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Structural Equation Models
The classic SEM model includes many common linear 

models used in the behavioral sciences:
• Multiple regression
• ANOVA
• Path analysis
• Multivariate ANOVA and regression
• Factor analysis
• Canonical correlation
• Non-recursive simultaneous equations
• Seemingly unrelated regressions
• Dynamic panel data models
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What is SEM good for?

• Modeling complex causal mechanisms.
• Studying mediation (direct and indirect effects).
• Correcting for measurement error in predictor variables.
• Avoiding multicollinearity for predictors variables that are 

measuring the same thing.
• Analysis with instrumental variables.
• Modeling reciprocal relationships (2-way causation).
• Handling missing data (by maximum likelihood).
• Scale construction and development.
• Analyzing longitudinal data.
• Providing a very general modeling framework to handle all 

sorts of different problems in a unified way.
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SEM

Convergence of psychometrics and 
econometrics

• Simultaneous equation models, possibly with 
reciprocal (nonrecursive) relationships

• Latent (unobserved) variables with multiple 
indicators.  

• This course emphasizes models with latent 
variables.  For example:
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X and Y are unobserved variables, x1, x2, y1, and y2 are 
observed indicators, e1-e4 and u are random errors.  
a, b, c, d, and f are correlation coefficients.  

Preview: A Latent Variable SEM Model
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Latent Variable Model (cont.)
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• If we know the six correlations among the observed 
variables, simple hand calculations can produce 
estimates of a through f.  We can also test the fit of 
the model.

• Why is it desirable to estimate models like this? 
– Most variables are measured with at least some error. 
– In a regression model, measurement error in 

independent variables can produce severe bias in 
coefficient estimates.  

– We can correct this bias if we have multiple indicators 
for variables with measurement error. 

– Multiple indicators can also yield more powerful 
hypothesis tests.



Cautions

• Although SEM’s can be very useful, the 
methodology is often used badly and 
indiscriminately.
– Often applied to data where it’s inappropriate.
– Can sometimes obscure rather than illuminate.  
– Easy to get sucked into overly complex modeling.
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Outline
1. Introduction to SEM
2. Linear regression with missing data
3. Path analysis of observed variables
4. Direct and indirect effects
5. Identification problem in nonrecursive models
6. Reliability: parallel and tau-equivalent measures
7. Multiple indicators of latent variables
8. Confirmatory factor analysis
9. Goodness of fit measures
10. Structural relations among latent variables
11. Alternative estimation methods.
12. Multiple group analysis
13. Models for ordinal and nominal data
14. Longitudinal Data Analysis
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Software for SEMs
LISREL – Karl Jöreskog and Dag Sörbom
EQS – Peter Bentler
PROC CALIS (SAS) – W. Hartmann, Yiu-Fai Yung
Amos – James Arbuckle
Mplus – Bengt Muthén
sem, gsem (Stata)
Packages for R:

OpenMX – Michael Neale
sem – John Fox
lavaan (R) – Yves Rosseel
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Favorite Textbook
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Linear Regression in SEM
The standard linear regression model is just a special case of SEM:

y  =  β0 + β1 x1 + β2 x2 + ε

We make the usual assumptions about ε:
 uncorrelated with the x’s.
 mean of 0
 homoskedastic (variance is constant)
 normally distributed. 

By default, all SEM programs do maximum likelihood (ML) 
estimation. Under these assumptions, ML is equivalent to ordinary 
least squares (OLS). 

Why do it in SEM? Because SEM can handle missing data by 
maximum likelihood—one of the best methods available.
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GSS2014 Example
Data from the 2014 General Social Survey (GSS). There were a total of 2538 respondents. 
Here are the variables that we will use, along with their ranges and the number of cases 
with data missing: 
AGE Age of respondent (18-89), 9 cases missing
ATTEND Frequency of attendance at religious services (0-8), 13 cases missing
CHILDS Number of children (0-8), 8 cases missing
EDUC Highest year of school completed (0-20), 1 case missing
FEMALE 1=female, 0=male
HEALTH Condition of health (1 excellent – 4 poor), 828 cases missing; 824 of these were not 

asked the question
INCOME Total family income (in thousands of dollars), 224 cases missing
MARRIED 1=married, 0=unmarried, 4 cases missing
PAEDUC Father’s highest year school completed, father (0 – 20), 653 cases missing
PARTYID Political party identification (1 strong democrat – 6 strong republican); 88 cases missing
POLVIEWS Think of self as liberal or conservative (1 liberal – 7 conservative)

89 cases missing
PROCHOICE Scale of support for abortion rights (1 – 6), 1033 cases missing; 824 of these were not 

asked the question (dependent variable)
WHITE 1=white race, 0= non-white 12



Regression with Mplus
DATA:

FILE = c:\data\gss2014.csv;
VARIABLE:

NAMES = age attend childs educ health income paeduc partyid
polviews female married white prochoice; MISSING = .;

USEVARIABLES = age attend childs educ health income paeduc
female married white prochoice;

MODEL:
prochoice ON age attend childs educ health income paeduc

female married white;

My convention:  All upper case words are Mplus key words; all lower case 
words are variable names, parameter names, or data set names that you 
choose.  (Mplus is not case sensitive).

Mplus doesn’t have a default missing data code, so we have to assign it with 
the MISSING option.

USEVARIABLES is necessary to limit the variables to those actually used in 
the model. 
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Mplus only reads text files, without any 
variable names.

Mplus Output
Two-Tailed

Estimate       S.E.  Est./S.E.    P-Value

PROCHOIC ON
AGE                0.013      0.004      3.457      0.001
ATTEND            -0.292      0.021    -13.932      0.000
CHILDS            -0.087      0.042     -2.048      0.041
EDUC               0.132      0.023      5.682      0.000
HEALTH            -0.139      0.072     -1.926      0.054
INCOME             0.004      0.001      3.809      0.000
PAEDUC             0.035      0.016      2.183      0.029
FEMALE            -0.048      0.114     -0.422      0.673
MARRIED           -0.378      0.127     -2.983      0.003
WHITE             -0.496      0.145     -3.416      0.001

Intercepts
PROCHOICE          2.665      0.420      6.337      0.000

1480 cases are lost because of missing data.
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Linear Regression with Stata
use "c:\data\gss2014.dta" 
sem prochoice <- age attend childs educ health income 

paeduc female married white

|                 OIM
|      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

----------------+----------------------------------------------------------------
Structural      |
prochoice <- |

age |   .0132813   .0038416     3.46   0.001     .0057518    .0208108
attend |  -.2923748   .0209863   -13.93   0.000    -.3335072   -.2512424
childs |   -.087023   .0424846    -2.05   0.041    -.1702913   -.0037547
educ |    .132245   .0232747     5.68   0.000     .0866275    .1778626

health |  -.1393584   .0723665    -1.93   0.054    -.2811941    .0024773
income |   .0043811   .0011504     3.81   0.000     .0021264    .0066357
paeduc |    .034699    .015891     2.18   0.029     .0035532    .0658448
female |  -.0479459   .1135087    -0.42   0.673     -.270419    .1745271
married |  -.3777956   .1266759    -2.98   0.003    -.6260758   -.1295153
white |  -.4960648    .145236    -3.42   0.001    -.7807221   -.2114074
_cons |   2.664199   .4204945     6.34   0.000     1.840045    3.488353
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Linear Regression with SAS
PROC CALIS DATA=my.gss2014;
PATH prochoice <- age attend childs educ health 

income paeduc female married white; RUN;
Like Mplus, SAS is not case sensitive, but I put SAS language in upper case. PATH is 
one of 7 “languages” in PROC CALIS for specifying SEMs. 
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PATH List

Path Parameter Estimate Standard
Error

t Value Pr > |t|

prochoice <=== age _Parm01 0.01328 0.00384 3.4556 0.0005

prochoice <=== attend _Parm02 -0.29237 0.02100 -13.9251 <.0001

prochoice <=== childs _Parm03 -0.08702 0.04250 -2.0474 0.0406

prochoice <=== educ _Parm04 0.13225 0.02329 5.6792 <.0001

prochoice <=== health _Parm05 -0.13936 0.07240 -1.9248 0.0543

prochoice <=== income _Parm06 0.00438 0.00115 3.8066 0.0001

prochoice <=== paeduc _Parm07 0.03470 0.01590 2.1825 0.0291

prochoice <=== female _Parm08 -0.04795 0.11356 -0.4222 0.6729

prochoice <=== married _Parm09 -0.37780 0.12674 -2.9810 0.0029

prochoice <=== white _Parm10 -0.49606 0.14530 -3.4140 0.0006



Linear Regression with lavaan
gssdata<-read.table("c:/data/gss2014_names.txt", header=T)
gssmod <- ' prochoice ~ age+attend+childs+educ+health

+income+paeduc+female+married+white '
gssfit <- sem(gssmod, data=gssdata)
summary(gssfit)

For R, missing data must be coded as NA.  ~ means “is regressed on”.  For this 
program to work, the lavaan package must be installed into R. 

prochoice ~       Estimate  Std.Err Z-value  P(>|z|)
age               0.013    0.004    3.457    0.001
attend           -0.292    0.021  -13.932    0.000
childs -0.087    0.042   -2.048    0.041
educ 0.132    0.023    5.682    0.000
health           -0.139    0.072   -1.926    0.054
income            0.004    0.001    3.808    0.000
paeduc 0.035    0.016    2.184    0.029
female           -0.048    0.114   -0.422    0.673
married          -0.378    0.127   -2.982    0.003
white            -0.496    0.145   -3.416    0.001
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FIML for Missing Data
Full information maximum likelihood (FIML) is one of the best 
(and easiest) methods for dealing with missing data. It has 
several advantages over multiple imputation:
• Because multiple imputation introduces random variation into the 

imputation process, you get a different result every time you use it. FIML 
always produces the same result.

• Multiple imputation is a rather complex and “messy” method that 
requires a lot of attention to detail. With FIML, you just specify one 
option. 

• Multiple imputation requires two separate models, an imputation model 
and an analysis model. If they’re not compatible you may get incorrect 
results. With FIML, there’s only one model, so no danger of 
incompatibility.

• FIML is fully efficient, in the statistical sense. Multiple imputation is close 
to fully efficient, but doesn’t quite get there. 
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Further Reading
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Allison, Paul D. (2003) “Missing data 
techniques for structural equation 
models.” Journal of Abnormal 
Psychology 112: 545-557.

Download at 
http://www.statisticalhorizons.com/res
ources/articles

Assumptions
Both FIML and MI assume that the data are missing at 

random (MAR): roughly, the probability that a 
variable has missing data does not depend on the 
value of that variable, once other variables are 
controlled. 
This would be violated, for example, if people with higher 

incomes were less likely to report their incomes.

FIML (and some versions of multiple  imputation) 
assumes that variables with missing data have a 
multivariate normal distribution. 
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FIML Theory 1
The first step in ML is to construct the likelihood function, which expresses 
the probability of the data as a function of the unknown parameters. 
Suppose that we have n independent observations (i =1,…, n) on k variables 
(yi1, yi2,…, yik) and no missing data. The likelihood function is then

where fi(.) is the joint probability (or probability density) function for 
observation i, and θ is a set of parameters to be estimated. To get the ML 
estimates, we find the values of θ that make L as large as possible. 

Now suppose that for a particular observation i, the first two variables, y1 and 
y2, have missing data that satisfy the MAR assumption. The contribution to 
the likelihood function for that observation is just the probability of observing 
the remaining variables, yi3 through yik.  How do we get that?

• If y1 and y2 are discrete, we sum the joint probability over all possible 
values of the two variables with missing data: 
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FIML Theory 2
If the missing variables are continuous, we use integrals in place of 
summations:

The overall likelihood is just the product of the likelihoods for all the 
observations.  For example, if there are m observations with complete data 
and n-m observations with data missing on y1 and y2, the likelihood function 
for the full data set becomes

where observations are ordered such that the first m have no missing data 
and the last n-m have missing data.  This likelihood can then be maximized to 
get ML estimates of θ. 
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FIML Theory 3
In the case of linear models, we invoke the multivariate normal assumption.  
When no data are missing, the likelihood function is

where yi is a vector of all the observed variables and the density function is 
given by

When data are missing (at random), the likelihood becomes

• If data are missing for individual i, then yi deletes the missing values, μi
deletes the corresponding means, and  Σi deletes the corresponding rows 
and columns.

• This likelihood can be maximized by conventional methods, e.g., the 
Newton-Raphson algorithm or the EM algorithm. 23
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FIML in SAS
PROC CALIS DATA=my.gss2014 METHOD=FIML;
PATH prochoice <- age attend childs educ health   

income paeduc female married white; RUN;
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Path Parameter Estimate Standard
Error

t Value Pr > |t|

prochoice <=== age _Parm01 0.01330 0.00325 4.0915 <.0001

prochoice <=== attend _Parm02 -0.26510 0.01779 -14.8973 <.0001

prochoice <=== childs _Parm03 -0.07401 0.03372 -2.1950 0.0282

prochoice <=== educ _Parm04 0.13026 0.02000 6.5133 <.0001

prochoice <=== health _Parm05 -0.03465 0.06027 -0.5749 0.5654

prochoice <=== income _Parm06 0.00499 0.00106 4.7204 <.0001

prochoice <=== paeduc _Parm07 0.04205 0.01578 2.6651 0.0077

prochoice <=== female _Parm08 0.03062 0.09745 0.3142 0.7534

prochoice <=== married _Parm09 -0.30837 0.10866 -2.8378 0.0045

prochoice <=== white _Parm10 -0.38116 0.11743 -3.2457 0.0012



FIML in Stata
use "c:\data\gss2014.dta" 
sem prochoice <- age attend childs educ health income 

paeduc female married white, method(mlmv)

MLMV stands for maximum likelihood treatment of missing values.

--------------------------------------------------------------------------------
|                 OIM
|      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

---------------+----------------------------------------------------------------
Structural     |
prochoice <- |

age |   .0133017    .003251     4.09   0.000     .0069298    .0196736
attend |  -.2650952   .0177948   -14.90   0.000    -.2999724   -.2302181
childs |  -.0740106   .0337186    -2.19   0.028    -.1400978   -.0079234
educ |   .1302599   .0199992     6.51   0.000     .0910622    .1694577

health |  -.0346473   .0602697    -0.57   0.565    -.1527737    .0834792
income |   .0049948   .0010582     4.72   0.000     .0029208    .0070687
paeduc |   .0420557   .0157793     2.67   0.008      .011129    .0729825
female |    .030612   .0974469     0.31   0.753    -.1603803    .2216043
married |  -.3083652   .1086642    -2.84   0.005    -.5213432   -.0953872
white |  -.3811773   .1174348    -3.25   0.001    -.6113454   -.1510092
_cons |   2.078671   .3449224     6.03   0.000     1.402635    2.754706
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FIML in lavaan
gssdata<-read.table("c:/data/gss2014_names.txt", header=T)
gssmod <- ' prochoice ~ age+attend+childs+educ+health

+income+paeduc+female+married+white '
gssfit <- sem(gssmod, data=gssdata, missing='fiml')
summary(gssfit)

Number of observations                          2538
Number of missing patterns                        33

Regressions:
Estimate  Std.Err Z-value  P(>|z|)

prochoice ~                                         
age               0.013    0.003    4.093    0.000
attend           -0.265    0.018  -14.899    0.000
childs -0.074    0.034   -2.196    0.028
educ 0.130    0.020    6.517    0.000
health           -0.035    0.060   -0.575    0.565
income            0.005    0.001    4.721    0.000
paeduc 0.042    0.016    2.669    0.008
female            0.031    0.097    0.314    0.753
married          -0.308    0.109   -2.838    0.005
white            -0.381    0.117   -3.248    0.001 26



FIML in Mplus
DATA: FILE = c:\data\gss2014.csv;
VARIABLE:

NAMES = age attend childs educ health income paeduc partyid
polviews female married white prochoice; MISSING = .;

USEVARIABLES = age attend childs educ health income paeduc
female married white prochoice;

MODEL:
prochoice ON age attend childs educ health income paeduc

female married white;
age attend childs educ health income paeduc

female married white;

Mplus does FIML by default, but only for dependent variables. To make 
it work for independent variables, we must name them on a separate 
statement. The names refer to their variances, which tells Mplus to 
treat them as if they were dependent. 
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Mplus “Problem”
Mplus gives the same results as SAS and Stata. But it also reports the 
following:

THE MODEL ESTIMATION TERMINATED NORMALLY

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING
VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE
CONDITION NUMBER IS      -0.957D-19.  PROBLEM INVOLVING THE FOLLOWING 
PARAMETER:

Parameter 77, WHITE

This is not a real problem.  It happens whenever Mplus tries to estimate a 
variance for a dummy variable.  For a dummy variable, the variance is a 
function of the mean. Whenever one parameter is a function of another, 
Mplus flags it as a possible indication of non-identification.  
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FIML with Auxiliary Variables
FIML can be improved by the inclusion of auxiliary variables—
variables that are correlated with variables that have missing data, 
but are not themselves in the model. 

• To include auxiliary variables, allow them to be freely correlated 
with all the variables in the regression model. 

• An easy way to do that is to specify additional regression 
equations in which the auxiliary variables are dependent 
variables. But we must also allow the auxiliary variables to be 
correlated with each other. 

• SEM packages vary greatly in how auxiliary variables may be 
included. 

• For the GSS2014 data, PARTYID and POLVIEWS can be used as 
auxiliary variables. 
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Auxiliary Variables in Mplus
DATA: FILE = c:\data\gss2014.csv;
VARIABLE:

NAMES = age attend childs educ health income paeduc partyid
polviews female married white prochoice; MISSING = .;

AUXILIARY = (M) polviews partyid;
MODEL:

prochoice ON age attend childs educ health income paeduc
female married white;

age attend childs educ health income paeduc
female married white;

Mplus has a special syntax for auxiliary variables.
We no longer need the USEVARIABLES option because all the 
variables are being used.
Results differ only slightly from model without auxiliary variables. 
Standard errors are slightly smaller. 
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Auxiliary Variables in SAS
PROC CALIS DATA=my.gss2014 METHOD=FIML;
PATH prochoice <- age attend childs educ health   

income paeduc female married white,
partyid polviews <- prochoice age attend childs educ

health income paeduc female married white,
partyid <-> polviews;

RUN;

The second “path” specifies two regressions. The sole function of 
these regressions is to allow the auxiliary variables to be correlated 
with all the others.

The third path with the <-> operator specifies the partial correlation 
between these the auxiliary variables.  
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Auxiliary Variables in Stata
use "c:\data\gss2014.dta" 
sem (prochoice<-age attend childs educ health income   

paeduc female married white)
(partyid polviews <- prochoice age attend childs
educ health income paeduc female married white), 
cov(e.partyid*e.polviews) method(mlmv)

The second “path” specifies two regressions. The sole function of 
these regressions is to allow the auxiliary variables to be correlated 
with all the others.

The cov option specifies the partial correlation between these the 
auxiliary variables.  
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Auxiliary Variables in lavaan
gssdata<-read.table("c:/data/gss2014_names.txt", header=T)
gssmod <- ' prochoice ~ age+attend+childs+educ+health

+income+paeduc+female+married+white
polviews+partyid ~ prochoice+age+attend+childs+educ+health

+income+paeduc+female+married+white
polviews ~~ partyid '

gssfit <- sem(gssmod, data=gssdata, missing='fiml')
summary(gssfit)

The second equation specifies two regressions. The sole function of 
these regressions is to allow the auxiliary variables to be correlated 
with all the others.

The third path with the ~~ operator specifies the partial correlation 
between these the auxiliary variables.  
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Path Diagram from Mplus
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Path Analysis of Observed Variables
In the SEM literature, it’s common to represent a linear 

model by a path diagram.
– A diagrammatic method for representing a system of linear 

equations.  There are precise rules so that you can write 
down equations from looking at the diagram.

– Invented by the geneticist Sewall Wright in 1934. 
– Single equation:  y  =  β0 + β1 x1 + β2 x2 + ε
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Some Rules and Definitions
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Direct causal effect

Correlation
(no causal assumptions)

Why the curved double-headed arrow in the diagram?  
Because omitting it implies no correlation between x1 and x2.  

Endogenous variables: Variables caused by other variables in the 
system.  These variables have straight arrows leading into them. 

Exogenous variables: Variables not caused by others in the system.  
No straight arrows leading into them. 

Not the same as dependent and independent because a variable 
that is dependent in one equation and independent in another 
equation is still endogenous. 

Curved double-headed arrows can only link exogenous variables.



Three Predictor Variables
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The fact that there are no curved arrows between ε and 
the x’s implies that ρ1ε = 0, ρ2ε = 0, and ρ3ε = 0.  We make 
this assumption in the usual linear regression model.

Two-Equation System

y  =  β0 + β1x1 + β2x2 + ε1

x2 = α0 + α1x1 + ε2

The diagram is now

38

1x

x

1

2

y ε
1

ε
2

β

β
2

α1

Note:  The diagram goes further than the equations by 
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Why combine the two equations?
Answer: to get further insight into the causal process.  

To make this more concrete, let’s suppose that 

y  =  income

x1 = father’s income

x2 = years of schooling

What happens when you increase x1 by one unit?  Then y changes by 
β1 units, holding x2 constant. 

This can be misleading, however, because a one-unit increase in x1

also produces a change of α1 units in x2, which in turn produces a 
change in y.  

Thus x1 has both a direct and an indirect effect on y.  You wouldn’t 
notice this with a single equation. 

Schooling mediates part of the effect of father’s income on income. 
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Calculation of Indirect Effect
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Substitute one equation into the other.

  y = β0 + β1x1 + β2(α0 + α1x1 + ε2) + ε1

= β0 + α0β2 + β1 + α1β2 x1 + ε1 + β2ε2

The direct effect of x1 is β1 . 

The indirect effect of x1 is α1β2.  

The total effect of x1 is β1 + α1β2

For recursive systems, indirect effects may be 
calculated by taking the product of coefficients 
along a particular path. 




