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DAGs: Regression and matching
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Backdoor path: is there another way 
to connect D and Y that doesn’t pass 
through a “collider” (a point with 
two arrows pointing in)? If so, then 
you have to break the path to 
identify the effect of D on Y.
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Regression
(identification by adjustment)
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Regression intervenes here, 
breaking the backdoor path by 
removing the effect of X on Y.
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Matching/weighting
(identification by balancing)
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Matching and weighting break the 
backdoor path here, by balancing 
on S so there is no longer any 
difference in S between D=0 and 
D=1.
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Map of the rest of the course

1. Theoretical background
2. Exact matching
3. Propensity score methods (parametric and semi-parametric)
4. Non-parametric methods
5. Parametric regression with preprocessed data
6. Extensions
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The logic of propensity scores

Because exact matching is impossible when S comprises many 
variables, propensity scores allow us to summarize S in a single, 

continuous variable. This allows comparing “apples to apples” as 
long as we are comfortable with “appleness” as defined by the 

propensity score.
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Two big questions

How do I estimate propensity scores?

• logistic regression
• generalized boosted modeling
• covariate balancing p-score
• any other classifier

choice of metric
– log-odds
– probability

What do I do with them?
• stratification
• weighting
• matching
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Traditional workflow
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Start

Fit initial PS model 
(logistic regression)

Are any covariates 
imbalanced?

Estimate PS and 
S/W/M by PS

Modify PS model 
(e.g., interactions)

No

Yes

Adapted from Diamond and Sekhon 2014
S/W/M = stratify, weight, or match

Compare S/W/M-ed
T&C diff in outcome
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Estimating p-score by logistic regression
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Covariate balance

• Propensity scores can be used to balance the treatment and control
groups overall in a few ways:
– Matching (e.g., matching treated cases to controls with same/close p-scores)
– Weighting (e.g., applying inverse probability of treatment weights to the controls

to make their distribution look like the treatment group)

• Balance on the propensity score, however, does not guarantee that the
treatment and control groups will be balanced on each of the elements
that go into the propensity score
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Assessing balance with standardized difference
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This is what psychologists call an “effect size” – the difference in z-scores

The traditional rule of thumb is that this should be no greater than .1 for any 
T&C comparison in any stratum for any variable.
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Don’t pay attention to the 
tests (“stat” and “p”). They 
are not really appropriate. 

Just keep an eye on the 
standardized differences.
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Overview of options

• Common support: do we need to drop off-support cases?*
• Distance metric: match on p-score or logit of p-score?
• Caliper: how far is the “nearest neighbor” allowed to be?
• Replacement: should controls be allowed to be reused?
• Ratio: 1-to-1, k-to-1, or variable ratio matching?
• Exact matching: should we match exactly on one or more

categorical variables?
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*Already covered; same issues apply

Covariate Balancing Propensity Scores (CBPS)

• This is a newer technique that jointly maximizes the balance of
the covariates and the prediction of the treatment using an
empirical likelihood approach

• For full info, see Imai and Ratkovic (2014) and some newer
developments in Fan et al. (https://imai.fas.harvard.edu/research/CBPStheory.html)
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The intuition

• Conditioning on the true propensity score would satisfy the
CIA; unfortunately we never have it

• If the propensity model is misspecified (as it almost always is),
covariate imbalance (and thus bias) can result

• Optimizing covariate balance directly reduces this danger
• The CBPS estimator minimizes imbalance and maximizes

prediction of treatment selection simultaneously
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As expected, overall and covariate balance are very good. I add the KS 
statistics here, however, just to show that even though the first moments 
(i.e., means) are very well balanced, the distributions are not equivalent.
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These QQ plots show that the weighted selection of controls is overrepresented at both 
tails (more 0s and more college educated) even though the mean years is balanced. 
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IPTW with these p-scores
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