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Logistic Regression 
 
Logistic regression has become the standard method for modeling 
a dichotomous outcome in virtually all fields. 
 

• It can accomplish virtually everything that is possible with 
linear regression, but in a way that is appropriate for a 
dichotomous outcome.  And it can be generalized in many 
different ways.   

 
• Many modeling strategies for linear regression will also work 

for logistic regression.  
 

• Nevertheless, there are many special features of logistic 
regression that need to be carefully considered.  

What’s wrong with OLS linear regression of a 
dichotomous outcome? 
 
Let yi be a dependent variable with values of 1 and 0 and xi a 
vector of covariates. 
 
Linear regression with a dummy dependent variable implicitly 
assumes a linear probability model (LPM) 
 
 πi =  βxi  

           =  β0 + β1xi1 + ... + βkxik 
 

where πi is the conditional probability that y=1, β is a vector of 
coefficients and xi is a vector of predictor variables (covariates).  

If the LPM is correct, ordinary least squares (OLS) is unbiased for 
β.  But there are three problems: 
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1. Heteroscedasticity. 
2. Non-normality 
3. Possible non-linearity. 

 
If the linear probability model is true, then heteroscedasticity is 
implied: 
 
 Var(yi|xi) = πi(1 - πi) =  βxi(1 − βxi), not a constant 
 

Consequently, OLS is not efficient and standard errors are 
biased. 

 
Since the dependent variable is dichotomous, it can’t possibly be 
normal.  
 
How serious are these problems?   
 
If the sample is moderately large, lack of normality is rarely a 
problem. Central limit theorem tells us that test statistics will be 
approximately normal.  
 
Heteroscedasticity is more serious, but in many applications it 
makes little difference. There is also an easy way to correct for 
heteroscedasticity. 
 
Example: Women’s Labor Force Participation 
 
Panel study of income dynamics (PSID) for 753 married women.  
 
Mroz, T. A. 1987.  

“The sensitivity of an empirical model of married women's 
hours to work economic and statistical assumptions.” 
Econometrica 55: 765–799.  
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Data file can be downloaded at http://www.stata.com/texts/eacsap/   
Data set is mroz.dta. 
 
Description: The file contains data on labor force participation of 
753 married women. The file includes the following variables: 
 

inlf   =1 if in labor force in 1975, otherwise 0 
hours  hours worked, 1975 
kidslt6  number of kids less than 6 years 
kidsge6  number of kids 6-18 years 
age   woman's age in years 
educ   years of schooling 
wage  estimated hourly wage from earnings 
repwage  reported wage at interview in 1976 
hushrs  hours worked by husband, 1975 
husage  husband's age 
huseduc  husband's years of schooling 
huswage  husband's hourly wage, 1975 
faminc  family income, 1975 
mtr   federal marginal tax rate facing woman 
motheduc  mother's years of schooling 
fatheduc  father's years of schooling 
unem  unemployment rate in county of residence 
city   =1 if living in a metropolitan area, else 0. 
exper  actual labor market experience 

 
 
OLS regression with inlf as the dependent variable: 
 
Stata 
 
use c:\data\mroz.dta, clear 
reg inlf kidslt6 age educ huswage city exper 
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      Source |       SS       df       MS              Number of obs =     753 
-------------+------------------------------           F(  6,   746) =   41.80 
       Model |  46.4800152     6   7.7466692           Prob > F      =  0.0000 
    Residual |   138.24774   746  .185318687           R-squared     =  0.2516 
-------------+------------------------------           Adj R-squared =  0.2456 
       Total |  184.727756   752  .245648611           Root MSE      =  .43049 
 
------------------------------------------------------------------------------ 
        inlf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     kidslt6 |  -.2769332   .0334097    -8.29   0.000    -.3425214    -.211345 
         age |  -.0189357   .0022871    -8.28   0.000    -.0234257   -.0144458 
        educ |   .0381819   .0073786     5.17   0.000     .0236966    .0526672 
     huswage |  -.0074076   .0041026    -1.81   0.071    -.0154616    .0006463 
        city |  -.0006648   .0348912    -0.02   0.985    -.0691615    .0678319 
       exper |   .0227591   .0021086    10.79   0.000     .0186195    .0268986 
       _cons |   .7844792   .1348688     5.82   0.000     .5197117    1.049247 

 
 

SAS 
 
PROC REG DATA=my.mroz; 
MODEL inlf=kidslt6 age educ huswage city exper; 
RUN; 
 

Analysis of Variance 

Source DF Sum of
Squares

Mean
Square

F Value Pr > F 

Model 6 46.48002 7.74667 41.80 <.0001 

Error 746 138.24774 0.18532    

Corrected Total 752 184.72776     
 

Root MSE 0.43049 R-Square 0.2516 

Dependent Mean 0.56839 Adj R-Sq 0.2456 

Coeff Var 75.73747     
 

Parameter Estimates 

Variable Label DF Parameter
Estimate

Standard
Error

t Value Pr > |t| 
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Parameter Estimates 

Variable Label DF Parameter
Estimate

Standard
Error

t Value Pr > |t| 

Intercept Intercept 1 0.78448 0.13487 5.82 <.0001 

kidslt6 kidslt6 1 -0.27693 0.03341 -8.29 <.0001 

age age 1 -0.01894 0.00229 -8.28 <.0001 

educ educ 1 0.03818 0.00738 5.17 <.0001 

huswage huswage 1 -0.00741 0.00410 -1.81 0.0714 

city city 1 -0.00066481 0.03489 -0.02 0.9848 

exper exper 1 0.02276 0.00211 10.79 <.0001 

 
 
If LPM is true, these should be unbiased estimates of the true 
coefficients. And the sample size is large enough that we don’t have to 
worry about non-normality of the error term (because of central limit 
theorem).  
 
But heteroscedasticity could be a problem, leading to biased 
standard errors and p-values. This can be easily fixed by using 
robust standard errors, also known as the Huber-White method or 
the sandwich method. 
 
Stata 
 
reg inlf kidslt6 age educ huswage city exper, 
robust 

             |               Robust 
        inlf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     kidslt6 |  -.2769332   .0312716    -8.86   0.000     -.338324   -.2155423 
         age |  -.0189357   .0021187    -8.94   0.000    -.0230951   -.0147764 
        educ |   .0381819   .0072138     5.29   0.000     .0240202    .0523436 
     huswage |  -.0074076   .0041662    -1.78   0.076    -.0155864    .0007712 
        city |  -.0006648   .0343583    -0.02   0.985    -.0681153    .0667857 
       exper |   .0227591    .002025    11.24   0.000     .0187837    .0267344 
       _cons |   .7844792   .1336087     5.87   0.000     .5221854    1.046773 
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SAS 
 
PROC REG DATA=my.mroz; 
MODEL inlf=kidslt6 age educ huswage city exper / 
HCC;  

RUN; 
 
HCC  stands for heteroscedasticity consistent covariance matrix. 
 

Parameter Estimates 

Variable Label DF Parameter
Estimate

Standard
Error

t Value Pr > |t| Heteroscedasticity 
Consistent 

Standard 
Error 

t Value Pr > |t|

Intercept Intercept 1 0.78448 0.13487 5.82 <.0001 0.13299 5.90 <.0001

kidslt6 kidslt6 1 -0.27693 0.03341 -8.29 <.0001 0.03113 -8.90 <.0001

age age 1 -0.01894 0.00229 -8.28 <.0001 0.00211 -8.98 <.0001

educ educ 1 0.03818 0.00738 5.17 <.0001 0.00718 5.32 <.0001

huswage huswage 1 -0.00741 0.00410 -1.81 0.0714 0.00415 -1.79 0.0744

city city 1 -0.00066481 0.03489 -0.02 0.9848 0.03420 -0.02 0.9845

exper exper 1 0.02276 0.00211 10.79 <.0001 0.00202 11.29 <.0001

 
 
 

 What else is wrong with the LPM? 
 
  πi = βxi 
 

The left hand side is constrained to lie between 0 and 1, but the 
right hand side has no such constraints.  For any values of the β’s, 
we can always find some values of x that give values of π that are 
outside the permissible range.  (See picture on page 9).  A strictly 
linear model just isn’t plausible.  
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Let’s generate predicted values: 
 
Stata 
 
predict yhat 
summarize yhat 
 
 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------- 
        yhat |        753    .5683931    .2486132  -.2686827   1.101222 
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SAS 
 

PROC REG DATA=my.mroz; 
MODEL inlf=kidslt6 age educ huswage city exper; 
OUTPUT PRED=yhat; 
PROC MEANS; VAR yhat; RUN; 

 
 

Analysis Variable : yhat Predicted Value of inlf 

N Mean Std Dev Minimum Maximum 

753 0.5683931 0.2486132 -0.2686827 1.1012222 

 
A broken line is more reasonable (see picture), but is still awkward, 
both theoretically and computationally.   
 
 
π 
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What makes most sense is an S-shaped curve like the one above. 
We want such a curve to be smooth, and possibly symmetrical as 
well.  
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A variety of S-shaped curves are possible, but only three used 
widely in practice: 

1.  Logit – logistic curve 

2.  Probit – cumulative normal distribution 

3.  Complementary log-log (asymmetrical).  
 
We’ll look first and primarily at the logit, but will consider the others 
as well. 
 

The Odds 
 
One component of the logistic model is the “odds”, an alternative 
way of representing the likelihood of an event.  It’s often used by 
gamblers.  If π is the probability of an event, then  

 Odds = 
  π

1 – π    .  

This varies between 0 and +∞ as π varies between 0 and 1. 

Here’s another way of thinking about the odds.  Let S be the 
expected number of individuals who experience the event, and let 
F be the expected number who do not experience the event.   

 Then odds=S/F.   

For example, if in a given population 728 people have blood 
type O and 431 people have other blood types, the odds of 
blood type O are 728/431=1.69.   
 

If π = .75 then the odds is 3, or “3 to 1”.  If π = .6, odds = 3/2, or “3 
to 2”. 
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Probability Odds 
.1 .11 
.2 .25 
.3 .43 
.4 .67 
.5 1.00 
.6 1.50 
.7 2.33 
.8 4.00 
.9 9.00 

 
Conversely,  
 

 
   π = odds

1 + odds  
 

If the odds are 3.5, π = 3.5/(1+3.5) = .78.   
 
Important to get used to thinking in terms of odds.  Odds are a 
more natural scale for multiplicative comparisons.  For example, if I 
have a probability of .60 of voting in an election, it would be absurd 
to say that someone else’s probability of voting was twice as great.  
No problem on the odds scale, however.  
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Odds Ratios 
 
We can measure the “effect” of a dichotomous variable by taking 
the ratio of the odds of the outcome event for the two categories of 
the independent variable.  Consider the following 2 x 2 table: 
 
 Alive Dead 
Drug 90 10 
Placebo 70 30 
 
For those who got the drug, the estimated odds of surviving are 
90/10=9 
 
For those who got the placebo, the estimated odds of surviving are 
70/30=2.33. 
 
The odds ratio is 9/2.33=3.86.  This says that the effect of getting 
the drug is to multiply the odds of survival by 3.86.  
 
An odds ratio of 1.00 corresponds to “no effect”.  An odds ratio 
between 0 and 1 corresponds to a negative effect.  
 
We often work with the log odds ratio, which is positive for a 
“positive effect”, zero for no effect, and negative for a “negative” 
effect.   
 
The effect of drug on death is 1/(3.86)=.26.  Similarly, the effect of 
placebo on survival is 1/(3.86)=.26.  So we either work with the 
odds ratio or the reciprocal of the odds ratio, depending on what 
categories we’re comparing.   
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The Logistic Regression Model 
 
We want a transformation of π that varies between – ∞ and + ∞ 
instead of between 0 and 1.  We already have a transformation 
that varies between 0 and ∞, the odds.  The logarithm of the odds 
varies between – ∞ and + ∞.   
 

So take the logarithm of the odds and set that equal to a linear 
function of the x variables: 

 

  i
i

i βx=







− π
π

1
log   

 
For simplicity and generality, we use vector notation: 
 
 ikkii xx βββ +++= ...110βx  

 
The left hand side is called the logit or the “log-odds" 

 
Solving for π yields a model for the probability: 

 

 ie
i βx−+

=
1

1π  

 
If we graph this (with a single x and β =1), we get the curve 
shown earlier. 
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Maximum Likelihood Estimation of Logistic Regression 
Model (Basics) 
 
ML:  Choose parameter estimates which, if true, would make the 
observed data as likely as possible.  
 
Properties:   

1. Consistent – as the sample gets larger, estimators converge 
in probability to the true values.  Implies that estimates are 
approximately unbiased.  

2. Asymptotically efficient – In large samples, estimators have 
(approximately) minimum sampling variation. 

3. Asymptotically normal – similar to central limit theorem.  
Justifies use of a normal table to calculate p-values and 
confidence intervals.  

How to do it 
 

Stata 
 
logit inlf kidslt6 age educ huswage city exper 

 
 

Iteration 0:   log likelihood =  -514.8732 
Iteration 1:   log likelihood = -412.23248 
Iteration 2:   log likelihood = -407.67284 
Iteration 3:   log likelihood = -407.60257 
Iteration 4:   log likelihood = -407.60255 
 
Logistic regression                               Number of obs   =        753 
                                                  LR chi2(6)      =     214.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -407.60255                       Pseudo R2       =     0.2083 
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------------------------------------------------------------------------------ 
        inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     kidslt6 |  -1.450909   .1988898    -7.30   0.000    -1.840725   -1.061092 
         age |    -.09771   .0134316    -7.27   0.000    -.1240355   -.0713846 
        educ |   .2120982   .0423591     5.01   0.000     .1290759    .2951206 
     huswage |  -.0409741   .0220901    -1.85   0.064    -.0842699    .0023216 
        city |   .0244788   .1919434     0.13   0.899    -.3517233    .4006809 
       exper |   .1212059   .0132837     9.12   0.000     .0951703    .1472416 
       _cons |    1.25433   .7380909     1.70   0.089    -.1923017    2.700961 
 

Compared to OLS of LPM, coefficients are same sign but larger in 
magnitude.  z-statistics and p-values are very similar. 
 
The or option produces “adjusted” odds ratios instead of beta 
coefficients. But z-statistics are still based on the beta coefficients: 
 
logit, or 
 
        inlf | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     kidslt6 |   .2343573   .0466113    -7.30   0.000     .1587023    .3460778 
         age |   .9069118   .0121813    -7.27   0.000     .8833485    .9311037 
        educ |   1.236269   .0523673     5.01   0.000     1.137776    1.343288 
     huswage |    .959854   .0212032    -1.85   0.064     .9191831    1.002324 
        city |   1.024781   .1966999     0.13   0.899     .7034747    1.492841 
       exper |   1.128857   .0149954     9.12   0.000     1.099846    1.158634 
       _cons |   3.505488   2.587369     1.70   0.089     .8250579    14.89404 

 
Identical results are produced by 
 
logistic inlf kidslt6 age educ huswage city exper 
 
SAS  
 
PROC LOGISTIC DATA=my.mroz DESC; 
MODEL inlf=kidslt6 age educ huswage city exper; 
RUN; 
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The DESC option is short for “descending”.  Without it, the model 
predicts the probability of a 0 rather than a 1, and all the signs are 
reversed.  
 

The LOGISTIC Procedure 
 

Model Information 

Data Set MY.MROZ   

Response Variable inlf inlf 

Number of Response Levels 2   

Model binary logit   

Optimization Technique Fisher's scoring   
 

Number of Observations Read 753

Number of Observations Used 753
 

Response Profile 

Ordered
Value

inlf Total
Frequency

1 1 428

2 0 325
 

Probability modeled is inlf=1.
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
 

Model Fit Statistics 

Criterion Intercept Only Intercept and
Covariates

AIC 1031.746 829.205

SC 1036.370 861.574

-2 Log L 1029.746 815.205
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Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 214.5413 6 <.0001 

Score 189.4650 6 <.0001 

Wald 147.0978 6 <.0001 
 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate Standard
Error

Wald
Chi-Square

Pr > ChiSq 

Intercept 1 1.2543 0.7381 2.8880 0.0892 

kidslt6 1 -1.4509 0.1989 53.2175 <.0001 

age 1 -0.0977 0.0134 52.9205 <.0001 

educ 1 0.2121 0.0424 25.0715 <.0001 

huswage 1 -0.0410 0.0221 3.4405 0.0636 

city 1 0.0245 0.1919 0.0163 0.8985 

exper 1 0.1212 0.0133 83.2543 <.0001 
 

Odds Ratio Estimates 

Effect Point Estimate 95% Wald 
Confidence Limits 

kidslt6 0.234 0.159 0.346 

age 0.907 0.883 0.931 

educ 1.236 1.138 1.343 

huswage 0.960 0.919 1.002 

city 1.025 0.703 1.493 

exper 1.129 1.100 1.159 
 

Association of Predicted Probabilities and 
Observed Responses 

Percent Concordant 79.3 Somers' D 0.589 

Percent Discordant 20.5 Gamma 0.590 

Percent Tied 0.2 Tau-a 0.289 

Pairs 139100 c 0.794 

 


