

Logistic Regression Paul D. Allison, Ph.D.

Upcoming Seminar: April 22-24, 2021, Remote Seminar

Table of Contents

Lecture Notes

Introduction	3
Linear Probability Model	3
Odds and Odds Ratios	. 11
The Logit Model	. 14
Logistic Regression in SAS and Stata	. 15
ML Estimation of Logit Model	. 19
Interpreting the Coefficients	. 21
Measures of Predictive Power	. 22
ROC Curves	. 25
Nominal Predictors	. 31
Interactions	. 36
Probit Model and Other Link Functions.	. 40
Plotting Predicted Values	. 48
Goodness of Fit	. 55
Nonconvergence	. 63
Multinomial Response Models	. 82
Logit Models for Ordered Polytomies	. 92
Response Based Sampling	. 93
Panel Data	100
Discrete Choice Models	107

Appendix

SAS Exercises	111
SAS Code	114
Stata Exercises	117
Stata Code	121
Logarithms and Exponentials	123

Logistic Regression

Logistic regression has become the standard method for modeling a dichotomous outcome in virtually all fields.

- It can accomplish virtually everything that is possible with linear regression, but in a way that is appropriate for a dichotomous outcome. And it can be generalized in many different ways.
- Many modeling strategies for linear regression will also work for logistic regression.
- Nevertheless, there are many special features of logistic regression that need to be carefully considered.

What's wrong with OLS linear regression of a dichotomous outcome?

Let y_i be a dependent variable with values of 1 and 0 and \mathbf{x}_i a vector of covariates.

Linear regression with a dummy dependent variable implicitly assumes a linear probability model (LPM)

 $\pi_{i} = \beta \mathbf{x}_{i}$ = $\beta_{0} + \beta_{1}\mathbf{x}_{i1} + \dots + \beta_{k}\mathbf{x}_{ik}$

where π_i is the conditional probability that y=1, β is a vector of coefficients and \mathbf{x}_i is a vector of predictor variables (covariates).

If the LPM is correct, ordinary least squares (OLS) is unbiased for β . But there are three problems:

- 1. Heteroscedasticity.
- 2. Non-normality
- 3. Possible non-linearity.

If the linear probability model is true, then heteroscedasticity is implied:

 $Var(y_i|\mathbf{x}_i) = \pi_i(1 - \pi_i) = \beta \mathbf{x}_{i}(1 - \beta \mathbf{x}_i)$, not a constant

Consequently, OLS is not efficient and standard errors are biased.

Since the dependent variable is dichotomous, it can't possibly be normal.

How serious are these problems?

If the sample is moderately large, lack of normality is rarely a problem. Central limit theorem tells us that test statistics will be approximately normal.

Heteroscedasticity is more serious, but in many applications it makes little difference. There is also an easy way to correct for heteroscedasticity.

Example: Women's Labor Force Participation

Panel study of income dynamics (PSID) for 753 married women.

Mroz, T. A. 1987.

"The sensitivity of an empirical model of married women's hours to work economic and statistical assumptions." *Econometrica* 55: 765–799. Data file can be downloaded at http://www.stata.com/texts/eacsap/ Data set is mroz.dta.

Description: The file contains data on labor force participation of 753 married women. The file includes the following variables:

inlf	=1 if in labor force in 1975, otherwise 0
hours	hours worked, 1975
kidslt6	number of kids less than 6 years
kidsge6	number of kids 6-18 years
age	woman's age in years
educ	years of schooling
wage	estimated hourly wage from earnings
repwage	reported wage at interview in 1976
hushrs	hours worked by husband, 1975
husage	husband's age
huseduc	husband's years of schooling
huswage	husband's hourly wage, 1975
faminc	family income, 1975
mtr	federal marginal tax rate facing woman
motheduc	mother's years of schooling
fatheduc	father's years of schooling
unem	unemployment rate in county of residence
city	=1 if living in a metropolitan area, else 0.
exper	actual labor market experience

OLS regression with inlf as the dependent variable:

<u>Stata</u>

use c:\data\mroz.dta, clear reg inlf kidslt6 age educ huswage city exper

Source	SS	df	MS		Number of obs	= 753
+					F(6, 746)	= 41.80
Model	46.4800152	6 7.7	466692		Prob > F	= 0.0000
Residual	138.24774	746 .185	318687		R-squared	= 0.2516
+					Adj R-squared	= 0.2456
Total	184.727756	752 .245	648611		Root MSE	= .43049
inlf	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
kidslt6	2769332	.0334097	-8.29	0.000	3425214	211345
age	0189357	.0022871	-8.28	0.000	0234257	0144458
educ	.0381819	.0073786	5.17	0.000	.0236966	.0526672
huswage	0074076	.0041026	-1.81	0.071	0154616	.0006463
city	0006648	.0348912	-0.02	0.985	0691615	.0678319
exper	.0227591	.0021086	10.79	0.000	.0186195	.0268986
_cons	.7844792	.1348688	5.82	0.000	.5197117	1.049247

<u>SAS</u>

PROC REG DATA=my.mroz; MODEL inlf=kidslt6 age educ huswage city exper; RUN;

> **Analysis of Variance** DF Sum of Mean F Value Pr > F Source Squares Square Model 6 46.48002 7.74667 41.80 <.0001 746 138.24774 0.18532 Error Corrected Total 752 184.72776 Root MSE 0.43049 **R-Square** 0.2516 **Dependent Mean** 0.56839 **Adj R-Sq** 0.2456 Coeff Var 75.73747 **Parameter Estimates**

Variable Label DF Parameter Standard t Value Pr > |t| Estimate Error

Parameter Estimates										
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	Intercept	1	0.78448	0.13487	5.82	<.0001				
kidslt6	kidslt6	1	-0.27693	0.03341	-8.29	<.0001				
age	age	1	-0.01894	0.00229	-8.28	<.0001				
educ	educ	1	0.03818	0.00738	5.17	<.0001				
huswage	huswage	1	-0.00741	0.00410	-1.81	0.0714				
city	city	1	-0.00066481	0.03489	-0.02	0.9848				
exper	exper	1	0.02276	0.00211	10.79	<.0001				

If LPM is true, these should be unbiased estimates of the true coefficients. And the sample size is large enough that we don't have to worry about non-normality of the error term (because of central limit theorem).

But heteroscedasticity could be a problem, leading to biased standard errors and p-values. This can be easily fixed by using robust standard errors, also known as the Huber-White method or the sandwich method.

<u>Stata</u>

reg inlf kidslt6 age educ huswage city exper, robust

		Robust				
inlf	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kidslt6	2769332	.0312716	-8.86	0.000	338324	2155423
age	0189357	.0021187	-8.94	0.000	0230951	0147764
educ	.0381819	.0072138	5.29	0.000	.0240202	.0523436
huswage	0074076	.0041662	-1.78	0.076	0155864	.0007712
city	0006648	.0343583	-0.02	0.985	0681153	.0667857
exper	.0227591	.002025	11.24	0.000	.0187837	.0267344
_cons	.7844792	.1336087	5.87	0.000	.5221854	1.046773

<u>SAS</u>

PROC REG DATA=my.mroz;

MODEL inlf=kidslt6 age educ huswage city exper /
HCC;

RUN;

HCC stands for heteroscedasticity consistent covariance matrix.

Parameter Estimates											
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Heteroscedasticity Consistent		ity		
							Standard Error	t Value	Pr > t		
Intercept	Intercept	1	0.78448	0.13487	5.82	<.0001	0.13299	5.90	<.0001		
kidslt6	kidslt6	1	-0.27693	0.03341	-8.29	<.0001	0.03113	-8.90	<.0001		
age	age	1	-0.01894	0.00229	-8.28	<.0001	0.00211	-8.98	<.0001		
educ	educ	1	0.03818	0.00738	5.17	<.0001	0.00718	5.32	<.0001		
huswage	huswage	1	-0.00741	0.00410	-1.81	0.0714	0.00415	-1.79	0.0744		
city	city	1	-0.00066481	0.03489	-0.02	0.9848	0.03420	-0.02	0.9845		
exper	exper	1	0.02276	0.00211	10.79	<.0001	0.00202	11.29	<.0001		

What else is wrong with the LPM?

 $\pi_i = \beta x_i$

The left hand side is constrained to lie between 0 and 1, but the right hand side has no such constraints. For any values of the β 's, we can always find some values of x that give values of π that are outside the permissible range. (See picture on page 9). A strictly linear model just isn't plausible.

Let's generate predicted values:

<u>Stata</u>

predict yhat summarize yhat

Variable	Obs	Mean	Std. Dev.	Min	Max
yhat	753	.5683931	.2486132 -	.2686827	1.101222

<u>SAS</u>

```
PROC REG DATA=my.mroz;
MODEL inlf=kidslt6 age educ huswage city exper;
OUTPUT PRED=yhat;
PROC MEANS; VAR yhat; RUN;
```

Analysis Variable : yhat Predicted Value of inlfNMeanStd DevMinimumMaximum7530.56839310.2486132-0.26868271.1012222

A broken line is more reasonable (see picture), but is still awkward, both theoretically and computationally.

What makes most sense is an S-shaped curve like the one above. We want such a curve to be smooth, and possibly symmetrical as well. A variety of S-shaped curves are possible, but only three used widely in practice:

- 1. Logit logistic curve
- 2. Probit cumulative normal distribution
- 3. Complementary log-log (asymmetrical).

We'll look first and primarily at the logit, but will consider the others as well.

The Odds

One component of the logistic model is the "odds", an alternative way of representing the likelihood of an event. It's often used by gamblers. If π is the probability of an event, then

 $\mathsf{Odds} = \frac{\pi}{1 - \pi} \quad .$

This varies between 0 and $+\infty$ as π varies between 0 and 1.

Here's another way of thinking about the odds. Let S be the expected number of individuals who experience the event, and let F be the expected number who do not experience the event.

Then odds=S/F.

For example, if in a given population 728 people have blood type O and 431 people have other blood types, the odds of blood type O are 728/431=1.69.

If π = .75 then the odds is 3, or "3 to 1". If π = .6, odds = 3/2, or "3 to 2".

Probability	Odds
.1	.11
.2	.25
.3	.43
.4	.67
.5	1.00
.6	1.50
.7	2.33
.8	4.00
.9	9.00

Conversely,

$$\pi = \frac{\text{odds}}{1 + \text{odds}}$$

If the odds are 3.5, $\pi = 3.5/(1+3.5) = .78$.

Important to get used to thinking in terms of odds. Odds are a more natural scale for multiplicative comparisons. For example, if I have a probability of .60 of voting in an election, it would be absurd to say that someone else's probability of voting was twice as great. No problem on the odds scale, however.

Odds Ratios

We can measure the "effect" of a dichotomous variable by taking the ratio of the odds of the outcome event for the two categories of the independent variable. Consider the following 2 x 2 table:

	Alive	Dead
Drug	90	10
Placebo	70	30

For those who got the drug, the estimated odds of surviving are 90/10=9

For those who got the placebo, the estimated odds of surviving are 70/30=2.33.

The odds ratio is 9/2.33=3.86. This says that the effect of getting the drug is to multiply the odds of survival by 3.86.

An odds ratio of 1.00 corresponds to "no effect". An odds ratio between 0 and 1 corresponds to a negative effect.

We often work with the log odds ratio, which is positive for a "positive effect", zero for no effect, and negative for a "negative" effect.

The effect of drug on death is 1/(3.86)=.26. Similarly, the effect of placebo on survival is 1/(3.86)=.26. So we either work with the odds ratio or the reciprocal of the odds ratio, depending on what categories we're comparing.

The Logistic Regression Model

We want a transformation of π that varies between $-\infty$ and $+\infty$ instead of between 0 and 1. We already have a transformation that varies between 0 and ∞ , the odds. The logarithm of the odds varies between $-\infty$ and $+\infty$.

So take the logarithm of the odds and set that equal to a linear function of the x variables:

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta \mathbf{x}_i$$

For simplicity and generality, we use vector notation:

$$\boldsymbol{\beta}\mathbf{x}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_{i1} + \ldots + \boldsymbol{\beta}_k \boldsymbol{x}_{ik}$$

The left hand side is called the logit or the "log-odds"

Solving for π yields a model for the probability:

$$\pi_i = \frac{1}{1 + e^{-\beta \mathbf{x}_i}}$$

If we graph this (with a single x and β =1), we get the curve shown earlier.

Maximum Likelihood Estimation of Logistic Regression Model (Basics)

ML: Choose parameter estimates which, if true, would make the observed data as likely as possible.

Properties:

- 1. Consistent as the sample gets larger, estimators converge in probability to the true values. Implies that estimates are approximately unbiased.
- 2. Asymptotically efficient In large samples, estimators have (approximately) minimum sampling variation.
- 3. Asymptotically normal similar to central limit theorem. Justifies use of a normal table to calculate p-values and confidence intervals.

How to do it

<u>Stata</u>

logit inlf kidslt6 age educ huswage city exper

Iteration (0: 1	Log	likelihood	=	-514.873	32					
Iteration ⁻	1: 1	Log	likelihood	=	-412.2324	8					
Iteration 2	2: 1	Log	likelihood	=	-407.6728	34					
Iteration 3	3: 1	Log	likelihood	=	-407.6025	57					
Iteration 4	4: 1	Log	likelihood	=	-407.6025	5					
Logistic p	000000	ion					Numbo	n of oho	_	750	
LUGISLIC R	egress	TOU					Numbe	240 10 1	-	755	
							LR ch	i2(6)	=	214.54	
							Prob	> chi2	=	0.0000	
Log likelik	hood =	- 4	07.60255				Pseud	o R2	=	0.2083	

inlf	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
kidslt6 age educ huswage city exper	-1.450909 09771 .2120982 0409741 .0244788 .1212059	.1988898 .0134316 .0423591 .0220901 .1919434 .0132837	-7.30 -7.27 5.01 -1.85 0.13 9.12	0.000 0.000 0.000 0.064 0.899 0.000	-1.840725 1240355 .1290759 0842699 3517233 .0951703	-1.061092 0713846 .2951206 .0023216 .4006809 .1472416
_cons	1.25433	.7380909	1.70	0.089	1923017	2.700961

Compared to OLS of LPM, coefficients are same sign but larger in magnitude. z-statistics and p-values are very similar.

The **or** option produces "adjusted" odds ratios instead of beta coefficients. But z-statistics are still based on the beta coefficients:

logit, or

inlf	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
	+					
kidslt6	.2343573	.0466113	-7.30	0.000	.1587023	.3460778
age	.9069118	.0121813	-7.27	0.000	.8833485	.9311037
educ	1.236269	.0523673	5.01	0.000	1.137776	1.343288
huswage	.959854	.0212032	-1.85	0.064	.9191831	1.002324
city	1.024781	.1966999	0.13	0.899	.7034747	1.492841
exper	1.128857	.0149954	9.12	0.000	1.099846	1.158634
_cons	3.505488	2.587369	1.70	0.089	.8250579	14.89404

Identical results are produced by

logistic inlf kidslt6 age educ huswage city exper

<u>SAS</u>

PROC LOGISTIC DATA=my.mroz DESC; MODEL inlf=kidslt6 age educ huswage city exper; RUN; The DESC option is short for "descending". Without it, the model predicts the probability of a 0 rather than a 1, and all the signs are reversed.

The LOGISTIC Procedure

Model Information				
Data Set	MY.MROZ			
Response Variable	inlf	inlf		
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read 753 Number of Observations Used 753

Response Profile

Ordered Value	inlf	Total Frequency
1	1	428
2	0	325

Probability modeled is inlf=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates
AIC	1031.746	829.205
SC	1036.370	861.574
-2 Log L	1029.746	815.205

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	214.5413	6	<.0001
Score	189.4650	6	<.0001
Wald	147.0978	6	<.0001

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.2543	0.7381	2.8880	0.0892
kidslt6	1	-1.4509	0.1989	53.2175	<.0001
age	1	-0.0977	0.0134	52.9205	<.0001
educ	1	0.2121	0.0424	25.0715	<.0001
huswage	1	-0.0410	0.0221	3.4405	0.0636
city	1	0.0245	0.1919	0.0163	0.8985
exper	1	0.1212	0.0133	83.2543	<.0001

Odds Ratio Estimates

Effect	Point Estimate	95% Wa Confidence	ald Limits
kidslt6	0.234	0.159	0.346
age	0.907	0.883	0.931
educ	1.236	1.138	1.343
huswage	0.960	0.919	1.002
city	1.025	0.703	1.493
exper	1.129	1.100	1.159

Association of Predicted Probabilities and Observed Responses

Percent Concordant	79.3	Somers' D	0.589
Percent Discordant	20.5	Gamma	0.590
Percent Tied	0.2	Tau-a	0.289
Pairs	139100	С	0.794