

Multilevel and Mixed Models Using R

Stephen Vaisey, Ph.D.

Upcoming Seminar: July 28-31, 2020, Remote

Sometimes written in two equations with distributional assumptions spelled out Level 1: $y_{ij} = \beta_{0j} + \varepsilon_{ij}$, $\varepsilon_{ij} \sim N(0, \sigma^2)$ Level 2: $\beta_{0j} = \beta_0 + \mu_j$, $\mu_j \sim N(0, \tau^2)$

<pre>> describe(ess_simple\$stflife) vars n mean sd median tri x1 1 5800 6.78 2.41 7</pre>	mmed mad min max range s 7.02 2.97 0 10 10 -(kew kurtosis se 1.86 0.3 0.03
<pre>> table(ess_simple\$cntry)</pre>		
AL BE BG CH CY CZ DE DK 200 200 200 200 200 200 200 200 2	EE ES FI FR GB HU IE 00 200 200 200 200 200 200	IL IS IT LT NL NO PL PT RU SE SI SK UA XI 200 200 200 200 200 200 200 200 200 200
	Life Satisfaction	
	Mean	6.8
	Wiculi	0.0
	Variance	5.8
	Variance (remember thes	5.8 e numbers)

The simplest mixed model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_j + \varepsilon_{ij}$$

$$sat_{ij} = \beta_0 + \beta_1 ed_{ij} + u_j + \varepsilon_{ij}$$

Basic lme4 syntax

```
> # Basic mixed model
> m2 <- lmer(stflife ~ eduyrs + (1 | cntry),</pre>
            data = ess_simple,
+
            REML = FALSE)
+
> summary(m2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: stflife ~ eduyrs + (1 | cntry)
Data: ess_simple
             BIC logLik deviance df.resid
    AIC
25661.9 25688.6 -12827.0 25653.9
                                    5796
Scaled residuals:
   Min 1Q Median
                          3Q
                                  Max
-3.7077 -0.5339 0.1210 0.6780 2.6587
Random effects:
Groups Name
                     Variance Std.Dev.
         (Intercept) 0.9607 0.9801
 cntry
Residual
                     4.7905
                            2.1887
Number of obs: 5800, groups: cntry, 29
Fixed effects:
           Estimate Std. Error t value
(Intercept) 6.20161 0.20752 29.88
                       0.00773
eduyrs
            0.04716
                                 6.10
```

	Null model	Null + educati	on
Fixed part			
Years of educatior	1	0.047	
Constant	6.784	6.202	
Random part			
L2 variance	1.009	0.961	
L1 variance	4.820	4.791	
ICC	.173	.167	This is now a <i>residual</i> ICC which isn't very useful

66

Random coefficients/slopes syntax lmer(y ~ x + (l + x | cluster), # x is now in both EQs data = df, REML = FALSE)

	How satisfied with life as a whole	How satisfied with life as a whole	
_	B (CI)	B (CI)	
Fixed Parts			
(Intercept)	6.784 (6.41 - 7.15) ***	2.068 (-1.35 - 5.48)	
Education (between)		0.382 (0.11 – 0.66) **	
Education (within)		0.046 (0.03 - 0.06) ***	$R_{i1}^2 = \frac{4.820 - 4.790}{4.820} = .006$
Random Parts			
σ ²	4.820	4.790	$R_{12}^2 = \frac{1.009799}{$
τ _{00, cntry}	1.009	0.799	1.009
N _{cntry}	29	29	(4.820 + 1.009) - (4.790 + .799)
ICC _{cntry}	0.173	0.143	$R_{overall} = {(4.820 + 1.009)} = .04$
Observations	5800	5800	
		* ~ 05 ** ~ 01 *** ~ 001	

Comparing many models

Many decisions to make, for example:

- Do I need to split out education into between/within?
- Do I need to include a specific variable at all?
- Do I need random slopes on the L1 variables?

129

AIC/BIC of all models (so far)

Model	Specification	AIC	BIC	
M1	random intercepts	25,697	25,717	
M2	RI + eduyrs	25,662	25,689	
M3	RI + eduyrs*	25,610	25,650	
BW1	RI + b/w.eduyrs	25,659	25,692	
BW2	RI + b/w.eduyrs + GDP	25,638	25,678	
BW3	RI + b/w*.eduyrs + GDP	25,592	25,645	
M4	RI + eduyrs* + GDP	25,592	25,638	

* signifies random slopes

130

What can we do with lme4?

```
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```