Longitudinal Data Analysis
Using SAS
Paul D. Allison, Ph.D.

Upcoming Seminar:
May 5-6, 2017, Los Angeles, California
Outline

1. Opportunities and challenges of panel data.
 a. Data requirements
 b. Control for unobservables
 c. Determining causal order
 d. Problem of dependence
 e. Software considerations
2. Linear models
 a. Robust standard errors
 b. Generalized estimating equations
 c. Random effects models
 d. Fixed effects models
 e. Between-Within models
3. Logistic regression models
 a. Robust standard errors
 b. Generalized estimating equations
 c. Subject-specific vs. population averaged methods
 d. Random effects models
 e. Fixed effects models
 f. Between-Within models
4. Count data models
 a. Poisson models
 b. Negative binomial models
5. Linear structural equation models
 a. Fixed and random effects in the SEM context
 b. Models for reciprocal causation with lagged effects

Panel Data

Data in which variables are measured at multiple points in time for the same individuals.

Response variable y_{it} with $t = 1, 2, \ldots, T$
Vector of predictor variables x_{it}.

Some of these may vary with time, others may not.

Assume that time points are the same for everyone in the sample. (For many methods, that assumption is not essential).

Why are panel data desirable?

In *Econometric Analysis of Panel Data* (2005), Baltagi lists six potential benefits of panel data:

1. Ability to control for individual heterogeneity.

2. More informative data: more variability, less collinearity, more degrees of freedom and more efficiency.

3. Better ability to study the dynamics of adjustment. For example, a cross-sectional survey can tell you what proportion of people are unemployed, but a panel study can tell you the distribution of spells of unemployment.

4. Ability to identify and measure effects that are not detectable in pure cross-sections or pure time series. For example, if you want to know whether union membership increases or decreases wages, you can best answer this by observing what happens when workers move from union to non-union jobs, and vice versa.

5. Ability to construct and test more complicated behavioral models than with purely cross-section or time-series data. For example, distributed lag models may require fewer restrictions with panel data than with pure time-series data.

6. Avoidance of aggregation bias. A consequence of the fact that most panel data are micro-level data.
My List

1. Ability to control for unobservable variables.

 Accomplished by fixed effects methods.

2. Ability to investigate causal ordering:
 Does y cause x or does x cause y?

 Accomplished by simultaneous estimation of models with lagged predictors.

 Methods for doing this have only recently been developed and not often used.

3. Ability to study the effect of a “treatment” on the trajectory of an outcome (or, equivalently, the change in a treatment effect over time).

Problems with Panel Data

1. Attrition and missing data

2. Statistical dependence among multiple observations from the same individual.

 • Repeated observations on the same individual are likely to be positively correlated. Individuals tend to be persistently high or persistently low.

 • But conventional statistical methods assume that observations are independent.

 • Consequently, estimated standard errors tend to be too low, leading to test statistics that are too high and p-values that are too low.

 • Also, conventional parameter estimates may be statistically inefficient (true standard errors are higher than necessary).
• Many different methods to correct for dependence:
 o Robust standard errors
 o Generalized estimating equations (GEE)
 o Random effects (mixed) models
 o Fixed-effects models

• These methods can also be used for clustered data that are not longitudinal, e.g., students within classrooms, people within neighborhoods.

Software

I’ll be using SAS® 9.4. The following procedures will be covered: GLM, SURVEYREG, GENMOD, MIXED, LOGISTIC, SURVEYLOGISTIC, GLIMMIX, CALIS, PANEL

Stata is also an excellent package for panel data analysis, especially the \texttt{xt} and \texttt{me} commands.

Most software for panel data requires that the data are organized in the “long form” so that there is one record for each individual at each time point, with an ID number that is the same for all records that come from the same individual, and a variable that indicates which time point the record comes from. The “wide form” (also known as flat data) has one record per person.
Linear Models for Quantitative Response Variables

Notation:

- y_{it} is the value of the response variable for individual i at time t.

- z_i is a column vector of variables that describe individuals but do not vary over time.

- x_{it} is a column vector of variables that vary both over individuals and over time.

Basic model:

$$ y_{it} = \mu_t + \beta x_{it} + \gamma z_i + \epsilon_{it}, \quad i=1,\ldots,n; \ t=1,\ldots,T $$

where ϵ is a random error term with mean 0 and constant variance, uncorrelated with x and z.

β and γ are row vectors of coefficients.

No lags, different intercepts at each time point, coefficients are the same across times.

Consider OLS (ordinary least squares) estimation.

- Coefficients will be unbiased but not efficient (true standard errors will be larger than necessary).

- Estimated standard errors will be too low because $\text{corr}(\epsilon_{it}, \epsilon_{it'}) \neq 0$
Example:

Time-varying variables (measured at each of the three time points):

ANTI antisocial behavior, measured with a scale from 0 to 6.
SELF self-esteem, measured with a scale ranging from 6 to 24.
POV poverty status of family, coded 1 for family in poverty, otherwise 0.

Time-invariant variables:

BLACK 1 if child is black, otherwise 0
HISPANIC 1 if child is Hispanic, otherwise 0
CHILDAGE child’s age in 1990
MARRIED 1 if mother was currently married in 1990, otherwise 0
GENDER 1 if female, 0 if male
MOMAGE mother’s age at birth of child
MOMWORK 1 if mother was employed in 1990, otherwise 0

Original data set MY.NLSY has 581 records, one for each child (wide form), with different names for the variables at each time point, e.g., ANTI1, ANTI2 and ANTI3.
The following program converted the data into a set of 1743 records, one for each child in each year:

```
DATA my.nlsy3;
  SET my.nlsy;
  time=1;
    anti=anti1;
    self=self1;
    pov=pov1;
    OUTPUT;
  time=2;
    anti=anti2;
    self=self2;
    pov=pov2;
    OUTPUT;
  time=3;
    anti=anti3;
    self=self3;
    pov=pov3;
    OUTPUT;
  DROP anti1-anti3 self1-self3 pov1-pov3;
RUN;
```

My convention: In SAS programs, any word in upper case is part of the SAS language; any word in lower case is a data set name or variable name specific to the example. SAS itself doesn’t distinguish upper and lower case (with a few exceptions).
Note:

The time-invariant variables are replicated across the multiple records for each child.

The variable TIME has values of 1, 2 or 3.

Here’s how to accomplish the same thing with the MAKELONG macro, available at http://www.sascommunity.org/wiki/Gerhard's_Samples

%MAKELONG(DATA=my.nlsy, OUT=my.nlsy3, ID=id, COPY=black hispanic childage married gender momage momwork, ROOT=anti self pov, MEASUREMENT=time)

PROC PANEL can also convert from wide (“flat”) to long, but the variables names must be in the form of ANTI_1, ANTI_2, etc., and you have to fit a model as well. Also PANEL does not like the ID variable to be called ID.

Here’s the program for OLS regression, with no correction for dependence

PROC GLM DATA=my.nlsy3;
CLASS time;
MODEL anti=self pov black hispanic childage married gender momage momwork time /SOLUTION;
RUN;
| Parameter | Estimate | Std Error | t Value | Pr > |t| |
|---------------|-----------|-----------|---------|------|---|
| Intercept | 2.900889443 B | 0.77054099 | 3.76 | 0.0002 |
| self | -0.074142506 | 0.01096317 | -6.76 | <.0001 |
| pov | 0.435402473 | 0.08552747 | 5.09 | <.0001 |
| black | 0.167862234 | 0.08818389 | 1.90 | 0.0571 |
| hispanic | -0.248377211 | 0.09487165 | -2.62 | 0.0089 |
| childage | 0.087055958 | 0.06221206 | 1.40 | 0.1619 |
| married | -0.088887477 | 0.08722703 | -1.02 | 0.3083 |
| gender | -0.495025904 | 0.07288865 | -6.79 | <.0001 |
| momage | -0.016693309 | 0.01734634 | -0.96 | 0.3360 |
| momwork | 0.212096097 | 0.08000707 | 2.65 | 0.0081 |
| time 1 | -0.225577516 B | 0.08886389 | -2.54 | 0.0112 |
| time 2 | -0.173423729 B | 0.08870053 | -1.96 | 0.0507 |
| time 3 | 0.00000000000 B | . | . | . |

Problem:

Although the coefficients are unbiased, they are not efficient (true standard errors are larger than necessary), and reported standard errors and \(p \)-values are probably too low.

Solution 1: Robust standard errors

Robust standard errors are standard error estimates that correct for dependence among the repeated observations. Also known as Huber-White standard errors, sandwich estimates, or empirical standard errors.

For OLS linear models, conventional standard errors are obtained by first calculating the estimated covariance matrix of the coefficient estimates:

\[s^2 (X'X)^{-1} \]

where \(s^2 \) is the residual variance and \(X \) is a matrix of dimension \(Tn \times K \). \(n \) is the number of individuals, \(T \) is the number of time periods, and \(K \) is the number of coefficients. Standard errors are obtained by taking the square roots of the main diagonal elements of this matrix.
The formula for the robust covariance estimator is

$$
\hat{V} = (X'X)^{-1}\left(\sum_i X'_i \hat{u}_i \hat{u}'_i X_i \right)(X'X)^{-1}
$$

where X_i is a $T \times K$ matrix of covariate values for individual i and

$$
\hat{u}_i = y_i - X_i \hat{\beta}_i
$$

is a $T \times 1$ vector of residuals for individual i. The matrix \hat{V} contains variances of the coefficients on the main diagonal and covariances between coefficients off the diagonal. The robust standard errors are the square roots of the main diagonal elements of \hat{V}.

In SAS, this method can be implemented with PROC GENMOD and the REPEATED statement:

```sas
PROC GENMOD DATA=my.nlsy3;
  CLASS id time;
  MODEL anti=self pov black hispanic childage
    married gender momage momwork time;
  REPEATED SUBJECT=id;
RUN;
```

Note: The ID variable must be declared in a CLASS statement.
Although coefficients are the same, all the standard errors (except for TIME) are larger. This makes a crucial difference for MOMWORK, BLACK and HISPANIC.

An alternative to GENMOD is PROC SURVEYREG with the CLUSTER statement:

```
PROC SURVEYREG DATA=my.nlsy3;
  CLASS time;
  MODEL anti=self pov black hispanic childage 
    married gender momage momwork time / SOLUTION;
  CLUSTER id; RUN;
```

This uses a slightly different method to calculate the robust standard errors, but results are usually almost identical.
| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|------|---|
| Intercept | 2.9008894| 1.13764794 | 2.55 | 0.0110 |
| self | -0.0741425| 0.01337073 | -5.55 | <.0001 |
| pov | 0.4354025 | 0.10936365 | 3.98 | <.0001 |
| black | 0.1678622 | 0.13092208 | 1.28 | 0.2003 |
| hispanic | -0.2483772| 0.13417850 | -1.85 | 0.0647 |
| childage | 0.0870560 | 0.09390554 | 0.93 | 0.3543 |
| married | -0.0888875| 0.13368386 | -0.66 | 0.5064 |
| gender | -0.4950259| 0.10573338 | -4.68 | <.0001 |
| momage | -0.0166933| 0.02410468 | -0.69 | 0.4889 |
| momwork | 0.2120961 | 0.11897605 | 1.78 | 0.0752 |
| time 1 | -0.2255775| 0.06417664 | -3.51 | 0.0005 |
| time 2 | -0.1734237| 0.05972255 | -2.90 | 0.0038 |
| time 3 | 0.0000000 | 0.00000000 | . | . |

Notes:

- It’s possible for robust standard errors to be smaller than conventional standard errors.
- You generally see a bigger increase in the standard errors for time-invariant variables than for time-varying variables. Standard errors for time itself often decrease.
- For small samples, robust standard errors may be inaccurate and have low power. You need at least 20 clusters if they are approximately balanced (equal size), 50 if they are unbalanced.
- Robust standard errors are also robust to heteroscedasticity.

Solution 2: Generalized Estimating Equations (GEE)

For linear models, this is equivalent to feasible generalized least squares (GLS).

The attraction of this method is that it produces efficient estimates of the coefficients (i.e., the true standard errors will be optimally small). GEE
does this by taking the over-time correlations into account when producing the estimates.

Conventional least squares estimates are given by the matrix formula

\[(X'X)^{-1}X'y\]

GLS estimates are obtained by

\[(X'\hat{\Omega}^{-1}X)^{-1}X'\hat{\Omega}^{-1}y\]

where \(\hat{\Omega}\) is an estimate of the covariance matrix for the error terms. For panel data, this will typically be a “block-diagonal” matrix. For example, if there are three people with two observations each, the covariance matrix will look like

\[
\hat{\Omega} = \begin{bmatrix}
\hat{\sigma}_{11} & \hat{\sigma}_{12} & 0 & 0 & 0 & 0 \\
\hat{\sigma}_{12} & \hat{\sigma}_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \hat{\sigma}_{11} & \hat{\sigma}_{12} & 0 & 0 \\
0 & 0 & \hat{\sigma}_{12} & \hat{\sigma}_{22} & 0 & 0 \\
0 & 0 & 0 & 0 & \hat{\sigma}_{11} & \hat{\sigma}_{12} \\
0 & 0 & 0 & 0 & \hat{\sigma}_{12} & \hat{\sigma}_{22}
\end{bmatrix}
\]

In most GEE software, coefficient estimates are accompanied by robust standard error estimates (but not in Stata).

In SAS, the method can be implemented with PROC GENMOD:

```
PROC GENMOD DATA=my.nlsy3;
  CLASS id time;
  MODEL anti=self pov black hispanic childage married gender momage momwork time;
  REPEATED SUBJECT=id / TYPE=UN CORRW; RUN;
```
TYPE=UN specifies an unstructured correlation matrix for the error term. CORRW asks SAS to write out the estimated correlations for the error terms.

GEE Model Information

<table>
<thead>
<tr>
<th>Correlation Structure</th>
<th>Unstructured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Effect</td>
<td>id (581 levels)</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>581</td>
</tr>
<tr>
<td>Correlation Matrix Dimension</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Cluster Size</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Cluster Size</td>
<td>3</td>
</tr>
</tbody>
</table>

Algorithm converged.

Working Correlation Matrix

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row1</td>
<td>1.0000</td>
<td>0.5590</td>
<td>0.5268</td>
</tr>
<tr>
<td>Row2</td>
<td>0.5590</td>
<td>1.0000</td>
<td>0.6273</td>
</tr>
<tr>
<td>Row3</td>
<td>0.5268</td>
<td>0.6273</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Analysis of GEE Parameter Estimates

Empirical Standard Error Estimates

| Parameter | Estimate | Standard Error | 95% Confidence Limits | Z | Pr > |Z| |
|-----------|----------|----------------|-----------------------|---|------|---|
| Intercept | 2.7652 | 1.1192 | 0.5716 4.9587 | 2.47 | 0.0135 |
| self | -0.0629 | 0.0101 | -0.0827 -0.0431 | -6.22 | <.0001 |
| pov | 0.2662 | 0.0834 | 0.1027 0.4297 | 3.19 | 0.0014 |
| black | 0.2133 | 0.1298 | -0.0411 0.4677 | 1.64 | 0.1004 |
| hispanic | -0.2281 | 0.1328 | -0.4883 0.0322 | -1.72 | 0.0859 |
| childage | 0.0852 | 0.0934 | -0.0978 0.2682 | 0.91 | 0.3616 |
| married | -0.0501 | 0.1335 | -0.3117 0.2115 | -0.38 | 0.7073 |
| gender | -0.4859 | 0.1054 | -0.6925 -0.2794 | -4.61 | <.0001 |
| momage | -0.0203 | 0.0239 | -0.0671 0.0265 | -0.85 | 0.3954 |
| momwork | 0.2529 | 0.1159 | 0.0258 0.4801 | 2.18 | 0.0291 |
| time 1 | -0.2171 | 0.0635 | -0.3415 -0.0927 | -3.42 | 0.0006 |
| time 2 | -0.1694 | 0.0594 | -0.2858 -0.0530 | -2.85 | 0.0044 |
| time 3 | 0.0000 | 0.0000 | 0.0000 0.0000 | . | . |
With only three time points, I recommend doing GEE with the unstructured correlation matrix.

With many time points the number of unique correlations will be large: \(T(T-1)/2 \). And unless the sample is also large, estimates of all these parameters may be unstable.

In that case, consider restricted models. Let \(\rho_{ts} \) be the residual correlation between \(y_{it} \) and \(y_{is} \), measurements on the same individual at two points in time.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCH</td>
<td>Exchangeable, i.e., equal correlations</td>
<td>(\rho_{ts} = \rho)</td>
</tr>
<tr>
<td>AR</td>
<td>1st order autoregressive. May be too restrictive.</td>
<td>(\rho_{ts} = \rho^{</td>
</tr>
<tr>
<td>MDEP(m)</td>
<td>Banded structure</td>
<td>(\rho_{ts} = \rho_{</td>
</tr>
</tbody>
</table>

Here is the exchangeable model:

```plaintext
PROC GENMOD DATA=my.nlsy3;
  CLASS id time;
  MODEL anti=self pov black hispanic childage married gender momage momwork time;
  REPEATED SUBJECT=id / TYPE=EXCH CORRW;
RUN;
```