

Experimental Methods

Henry May, Ph.D.

Upcoming Seminar: July 13-16, 2021, Remote Seminar

Experimental Methods - Part II Impact Analyses, Treatment Contrast, and Power

Henry May, Ph.D. Statistical Horizons

Statistical Analyses for Single-Level Designs

Impact Analysis Options

> ANOVA

ANCOVA

Linear Regression

Generalized Linear Models (e.g., Logistic Regression)

- A one-way Analysis of Variance is used to test for differences between J groups on 1 factor.
- The symbolic model for a one-way ANOVA is:

 $Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$

- 1. where the outcome Y for observation i in group j is equal to
- 2. the grand mean μ

- 3. plus an effect τ associated with being in group j
- 4. plus some error ε specific to observation *i* in group *j*

The \mathcal{E}_{ij} are assumed to be independent and identically distributed (iid) as N(0, σ^2)

- A one-way analysis of covariance is used to test for differences between J groups on 1 factor, after controlling for a continuous covariate (e.g., pretest score).
- The symbolic model for a one-way ANCOVA is:

$$Y_{ij} = \mu + \tau_j + \gamma (X_{ij} - \overline{X}) + \varepsilon_{ij}$$

- 1. where the outcome Y for observation i in group j is equal to
- 2. the grand mean μ
- 3. plus an effect τ associated with being in group j
- 4. plus a regression slope γ multiplied by observation *i*'s deviation from the mean on the covariate X
- 5. plus some error ε specific to observation *i* in group *j*

The \mathcal{E}_{ij} are assumed to be independent and identically distributed (iid) as N(0, σ^2), and γ is assumed to be the same for all groups.

ANOVA / ANCOVA in SPSS

- I. Analyze \rightarrow General Linear Model \rightarrow Univariate
- 2. Select posttest outcome as dependent variable.
- 3. Select treatment indicator as fixed factor.
- 4. Include any blocking variables as fixed factors.
- 5. Include any pretest measures as covariates.
- 6. Use the "Model" button to include only main effects (and interactions, if planned).
- 7. Use "EM Means" button to request means for TRT/CTRL groups.

ANOVA / ANCOVA in SPSS

Tests of Between-Subjects Effects								
Dependent Variable: Posttest								
	Type III							
	Sum of		Mean					
Source	Squares	df	Square	F	Sig.			
Corrected Model	10102.56 ^a	3	3367.521	57.485	.000			
Intercept	2634.861	1	2634.861	44.978	.000			
Male	57.574	1	57.574	.983	.323			
Trt	721.169	1	721.169	12.311	.001			
Pretest	7732.428	1	7732.428	131.996	.000			
Error	11481.832	196	58.581					
Total	561241.00	200						
Corrected Total	21584.395	199						
a. R Squared = .468 (Adjusted R Squared = .460)								

Estimated Marginal Means

2. Trt

Dependent Variable: Posttest

			95% Confidence Interval		
			Lower	Upper	
Trt	Mean	Std. Error	Bound	Bound	
0	49.985 ^a	1.086	47.844	52.126	
1	54.664 ^a	.768	53.150	56.179	

 a. Covariates appearing in the model are evaluated at the following values: Pretest = 49.92.

ANOVA / ANCOVA in SAS

ANOVA / ANCOVA in SAS

The GLM Procedure

Dependent Variable: Posttest Sum of Squares Mean Square Source DF F Value Pr > FModel 3 10102.56313 3367.52104 57.49 <.0001 Error 196 11481.83187 58.58077 Corrected Total 199 21584.39500 R-Square Coeff Var Root MSE Posttest Mean 14.73445 0.468049 7.653808 51.94500 Type III SS Source Mean Square Pr > FDF F Value Pretest 1 7732,428127 7732.428127 132.00 <.0001 Male 1 57.573948 57.573948 0.98 0.3227 Trt 1 721.169113 721.169113 12.31 0.0006 Posttest LSMEAN 95% Confidence Limits Trt 1 54.664354 53.150062 56.178645 0 49.984777 47.843560 52.125994

ANOVA / ANCOVA in R

ANOVA / ANCOVA in R

> Anova (aov (Posttest ~ Pretest + Male + Trt, SingleLevelRCT 1), type=3); Anova Table (Type III tests) Response: Posttest Sum Sq Df F value Pr(>F) (Intercept) 1810.9 1 30.9134 8.749e-08 *** 7732.4 1 131.9960 < 2.2e-16 *** Pretest 57.6 1 0.9828 0.3227276 Male Trt 721.2 1 12.3107 0.0005586 *** Residuals 11481.8 196 ___ Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 > lsmeans (aov (Posttest ~ Pretest + Male + Trt, SingleLevelRCT 1), "Trt") SE df lower.CL upper.CL Trt lsmean 0 50.0 1.086 196 47.8 52.1 1 54.7 0.768 196 53.2 56.2 Results are averaged over the levels of: Male Confidence level used: 0.95