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What this workshop will accomplish

| will review the basics of multilevel modeling (MLM) to bring everyone up to
speed.

| will discuss some more advanced ideas and techniques, and show how to
implement them in Mplus.

MSEM will be then explored in depth, with an emphasis on practical
application using Mplus.

By the end, you will be able to develop and run your own models, by adapting
and combining some of the example syntax provided in the online workshop
materials.

What this workshop isn’t

This is not a basic Mplus workshop

¢ We will cover some Mplus basics, but not everything—only those features
that | have found the most useful for implementing MSEM.

This is not an introductory SEM or MLM course

e | will cover basic topics as they pertain directly to multilevel SEM.

e Butif you are a complete newcomer to either or both of SEM or MLM, |
recommend that you supplement this workshop with books or workshops
dedicated expressly to these topics.




Review of Multilevel Modeling (MLM):
Background

Key assumptions of (single-level) multiple linear regression (MLR)

¢ Correct specification of relationship between IVs and DV

¢ Inclusion of the important IVs in the model

¢ Perfect reliability of IVs

e Constant variance of errors* (homoscedasticity) iid )
¢ Independence of errors* € ~ N (0, O, )
¢ Normality of errors*

*Errors are unobserved population quantities. Residuals are the corresponding
observable sample quantities.

If the relationship between the IVs and DV is correctly specified, then e
represents random error.




Clustered data commonly occur when cases are “nested” in ways that enhance
the probability of similar responses.

Examples:
Level 1 Level 2
students classrooms
corporations nations
spouses nested within couples
voters districts
repeated measures individuals

Clustered data violate the assumption of independence, often leading to
biased standard errors.

Ignoring violations of assumptions caused by nesting means we operate under
the assumption that we have more information than we really do.

In clustered data, sampling units no longer yield unique information.

Nesting can be a nuisance from a statistical point of view, but the dependence
can also be a source of great substantive interest.




Multilevel modeling (MLM) is an elaboration of multiple regression that is
designed for use with clustered data.

Also known as hierarchical linear modeling (HLM), random coefficient
modeling, contextual analysis, mixed linear modeling, and mixed effects
modeling.

Very popular in psychology, education, organizational research,
and public health.

MLM treats clusters as if they are sampled from a larger population of clusters,
enhancing the generalizability of results.

In MLM, regression intercepts and/or slopes are assumed to have a particular
distribution across clusters, summarized by a limited set of parameters (e.g.,
mean and variance).

* MLM extends single-level regression by treating these intercepts and
slopes as dependent variables in their own right.

In MLM, the dependent variable (y;) is always measured at the lowest
level, Level 1.




For example, whereas the single-level regression model might assume that all
cases come from a population with the same intercept

Vi =5+ B +€ ei~N(0’O-<aZ)

...MLM permits individual level-2 units to have their own distribution of /.
Rather than estimate each one individually, we assume a distributional form
for /4 as we do for e;;:

Vi =B+ 5% +€ &~ N (O!O-ez)
,Boj' = N(7/oo’700)

Advantages of MLM

Parsimony. Compared to a fixed effects approach (including J — 1 separate
level-2 effects of cluster identifiers using dummy codes), we simply estimate a
mean and variance for an effect across the population of level-2 units.

Generalizability. Because the effect is treated as random rather than fixed, we
can generalize results to the population of level-2 units rather than only to
those sampled.

Appropriateness. Multilevel models often conform more closely to theoretical
predictions than do other approaches.

Flexibility. Rather than treating clusters as nuisances that violate assumptions,
by modeling nestedness we can examine both level-1 and level-2 effects.




Review of Multilevel Modeling (MLM):
Equations

There are two popular ways to represent MLM in equation form:

Matrix expression: The model is expressed for a typical level-2 unit (cluster),
where level-1 units are assembled into a vector.

Scalar expression: The model is expressed for a typical level-1 unit and a
typical level-2 unit.

We will use the scalar expression here.




Scalar expression

Level-1 expression...
Yi :ﬂOj +ﬂ1jxlij +ﬂ2jX2ij +€;
Level-2 expression...
130]' =%00 T V01Wq; HUy;
181]' =710 T7uWy; Ty
132,' =720 TVaWq; TUy;
Combined (reduced) form...
Vi =Voo T VoaWi; +710X1y T V1 XyjWa; +720X05 71 XWy

+ll0]. +Ll1jX1U. +ll2].X2U. +€i}.

Scalar expression
Yi :ﬂ[)j +:B1jX1ij +132szij +€;
Using scalar expressions, the
relationship of MLM to multiple ﬂo; =Yoo T V0aW1, T Uy,
linear regression (MLR) becomes clear. _
IBU =V T 71V, T Uy

MLM.can k?e thought of as a form of :82]' =Yoo T VWy; Uy,
MLR in which the intercept and
slopes are potentially random.

Uy; 0) (7o
We assume these coefficients Uy ~MVN||0|,| 7, 744
are normally distributed, and
: 2j 0) 7 7y 7y

estimate the means, variances,
and covariances of their joint
distribution as parameters. e; ~ N((),O-Z)




The simplest multilevel model: Random effects ANOVA
Vi =5 +€; “Level-1 model” e ~ N (0,0'92)

,Boj =Yt uOj "Level-2 model" Uy: ~ N (0, Too)

]

The reduced form equation for the random effects ANOVA:

corﬂﬁgﬁem cc:r?mnp%?wrgm The between- and within-cluster
—= — variances sum to the observed
yij = 7w +u01’ +eij variance:
ra?f(_jo_mt " ad ~o
coe B|O?en Too + o, = O-y

By is treated as a random coefficient because (a) we are interested not in
individual intercepts but rather in the mean (,,) and variance (z,,) and (b) we
want to generalize results beyond the particular groups in our study.

The intraclass correlation (ICC) is the proportion of variance in y that is across
level-2 units:

T
ICC =+0A2
Too + O,

ICC is sometimes used to decide if MLM would be worthwhile.
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We can expand the random effects ANOVA model to include level-1 predictors.
The result is a random effects ANOVA model with covariates (i.e., RANCOVA):
Yi = ﬂoj +ﬂ1jxij +€;
ﬂo,’ =Yoo T Ug;

,Blj =710

The effect of x is constrained to be the same across all level-2 units. In other
words, 7;; = 0 (where 7, is the slope variance). The intercept variance (z,,), on
the other hand, is allowed to be nonzero.

The reduced-form equation is: Yj = 750 + 710Xj; +Ug; €

The level-1 variance o7 is now the residual variance after adjusting for the
predictor x. The level-2 variance t,, is the group-level residual variance.

We could expand the RANCOVA model to include more level-1 predictors or
level-2 predictors. For example:

Yi =,30j +1811')(1ij +ﬂ2jx2ij +ﬂ3jx3ij + €

Boi = Voo + VoaWaj + Vs Wy + Uy

ﬂlj =710
,sz =72
ﬂe,j =730
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In principle, we can have any number of level-1 predictors, and any mix of fixed
and random coefficients. For example:

Yii :ﬂoj +181jxlij +ﬂ2jX2ij +ﬁ3jx3ij +ﬂ4jx4ij +ﬂ5jX5ij +ﬂ6jx6ij +ﬁ7jx7ij +€;

1801 =700 tUgj 5
_ e, ~N(0.07)

Brj =710 + Uy

L= +U,; Mu. ] ol ]
Boj = Va0 +Uy; Uy 0] [ 74
Bsj = 730 + U t; 0|0

_ Uy, 0|7y 7, T

ﬂ4j — 7/40 + u4J 2j 20 21 22
B = ey +U Uy [~ MVUN |10, 75 7y Ty Ty

55 = V50 T Usj

! ! Uyj 0| [7s Tar Tar Ta3 Tag
;Bej =7Ye0 T Usj Us; 0| |%0 Ts1 Tsz Tss Tss Tss
,3” = Y10 | Usj | 10 [Zeo o1 Zeo Tes Toa Tes Tes

All these slopes have the same interpretations as in single-level regression.

Random effects can exist at any level except the highest level. For example,
level-1 slopes can vary randomly across level-2 units, but in a two-level model
there are no level-3 units for level-2 slopes to vary across.

Vi = Boj + BrjXij €
Boi =Yoo T VoW + Ug;

Bij = V1o + VW + Uy
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Model building strategies
There are three common strategies for model-fitting in MLM:
e A priori specification. Decide on the model based exclusively on theory.

e Build-up strategy. Add predictors and random effects one or a few at a
time, and retain if significant and/or meaningfully large.

¢ Tear-down strategy. Start with maximally complex model, and remove
predictors and random effects that are not significant or large.

A priori specification is the most scientifically defensible. The build-up strategy
is perhaps the most common in practice.

For example, using the build-up strategy, we might progress through these
stages, each time examining the parameter estimates, statistical significance,
differences in model fit, and changes in explained variance.

Yij ::Boj' +ﬂ1jX1ij +ﬂ2jX2ij + €

Vi =B +€
B ﬂoj‘:%o"'um
ﬂo;‘ =Yoo T Up;
13112710
,sz =72

Vi = Boj + By + PajXaii + 6 Vi = Boj + By + PaXaii 6

Boi =Yoo +Uo; Boi =Yoo+ YorWaj + YosWaj + Uy

Bij =710+ Uy Bij = 710+ VW + Uy

B = Va0 +Uy; B =720+ Y Wyj + VaaWy + Uy,
26
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Expanding the number of random coefficients expands size of the tau (T)
matrix rapidly, increasing the risk of estimation errors and lowering parsimony:

Random intercept only: Ug; ~ N (0,74,)
H . _UO'_ [0] _Toc
Random intercept and slope: TN ,
| Uy 10 70 7
Random intercept, 2 slopes: tos 01| 7
Pt pes: Uy ~N||0|,| 70 70
| Uzj _0_ Ty T Tx
U 0] _Too
Uy 0| |70 7
Random intercept, 4 slopes: Upj [ =N 1O} 70 T 7
Us; O| |70 7o T 73
Uy 0] |70 7o T2 Tus Twa

Centering refers to subtracting a value from raw data. This value is usually the
grand mean, the group mean, or a reference value of particular interest.

Reasons why centering is used:
e to facilitate interpretation
e to avoid multicollinearity

* to separate effects into within- and between-cluster components

Centering is widely recommended in a variety of situations.

N
-]
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Centering: Consequences for parameter estimation
Intercepts are interpreted as the predicted value of y where all predictors = 0.

In models with no higher-order terms (squared terms, products, etc.),
centering changes only the intercept, leaving slopes unaffected.

In models with higher-order terms, centering affects all terms except the
highest-order terms.

Grand mean centering: Subtracting the grand mean from all x scores.

X —Xx_=0represents the average level-1 unit’s x; score.

Yoo NOW represents the mean of the predicted ys at the grand mean of x;.

Tyo Is NOw the variance of the predicted ys at the grand mean of x;.
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An example model: Random intercept, random slope
Yi = IBOj +ﬂ1j (Xij _7")+ €;
,801 =Yoo 1 U
By = V1o + Uy

Yii :700+710(Xij _7..)"‘“11 (Xij _Y..)""UOJ' €

Group mean centering: Subtracting the group mean from all xs in each group.

X _’7.,- =0 represents each level-2 unit’s average x; score. Thus, X;—X has
no level-2 variance.

Yoo Still represents the mean of the predicted ys at the grand mean of x;.

Ty is the variance of the predicted ys at the group means of x;.

w
N
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An example model: Random intercept, random slope

Y :ﬂoj' +:31j(xij _Xj)—i_eij
ﬂoj =Yoo T U

ﬂlj = Y10 T Uy

Yii :7oo+710(xij _Xj)—l_ulj (Xij _Y.j)+u0j +€;

Adding the mean back

Group mean centering and using group means as level-2 predictors lets us
separate X;, and thus x;'s effect, into “within” and “between” components.

Yij ::BOj +ﬂ1j(xij _Y.j)—i_eij

ﬂoj' =Yoo T V01X + Uy

ﬂlj =710
Yii =700 TUoj T 710 (Xij _Xj)"' Yoo X;+6€
—~ ——
within between
effect effect

However, it has been shown that the effect of X ; is biased toward that of
(Xij —Xj), especially with small clusters and low ICC (Lidtke et al., 2008).

w
H
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Centering y
In principle, we could split y into between and within components as well.

“Between and within” decomposition: A level-1 variable can be thought of as
the sum of between-cluster and within-cluster components:

YVi=YVi=V,; 1V,
...which seems a bit silly at first, but it is a meaningful split:

Y :(yif_J_’-f) + Zi

varies only varies only
within clusters  between clusters

Centering y

Vi =(yi,~—)_/,,~) + &

varies only varies only
within clusters  between clusters

Consider individual differences in student achievement within vs. between
classrooms. (y;—y,) is a student’s achievement relative to his or her peers,

whereas y, corresponds to the classroom average achievement.

We will see that it can be interesting to apply different models to (y; - ;)
andy,.
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