from being strongly balanced, xtabond may
work better (or xtdpdml may not work at all). But at least in this particular case,
where many cases have missing data and time-invariant variables are in the model,
xtdpdml seems to be the better alternative.

4.2 Panel model with fixed effects; goodness-of-fit measures

Bollen and Brand (2010) present a series of panel models with random and fixed effects.
They used Mplus for the analysis; but now, many of their models can be more easily
fit with xtdpdml (hand-tweaking the sem code may be required in a few cases). In this
relatively simple example, there are no lagged independent variables. With a strongly
balanced panel, no missing data, and no effect of lagged y, xtdpdml produces results
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that are almost identical to xtreg. Of course, there are missing data with this dataset,
making the use of xtdpdml with FIML desirable.

Here we present the fixed-effects model 2 from their table 3. We also include the
gof option, which includes several goodness-of-fit measures in the output.

. use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
(Bollen & Brand 2010 Social Forces V 89(1) NLSY 1983-1993 Odd years Long format)

. xtdpdml lnwg hchild marr div, ylags(0) fiml tfix errorinv gof store(baseline)

Highlights: Dynamic Panel Data Model using ML for outcome variable lnwg

OIM
lnwg Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnwg
hchild -.0704949 .0055935 -12.60 0.000 -.081458 -.0595319

marr .0826099 .0104827 7.88 0.000 .0620642 .1031556
div .0572981 .014612 3.92 0.000 .0286591 .0859372

# of units = 5231. # of periods = 6. First dependent variable is from period 1.
Constants are free to vary across time periods
LR test of model vs. saturated: chi2(106) = 1940.93, Prob > chi2 = 0.0000
IC Measures: BIC = 73683.21 AIC = 72252.61
Wald test of all coeff = 0: chi2(3) = 204.34, Prob > chi2 = 0.0000

Fit statistic Value Description

Likelihood ratio
chi2_ms(106) 1940.932 model vs. saturated

p > chi2 0.000
chi2_bs(123) 8307.362 baseline vs. saturated

p > chi2 0.000

Population error
RMSEA 0.058 Root mean squared error of approximation

90% CI, lower bound 0.055
upper bound 0.060

pclose 0.000 Probability RMSEA <= 0.05

Information criteria
AIC 72252.615 Akaike´s information criterion
BIC 73683.209 Bayesian information criterion

Baseline comparison
CFI 0.776 Comparative fit index
TLI 0.740 Tucker-Lewis index

Size of residuals
CD 0.870 Coefficient of determination

Note: SRMR is not reported because of missing values.

See Acock (2013) for a discussion of goodness-of-fit measures in SEM. The model

vs. saturated chi-squared is a test of all 106 overidentifying restrictions implied by
the model. Here the chi-squared (1940.93) is almost 20 times its degrees of freedom,
suggesting a poor fit to the data. However, as is well known, it is difficult to find
any reasonably parsimonious model that will pass this test with a sample size of more
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than 5,000. Other goodness-of-fit tests reported here are less sensitive to sample size.
An RMSEA of less than 0.05 is considered to be a good fit, and we are almost there at
0.058. On the other hand, both the CFI and TLI are well below 0.90, which is the usual
standard for a minimally acceptable model.

To improve the model fit, we could consider relaxing some of the constraints of the
model; for example, we could let the effects of some variables vary across time by using
the xfree or yfree option. Modification indices (obtained with the sem postestimation
command estat mindices) could provide additional guidance on how to modify the
model. Because there are so many equality constraints imposed by the model, the
estat scoretests command may be especially useful because it displays score tests
(Lagrangian multiplier tests) for each of the linear constraints that are imposed on the
model. In this case,

. estat scoretests

Score tests for linear constraints

( 1) [lnwg1]hchild1 - [lnwg6]hchild6 = 0
( 2) [lnwg1]marr1 - [lnwg6]marr6 = 0
( 3) [lnwg1]div1 - [lnwg6]div6 = 0
( 4) [lnwg1]Alpha = 1
( 5) [lnwg2]hchild2 - [lnwg6]hchild6 = 0
( 6) [lnwg2]marr2 - [lnwg6]marr6 = 0
( 7) [lnwg2]div2 - [lnwg6]div6 = 0
( 8) [lnwg2]Alpha = 1
(12) [lnwg3]Alpha = 1
(13) [lnwg4]hchild4 - [lnwg6]hchild6 = 0
(15) [lnwg4]div4 - [lnwg6]div6 = 0
(16) [lnwg4]Alpha = 1
(17) [lnwg5]hchild5 - [lnwg6]hchild6 = 0
(20) [lnwg5]Alpha = 1
(21) [lnwg6]Alpha = 1
(22) [var(e.lnwg1)]_cons - [var(e.lnwg6)]_cons = 0
(23) [var(e.lnwg2)]_cons - [var(e.lnwg6)]_cons = 0
(24) [var(e.lnwg3)]_cons - [var(e.lnwg6)]_cons = 0

chi2 df P>chi2

( 1) 54.652 1 0.00
( 2) 17.970 1 0.00
( 3) 4.194 1 0.04
( 4) 543.286 1 0.00
( 5) 15.011 1 0.00
( 6) 5.726 1 0.02
( 7) 8.885 1 0.00
( 8) 91.101 1 0.00
(12) 5.594 1 0.02
(13) 5.866 1 0.02
(15) 4.213 1 0.04
(16) 98.223 1 0.00
(17) 4.062 1 0.04
(20) 100.611 1 0.00
(21) 134.406 1 0.00
(22) 12.887 1 0.00
(23) 20.007 1 0.00
(24) 20.581 1 0.00
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The results strongly suggest that the Alpha coefficients (that is, the coefficients for
the unmeasured fixed effects–see tests 4, 8, 12, 16, 20, and 21) are not the same across
time (by default, all are set equal to 1). The constraint that the error variances are the
same across time (which was imposed by the errorinv option but is inherent in the AB

approach) also seems dubious (see tests 22, 23, and 24). Luckily, unlike AB, both prob-
lems are easily addressed with ML–SEM. As Allison, Williams, and Moral-Benito (2017)
note, “It’s even possible to allow the coefficient of α, the fixed effect, to vary with time
instead of being constrained to 1 for every time point. This option is attractive because
it removes one of the principal limitations of the classic fixed-effects estimator: that it
does not control for unmeasured time-invariant variables when their effects change over
time.”

We therefore relax those constraints by dropping the errorinv option and adding
alphafree, resulting in

. xtdpdml lnwg hchild marr div, ylags(0) fiml tfix alphafree gof store(modified)

(output omitted )

Fit statistic Value Description

Likelihood ratio
chi2_ms(96) 789.252 model vs. saturated

p > chi2 0.000
chi2_bs(123) 8307.362 baseline vs. saturated

p > chi2 0.000

Population error
RMSEA 0.037 Root mean squared error of approximation

90% CI, lower bound 0.035
upper bound 0.040

pclose 1.000 Probability RMSEA <= 0.05

Information criteria
AIC 71120.934 Akaike´s information criterion
BIC 72617.152 Bayesian information criterion

Baseline comparison
CFI 0.915 Comparative fit index
TLI 0.891 Tucker-Lewis index

Size of residuals
CD 0.899 Coefficient of determination

Note: SRMR is not reported because of missing values.

. lrtest baseline_f modified_f, stats

Likelihood-ratio test LR chi2(10) = 1151.68
(Assumption: baseline_f nested in modified_f) Prob > chi2 = 0.0000

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

baseline_f 5,231 . -35908.31 218 72252.61 73683.21
modified_f 5,231 . -35332.47 228 71120.93 72617.15

Note: N=Obs used in calculating BIC; see [R] BIC note.
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Relaxing the constraints on Alpha and the error variances requires only 10 degrees
of freedom (because equality constraints are relaxed on 5 Alpha coefficients and 5 error
variances) and produces a dramatic improvement in model fit. The BIC and AIC statistics
also strongly favor the less constrained model. There are also clear improvements in
other goodness-of-fit measures. RMSEA = 0.037, which is much better than the 0.05 value
that is considered a good fit. Similarly, CFI = 0.915 and TLI = 0.891, close to or better
than the usual standard of 0.90 for a minimally acceptable model.

Of course, the researcher may also want to reconsider whether other model assump-
tions (such as not including any lagged independent variables, especially lagged y) are
justified.

4.3 Fixed-effects versus random-effects models

An alternative to the Hausman test is the likelihood-ratio test. Allison (2009) notes
that a Hausman test is often used to contrast fixed-effects and random-effects models.
However, he notes that the Hausman test can sometimes be problematic; for example, it
can produce negative values for some data configurations. He argues that a likelihood-
ratio test can have superior statistical properties. To illustrate this, we again fit a
fixed-effects model with the Bollen and Brand (2010) data. Fitting a random-effects
model instead requires only that we add the re option to xtdpdml. By default, the
latent variable representing fixed effects, Alpha, is allowed to correlate with all the
time-varying exogenous variables, including y0. In the random-effects model, these
correlations are constrained to zero. After fitting both models, we can use the lrtest

command to contrast the results. The code is

*** 4.3 Fixed-effects versus random-effects models; alternative to the Hausman test
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500

* Random effects
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv fiml tfix re store(re) ///
inv(black hisp) title(Adapted from Bollen & Brand Social Forces 2010)

* Fixed effects
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv fiml tfix store(fe) ///
inv(black hisp) title(Adapted from Bollen & Brand Social Forces 2010)

esttab re_h fe_h, mtitles(Random Fixed) scalar(chi2_ms df_ms p_ms BIC AIC) z
lrtest re_f fe_f, stats

As noted before in section 3, when the store() option is used, two versions of the
results are stored. In this case, the highlights-only results are stored in re h and fe h.
These can be used with the community-contributed command esttab (Jann 2007) to
display key results in tables. The full results are stored in re f and fe f. These
should be used with lrtest to test whether the differences between the two models are
significant. We show just the postestimation output here:
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. esttab re_h fe_h, mtitles(Random Fixed) scalar(chi2_ms df_ms p_ms BIC AIC ) z

(1) (2)
Random Fixed

lnwg
L.lnwg 0.393*** 0.338***

(31.49) (27.06)

hchild -0.0116*** -0.0210***
(-3.45) (-3.29)

marr 0.00774 0.0360**
(0.95) (2.80)

div 0.0323** 0.0617***
(3.08) (3.61)

eduatt 0.0547*** 0.0583***
(28.13) (8.09)

cursc -0.0952*** -0.108***
(-8.27) (-8.14)

snrpt 0.00721* 0.00885*
(2.18) (2.02)

snrft 0.0160*** 0.0174***
(10.24) (8.28)

exppt 0.0195*** 0.0309***
(10.34) (8.27)

expft 0.0300*** 0.0307***
(19.54) (13.66)

break 0.00380* 0.0371***
(2.11) (8.56)

black -0.0227** -0.00746
(-2.62) (-0.72)

hisp 0.0570*** 0.0731***
(5.68) (5.76)

N 5285 5285
chi2_ms 1375.9 831.0
df_ms 269 218
p_ms 7.79e-148 2.28e-72
BIC 345222.9 345115.2
AIC 335363.9 334921.0

z statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

. lrtest re_f fe_f, stats

Likelihood-ratio test LR chi2(51) = 544.90
(Assumption: re_f nested in fe_f) Prob > chi2 = 0.0000

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

re_f 5,285 . -166182 1500 335363.9 345222.9
fe_f 5,285 . -165909.5 1551 334921 345115.2

Note: N=Obs used in calculating BIC; see [R] BIC note.
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The likelihood-ratio test and the BIC and AIC statistics all favor the fixed-effects
model.9 This suggests that at least some important variables that are correlated with
the time-varying predictors have been omitted from the model. Note that, with more
conventional fixed-effects methods, the effects of time-invariant variables (of which there
are several in this case) cannot be estimated. This is not the case with the xtdpdml

approach.

4.4 Nonnormality

By default, the xtdpdml model assumes that observed endogenous variables have a
multivariate normal distribution, conditional on the exogenous variables. If FIML is
used, the multivariate normal assumption also applies to any exogenous variables with
missing data. When the normality assumption holds, ML is asymptotically efficient,
implying that the true standard errors are as small as possible.

What if the normality assumption is violated? Even under nonnormality, ML is
consistent and asymptotically normal (Moral-Benito 2013). But it will not be efficient,
and the reported standard errors will not be consistent estimates of the true standard
errors, leading to incorrect p-values and confidence intervals. The degree of bias de-
pends on the circumstances. Simulations by Moral-Benito, Allison, and Williams (2018)
and by Allison, Williams, and Moral-Benito (2017) show that under nonnormal data-
generating processes, the ML estimator performs quite well in finite samples, both in
comparison with its performance under normal data terms and with GMM for nonnormal
data.

When the normality assumption is possibly problematic, the sem command (and
hence xtdpdml) provides various ways of adjusting standard errors, test statistics, and
the parameter estimates themselves. This section will explain three of these approaches
and some of the advantages and disadvantages of each.

First, with Stata 14 and later, the vce(sbentler) option can be specified. As
StataCorp (2018) explains on its webpages,

Stata’s linear sem provides the Satorra–Bentler scaled chi-squared test for
model goodness of fit versus the saturated model. Why do you care? The
likelihood-ratio test comparing your fitted model with the saturated model
is derived under the assumption that the observed variables in your model
are normally distributed. If they are not, that test is not appropriate. The
Satorra–Bentler scaled chi-squared test is robust to nonnormality. Because
many other goodness-of-fit statistics are derived from the model using the
chi-squared test, they too become robust to nonnormality. [What’s more]
The same adjustment that gives you the Satorra–Bentler scaled chi-squared

9. The random-effects model imposes constraints on 51 correlations between Alpha and the exogenous
variables that are free to vary in the fixed-effects model. There are 10 time-varying variables for
each of 5 time periods, so their 50 correlations with Alpha are set to 0. The correlation between
Alpha and lnwg at time 1 is also constrained to equal 0.
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test makes a host of other things robust to nonnormality: standard errors,
p-values, and confidence intervals reported by sem and standard errors, p-
values, and confidence intervals for most post hoc comparisons and tests,
including joint tests, nonlinear tests, linear and nonlinear expressions of
parameters, estimated marginal means and marginal effects, equation-level
Wald tests, direct and indirect effects, and tests of standardized parameters.

Note that vce(sbentler) relaxes the normality assumption when estimating stan-
dard errors but does not affect the coefficient estimates. That is, regardless of whether
you specify vce(sbentler), the coefficient estimates will be the same.

Unfortunately, a key limitation of the vce(sbentler) option is that it does not work
with FIML; that is, it requires listwise deletion. If missing data are a concern, researchers
may prefer to use a different option, vce(robust). As StataCorp (2018) also points out
on the same page,

Stata’s sem already had an adjustment that makes everything in “What’s
more” true. It is often called the Huber or White method, or just called the
linearized estimator. Whatever you call it, this estimator and the Satorra–
Bentler adjustment are making your inferences robust to similar things.
They are derived and computed differently, so they produce different es-
timates. As samples become very large, however, they converge to the same
estimates.

When vce(robust) is specified, along with the default ML estimation method, Stata
calls the estimation method quasi–maximum likelihood (QML). Like vce(sbentler),
QML relaxes the normality assumption when estimating standard errors but does not
affect the coefficient estimates; that is, regardless of whether you specify vce(robust),
the coefficient estimates will be the same.

A key advantage of vce(robust) is that, unlike vce(sbentler), it can be used
with FIML; that is, it does not require listwise deletion of missing data. Because the
standard errors from vce(robust) and vce(sbentler) are asymptotically equivalent,
vce(robust) may be preferred when missing data are a concern. However, unlike
vce(sbentler), vce(robust) does not provide many goodness-of-fit measures, for ex-
ample, no overall chi-squared, no RMSEA, and no TLI or CFI.

With both vce(robust) and vce(sbentler), the standard errors change but the
coefficient estimates remain the same. A third approach is the asymptotic distribution
free (ADF) estimation method (also known as weighted least squares in some literature),
which is achieved by specifying the option method(adf). As the Stata 15 Structural
Equation Modeling Reference Manual (2017, 47–48) explains,

ADF makes no assumption of joint normality or even symmetry, whether for
observed or latent variables.. . . ADF produces justifiable point estimates and
standard errors under nonnormality.. . . Be aware, however, that ADF is less
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efficient than ML when latent variables can be assumed to be normally dis-
tributed. If latent variables (including errors) are not normally distributed,
on the other hand, ADF will produce more efficient estimates than ML or
QML.

Like vce(sbentler), ADF requires listwise deletion of missing data, which could be
a major disadvantage in some cases. Also, ADF typically requires large samples to work
effectively. Our own limited tests suggest that models using ADF are harder to fit and
more likely to have convergence problems.

For the sake of brevity, we will present only the Stata code (with comments) for
each of these approaches and not the output. As just explained, coefficient estimates
are the same as for the models presented in section 4.1 (either using listwise deletion or
FIML), but the standard errors, fit statistics, or both are different. The one exception is
with method ADF, which should produce different coefficient estimates, but the models
could not converge to a solution in this case.10

* Section 4.4 -- Nonnormality
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500
* Use vce(sbentler). Coefficients are the same as when listwise is used.
* Standard errors and goodness-of-fit measures change.
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv tfix store(sbentler) vce(sbentler) ///
inv(black hisp) gof

* vce(sbentler) does not work with fiml.
capture noisily xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft ///

exppt expft break, constinv errorinv tfix store(sbentler) ///
vce(sbentler) inv(black hisp) gof fiml

* Produces the error message "vce(sbentler) not allowed with method(mlmv)".

* Now use vce(robust).
* Coefficients stay the same as when listwise is used but standard errors
* change. In these particular examples, vce(sbentler) and vce(robust)
* produce very similar estimates of the standard errors,
* but few goodness-of-fit measures are reported with vce(robust).
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv tfix store(robust) ///
inv(black hisp) vce(robust) gof

* vce(robust) does work with fiml.
* Coefficients are the same as in example 4.1 using FIML, but standard ///

errors differ.
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv tfix store(robustfiml) ///
inv(black hisp) vce(robust) gof fiml

* Now use method(adf). Both coefficients and standard errors change
* but will not converge for this example.
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, ///

constinv errorinv tfix store(adf) ///
inv(black hisp) method(adf) gof

10. Mplus was also unable to converge to a solution using ADF (which Mplus calls weighted least
squares), which suggests that this is not a problem specific to Stata.
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* Also, fiml will not work with adf.
capture noisily xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft ///

exppt expft break, ///
constinv errorinv tfix store(adf2) ///
inv(black hisp) method(adf) gof fiml

* Produces the error message "You cannot specify both fiml and method(adf)".

5 Special topics

The xtdpdml approach requires that some problems be approached differently than
they are with other models. In addition, for some applications, xtdpdml models can be
harder to fit and may consume far more computing time than other approaches. In this
section, we discuss various ways to deal with these issues.

5.1 Interactions with time

Researchers sometimes want constants and coefficients to differ across time. xtdpdml

can do this, but because data are reshaped wide, the procedure is different than it is
with other programs.

By default, xtdpdml allows the constants (intercepts) to differ across time periods.
With other xt commands, this would be like including i.time in the model. The
constinv or nocsd option can be specified if the user wants the constants to be invariant
across time. Note that these options will sometimes cause convergence problems.

In other situations, the user might want interactions with time where the coefficient
of a variable is free to differ across time periods. With other commands, this might be
accomplished by specifying something like i.time#c.ses. With xtdpdml, you use the
free options instead; for example, xfree2(ses) will allow the effect of ses to differ at
each time period. Similarly, alphafree might be used to allow the fixed effects to differ
across time periods, which is generally not possible with other methods.

5.2 Speed, convergence, and missing data problems

xtdpdml sometimes has trouble converging to a solution or else is slow in doing so. This
might occur, for example, when time-varying variables do not vary much across time,
creating problems of collinearity in estimation. Here are some things you can try when
that happens.

Stata 14.2 introduced major enhancements to the sem command that dramatically
helped with both convergence and speed, especially when FIML is used. Try to use 14.2
or later when using xtdpdml.

By default, sem deletes cases on a listwise basis. Because data are converted to
wide format, a missing time period or even missing data on a single variable at a single
time can cause all the data for an individual to be lost. In addition, xtdpdml models
are computationally intensive. xtdpdml therefore works best when panels are strongly
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balanced, T is small (for example, less than 10), and there are no missing data. If these
conditions do not apply to your data, consider doing the following:

• The fiml option will often help when some data are missing or when entire time
periods are missing for some individuals. Nonetheless, while fiml worked well in
the examples presented here, we have found it can have problems with unbalanced
panels, especially when some time periods have only a few cases.

• Consider restricting your data to a smaller range of time periods where most or
all cases have complete data. Or consider using only every kth year, for example,
1980, 1985, 1990, . . . , 2015. Using fewer variables in the model may also help.

• Consider rescaling variables; for example, measure income in thousands of dollars
rather than in dollars. This can help with numerical precision problems. The std
option makes rescaling and standardizing variables easy, although it may make
coefficients a little harder to interpret. If std solves a convergence problem, then
you may want to rescale the variables yourself in a more interpretable way; for
example, if income is measured in dollars, then compute income/1,000 to measure
income in thousands of dollars.

• Stata 14.2 changed the way start values are computed. Our experience is that
models using fiml tend to run far more quickly in 14.2 compared with earlier
versions. However, sometimes the new start values actually make the models run
more slowly or cause convergence problems. If you are running Stata 14.2 or later,
you can add the options skipcfatransform, skipconditional, or both to make
Stata use the old starting values method. altstart is an easy way to specify both
options.

• Mplus sometimes succeeds when Stata has problems and is often much faster. Try
the mplus() option if you have access to that software.

There are several other options you can try if you are having problems achieving
convergence. Much of this advice applies to many commands, not just xtdpdml.

• The difficult option will sometimes work miracles. There is no guarantee it will
work (sometimes it makes things worse), but it is easy to try.

• The technique() option can be specified to use different maximization techniques.
See the help for maximize.

• evars sometimes helps with convergence when there are no predetermined vari-
ables in the model. It is an alternative and usually less efficient way of specifying
the error terms. But sometimes it helps and may be necessary for replicating
results from earlier versions of xtdpdml.

• The iterate() option can be used to increase or decrease the number of itera-
tions that xtdpdml performs before giving up. The details option will show the
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iteration log. You can increase or decrease the number of iterations depending on
whether it appears the program is converging to a solution.

Finally, remember that problems with regressing y on lagged y may not be that
severe when N or T is large or the autoregressive coefficient is small (Arellano 2003).
Commands like xtreg or xtabond may meet your needs in such situations. But even
then, as our examples showed, features like FIML and time-invariant independent vari-
ables may make it worthwhile to pare your dataset down so you can do at least some
analyses with xtdpdml.

6 Other alternatives to xtdpdml

The community-contributed commands xtmoralb (Moral-Benito 2013) and xtdpdqml

(Kripfganz 2016) both do ML estimation for dynamic panel models. They can do some
of the same things as xtdpdml and may be useful in some situations. However, they also
have some important limitations. xtmoralb works well with predetermined variables
(indeed, we used it to refine xtdpdml). However, it cannot handle time-invariant vari-
ables and lagged exogenous variables and is not fully efficient with strictly exogenous
variables.

xtdpdqml works with strictly exogenous variables and can also sometimes produce
results similar to xtdpdml. However, it cannot handle time-invariant variables (in a
fixed-effects model) and (according to the author) is inappropriate for predetermined
variables. Also, xtdpdqml implements the ML method of Hsiao, Pesaran, and Tahmis-
cioglu (2002), which makes strong and questionable assumptions about initial condi-
tions.

7 Support

Additional information on the xtdpdml command, as well as suggestions for dealing
with possible problems, can be found on its support page at
https://www3.nd.edu/∼rwilliam/dynamic/index.html.
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