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PURPOSE: Standard estimation of ordered odds ratios requires the constraint that the etiologic effects
of exposure are homogenous across thresholds of the ordered response. We present a method to relax
this often-unrealistic constraint.
METHODS: The kernel of the proposed method is the expansion of observed data into “person-thresh-
olds.” Using standard statistical software, for each subject we create a separate record for each response
threshold and then apply binary logistic regression to estimate generalized cumulative odds ratios for
one or more exposures.
RESULTS: Two examples demonstrate that the proposed method provides increased flexibility in as-
sessing the etiologic effects of exposures. A Monte Carlo simulation study supports the proposed approach
by suggesting the estimated cumulative odds ratios are unbiased with proper confidence interval coverage
attained by use of generalized estimating equations.
CONCLUSION: The proposed method provides simple estimates of ordered odds ratios that allow the
etiologic effects of exposure to vary across levels of the ordered response.
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INTRODUCTION

Epidemiologists frequently encounter ordered responses, but
rarely present results of analyses using models for ordered
responses. Many standard ordered response logit models,
such as the cumulative logit (i.e., proportional odds), con-
tinuation-ratio, and adjacent-category logit models (1–3)
constrain the treatment or exposure X to have equivalent
effects on transitioning among thresholds of an ordered
response Y. This constraint translates into the threshold-spe-
cific log odds ratios being held equal. Several authors
have underscored the need to assess the assumption of ho-
mogeneity of threshold-specific effects in such models, which
provide a single effect estimate averaged over thresholds
(4–11). We previously reported a method to relax this ho-
mogeneity assumption for the ordered odds ratio obtained
by the continuation-ratio model (9). Herein, we use two
empirical examples to demonstrate a different but related
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method also using standard statistical software to estimate
ordered odds ratios from the cumulative logit model, which
relaxes the assumption of homogenous threshold-specific
effects. In addition, we evaluate some of the statistical prop-
erties of the proposed method by Monte Carlo simulation.

METHODS

Cumulative Logit Models

Consider an ordered response Y, and a vector of covariates x,
collected on N independent subjects. To such data, one

may fit a cumulative logit model of the form

log[Pr(Y � yj|x)
Pr(Y � yj|x)]�αj�x′β, j � 1,2,…,k � 1,model 1

where the yj are the cut-points for Y, the αj represent baseline
logits of conditional response probabilities, and β are the log
odds ratios relating components of x to the ordered response
Y. Note that β in model 1 does not depend on j, the point
at which Y is dichotomized. To clarify, if Y has k levels,
then k � 1 logits are formed. For example, a 4-level ordered
response, Y � {0,1,2,3}, would have 3 logit comparisons.
With a cumulative logit model, the three specific logit
comparisons are Y � 1 vs. Y � 1, Y � 2 vs. Y � 2, and
Y � 3 vs. Y � 3. The estimated log cumulative odds ratio,
β̂, can be thought of as a weighted average of the k � 1
threshold-specific log odds ratios. Model 1 is usually esti-
mated by maximum likelihood. For example, when the SAS
1047-2797/04/$–see front matter
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program LOGISTIC is fit with a response variable that has
greater than 2 levels, model 1 is automatically implemented
with the parameter estimates obtained via maximum
likelihood.

A fully generalized cumulative logit model, which relaxes
the cumulative odds assumption, can be formulated as

log[Pr(Y � yj|x)
Pr(Y � yj|x)] � αj � x′βj, j � 1,2,…,k � 1,model 2

where the βj are the threshold-specific log odds ratios. The
cumulative logit model (model 1) is nested within the fully
generalized cumulative logit model (model 2). There are
several other (nested) models that fall between the cumula-
tive and fully generalized cumulative logit models described
above, which were termed partial proportional odds models
by Peterson and Harrell (10). For example, a subset of the
k � 1 threshold-specific log odds ratios may be constrained
to be equal, while the complement of the subset is left
unconstrained. Alternatively, the k � 1 threshold-specific
log odds ratios may be modeled as an increasing or decreasing
linear or curvilinear function. Additionally, one may con-
strain a subset of the vector of covariates x to have cumula-
tive odds, while specifying the complement of the subset
to be unconstrained or partially constrained.

Person-threshold Data

The method we espouse is accomplished by expanding the
data in a fashion parallel to discrete person-time logit models
for survival analysis (12,13). We previously described (9) a
well-known variant of this data expansion approach (4)
using the data from example 1 for an alternative formulation
of ordered logistic regression, namely, the continuation-ratio
model. To expand the observed data to a person-threshold
format for the generalized cumulative logit model, each
subject receives a number of records equal to the number
of response thresholds. All covariates remain threshold-
constant (e.g., parallel to time-constant variables in sur-
vival-time data) except for a threshold variable that marks
which of k�1 thresholds the record corresponds to and an
indicator variable, Dj, which is set to one if the threshold
was reached and zero otherwise. The generalized cumulative
logit model is fit to the person-threshold data by

logit Pr(Dj � 1|x) � αj � x′βj, j � 1,2,…,k � 1,model 3

where the set of intercepts αj are equal to the coefficients
for the indicators of the k � 1 specific thresholds. A similar
implementation was described by Stokes et al (21). Note
that the expanded data set will have a number of records
equal to the product of the number of subjects and thresh-
olds. This person-threshold data formulation explicitly
weights the subjects’ contributions as is necessary to recover
a cumulative odds ratio. Using the person-threshold data, a
standard binary logistic regression model may then be fit to
derive estimates of the cumulative or generalized cumulative
odds ratios from models 1 or 2, depending on specification.
For instance, regressing the threshold indicator variable
on exposure X and including k � 1 indicator variables for
the k � 1 thresholds fits a cumulative logit model (model
1). However, including exposure-by-threshold interactions,
between each of the k � 1 threshold indicators and the
covariate of interest X, fits a fully generalized cumulative logit
model (model 2), which separately quantifies the effect of
the covariate on each threshold. These interaction effects
are analogous to exposure-by-time interactions in pooled
logistic regression, which can be used to test the assumption
of proportional hazards.

Modification to these interactions allows a general
method for relaxing constraints for the X effect over thresh-
olds, and thereby allowing the fit of partially generalized
cumulative logit models. For example, including thresh-
old-specific interactions for a subset of the thresholds pro-
duces non-cumulative odds ratios for those thresholds and
a single cumulative odds ratio for the complement of the
subset. A further modification can be gained by creating a
threshold-specific variable (δ) that is the product of the
exposure and the threshold number minus one (j-1). Includ-
ing this variable in addition to the exposure X allows a linear
constraint on the threshold-specific odds ratios beyond the
first threshold (10). This idea generalizes to curvilinear
effects as well (14). Partially generalized cumulative logit
models which allow a subset of the vector of covariates x
to have cumulative odds and the balance of the subset
to have non-cumulative odds may be fit by including the
covariate-by-threshold interaction terms for the balance of
the subset of covariates.

In the creation of the person-threshold data, we inadver-
tently induce a within-person dependence structure since
k � 1 observations are created for each observed subject.
This dependence does not cause any problems when fitting
a fully generalized cumulative logit model (model 3). This
can be seen from the fact that the fully generalized model
consists of k � 1 equations, each with a completely distinct
set of parameters. Maximum likelihood estimation of the
entire set is equivalent to separately estimating each equa-
tion using a single observation from each person. However,
problems arise when fitting any model that constrains the
threshold-specific effects for any covariate using person-
threshold data (i.e., cumulative or partially generalized
cumulative logit models). Therefore, we used generalized
estimating equations (15) with an autoregressive working
covariance matrix to account for the incurred dependence.
We chose an autoregressive covariance matrix because such
a specification assumes that each threshold is correlated
with the prior adjacent threshold, as might be expected with
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an ordered response. Choosing either an exchangeable or
unstructured working covariance matrix did not appreciably
change the results of the data examples or the simulations.
Alternatively, one could use a bootstrap resampling ap-
proach (16).

Because the cumulative logit model is nested within the
generalized cumulative logit model, generalized score statis-
tics (for the generalized estimating equations) provide a
method to assess the validity of the assumption that the
threshold-specific odds ratios are equal. Under the null hy-
pothesis that the threshold-specific odds ratios are equal,
the generalized score statistic is distributed as χ2 with degrees
of freedom equal to the difference in the number of parame-
ters between the nested models.

Example 1: Degree Of Perinatal Laceration

In Table 1, we provide data presented by Ananth and
Kleinbaum (5) and Cole and Ananth (9). These data reflect
the degree of perinatal laceration (none, 1�, 2�, 3�, and
4�), a 5-level ordered response, in relation to a midline
episiotomy (further details about these data are available in
reference (5)). The expanded data for three hypothetical
subjects from Table 1 is shown in Table 2.

The cumulative odds ratio obtained by maximum likeli-
hood is 3.0 [95% confidence interval (CI), 2.5, 3.7]. As can
be seen in Table 3, the person-threshold cumulative odds
ratio is 3.5 (95% CI, 2.8, 4.3). The assumption of equal
slopes does not appear justified as the non-cumulative odds
ratios are 2.9, 4.4, 5.9, and 7.5, and the generalized score
statistic for homogeneity of slopes is large (χ2 � 95 on 3
degrees of freedom, p � 0.001). Although inference is un-
changed, this generalized score statistic based on the esti-
mating equations is smaller than the likelihood ratio score
statistic for homogeneity of slopes from the maximum likeli-
hood model (χ2 � 219 on 3 degrees of freedom, p � 0.001).
These results indicate that the effect of episiotomy is
stronger at higher levels of perinatal laceration. In Figure 1,
panel A depicts the parallel effects for episiotomy (on the
cumulative logit) from the cumulative model, while panel
B shows the non-cumulative effects from the generalized
cumulative logit model.

If we wished to constrain the effect of the last threshold
and estimate its effect combined with the second to last

TABLE 1. Joint frequency distribution of episiotomy and peri-
natal lacerations among 10,964 women*

Degree of perinatal laceration

Episiotomy 0 1 2 3 4

None 9,238 140 71 131 37
Midline 1,204 8 8 89 38

*Data from Ananth and Kleinbaum (5)
TABLE 2. Person-threshold data expanded for 3 hypothetical
subjects from Table 1*

ID Midline episiotomy Degree of laceration Threshold Reached

1 0 0 1 0
1 0 0 2 0
1 0 0 3 0
1 0 0 4 0
2 0 3 1 1
2 0 3 2 1
2 0 3 3 1
2 0 3 4 0
3 1 4 1 1
3 1 4 2 1
3 1 4 3 1
3 1 4 4 1

*ID � 1 corresponds to a subject with data (from Table 1) episiotomy � 0 (none)
and degree (of laceration) � 0; ID � 2 a subject with data episiotomy � 0 and
degree � 3; ID � 3 a subject with data episiotomy � 1 and degree � 4.

threshold due to the small numbers at the more extreme
levels of the response variable, then we may wish to fit a
partially generalized cumulative logit model. These results
are also shown in Table 3. Here, the collapsed model
appears compatible with the data, as the incremental in-
crease in fit by separately estimating the last two threshold-
specific odds ratios is small (generalized score χ2 � 1.5 on
1 degree of freedom, p � 0.220). Further, one may, based
on prior knowledge or by examining the threshold-specific
effects in Figure 1 (panel B), want to explore a linear increase
in the log odds ratios across thresholds using another par-
tially generalized cumulative logit model. In this example,
under a log-linear constraint, the estimated odds ratios for
the four thresholds are 3.0, 4.2, 5.9, and 8.4. Note that these
log-linearly constrained odds ratios closely mirror the fully
generalized cumulative odds ratios shown in Table 3. This
partial (log-linear) generalized cumulative logit model ap-
pears to be an improvement on the standard cumulative
logit model, as evidenced by the non-zero estimate of δ
(95% CI, 0.3, 0.4).

Example 2: Retinopathy Status

In Table 4, we provide a summary of data previously analyzed
by Bender and Grouven (8). These data capture the 6-year
follow up retinopathy status (none, nonproliferative, and
advanced), a 3-level ordered response, in relation to baseline
smoking status (Yes/No) for 613 type I diabetic patients.
For further details about these data please see reference
(17). Following the description given above for the creation
of the person-threshold data set, we have 1226 records for
the 613 subjects. As Bender and Grouven (8), we adjusted
for duration of diabetes, diastolic blood pressure, and glyco-
sylated hemoglobin, each with a single linear term. The
mean duration of diabetes was 15 (SD � 7) years. The mean
diastolic blood pressure was 80 (SD � 7) mmHg. The
mean glycosylated hemoglobin was 7.8 (SD � 1.3) percent.
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FIGURE 1. Panel A depicts the cumulative logit for those with and without episiotomy for each ordered response threshold for the
cumulative odds model, while panel B depicts the cumulative logit for the generalized cumulative odds model.
The cumulative odds ratio obtained by maximum likeli-
hood is 1.3 (95% CI, 0.9, 1.9). As can be seen in Table 5,
the person-threshold cumulative odds ratio is also 1.3 (95%
CI, 0.9, 1.9). This summary of the threshold-specific odds
ratios commingles two effects on opposite sides of unity
as the first threshold odds ratio is 1.6 and the second is 0.9.
The odds ratio of 1.6 indicates that the odds of nonprolifera-
tive or advanced disease (vs. no disease) are 60% higher
among smokers compared with nonsmokers. While the odds
ratio of 0.9 indicates that the odds of advanced disease
(vs. none or nonproliferative disease) are not increased and
possibly slightly lower among smokers compared with non-
smokers. Once again, the assumption of equal slopes (i.e.,
βs) does not appear justified. The generalized score statistic
testing the equality of slopes for smoking status yields a χ2

of 6.38 on 1 degree of freedom (p � 0.012), confirming the

TABLE 3. Ordered regression models for perinatal laceration
data

Model Odds ratio 95% CI

Non-cumulative eβ1 2.90 2.37,3.54
eβ2 4.37 3.51,5.44
eβ3 5.86 4.61,7.43
eβ4 7.52 4.76,11.9

Partial cumulative eβ1 2.83 2.31,3.48
eβ2 4.23 3.37,5.30
eβ34 5.57 4.32,7.17

Partial (log-linear) eβ 2.95 2.39,3.63
cumulative δ 0.35 0.28,0.42

Cumulative eβ 3.48 2.82,4.30
intuition gained from regarding Figures 2A and 2B, which
depict the changing sign of slopes for the cumulative and
generalized cumulative logits by baseline smoking status (in
unadjusted retinopathy data).

Monte Carlo Simulations

To examine this method of fitting cumulative and general-
ized cumulative logit models, we performed a Monte Carlo
simulation study. We generated independent observations
of data O � (X, Y), where X was a random Bernoulli variable
with probability .5 and Y was a random 4-level ordinal
response dependent on X through the generalized cumula-
tive logit model (model 2). We set β̂ so that the distribution
of Y under the null was 40%, 30%, 20%, and 10% for Y � 0,
1, 2 and 3, respectively. We report three sets of results,
with the threshold-specific log odds ratios set at
βj � {0,0,0}, βj � {1,.5,0}, and βj � {1,1,1}. Using model 2,
with αj and βj set as described above, we calculated the
cumulative distribution function for Y, which translates into
a step function based on three probabilities, namely

TABLE 4. Joint frequency distribution of smoking and
retinopathy status at follow up for 613 diabetic individuals*

Retinopathy status at follow up

Smoking None Nonproliferative Advanced

No 191 42 55
Yes 197 76 52

*Data from Bender and Grouven (8).



176 Cole et al.
CUMULATIVE ODDS RATIOS

AEP Vol. 14, No. 3
March 2004: 172–178
TABLE 5. Ordered regression models for retinopathy status
data

Model* Odds ratio 95% CI

Non-cumulative eβ1 1.57 1.03,2.38
eβ2 0.90 0.58,1.41

Cumulative eβ 1.28 0.88,1.88

*Adjusting fordiabetes duration,diastolic bloodpressure,and glycosylatedhemoglobin.

Pr(Y � yi|X � x), where j � 1, 2, 3. We then generated
a uniform random variable and compared it to the inverse
distribution function to determine Y. We present the aver-
age (of 2000 samples) point estimate and standard error
for the cumulative logit model fit by maximum likelihood
and both the cumulative and generalized cumulative logit
models fit by generalized estimating equations on the
person-threshold data. In addition, we provide the estimated
coverage probabilities for the two-sided 95% confidence
interval and the standard deviation of the 2000 point esti-
mates as a Monte Carlo simulation estimate of the standard
error. A single summary odds ratio from a cumulative odds
model has no hope of recovering a set of true heteroge-
neous threshold-specific odds ratios. Therefore, for the
scenario where the cumulative logit model is mis-specified
because of heterogeneous threshold-specific odds ratios,
namely when βj � {1,.5,0}, percent confidence interval cov-
erage is calculated with respect to the parameter that mini-
mizes the Kullback-Leibler information criterion (18,19),
which is an information-weighted mean of the threshold-
specific odds ratios and is determined by fitting of the maxi-
mum likelihood cumulative odds model to the expected
table of counts.
The proposed method, using a person-threshold data set,
appeared unbiased (on average, the method recovered the
correct point estimate, Table 6) and compared well to
the maximum likelihood estimates. The average of the esti-
mated standard errors was nearly equal to the observed
standard deviation of the estimates across 2000 samples.
Coverage of the 95% confidence intervals was close to nomi-
nal. As expected, the models that incorrectly specified ho-
mogenous threshold-specific effects of X recovered a
weighted average of the threshold-specific log odds ratios.

DISCUSSION

This proposed method for fitting generalized cumulative
odds models improves upon the standard methods for fitting
the cumulative logit model by allowing for greater flexibility
in fitting the effects of covariates, while requiring only a
binary logistic regression model with indicators for thresh-
olds and generalized estimating equations. Such binary logis-
tic regression models, with the estimation of parameters
based on generalized estimating equations, are common to
most major statistical software packages. The person-thresh-
old formulation easily generalizes to include multiple covari-
ates to account for confounding and interactions among
covariates to assess effect measure modification. The formu-
lation of the person-threshold data set can be easily pro-
grammed using standard statistical software packages with
data management capabilities, such as SAS.

Modification of the exposure-by-threshold interactions
allows a general method for relaxing constraints for the X
FIGURE 2. Panel A depicts the cumulative logit for smokers and non-smokers for each ordered response threshold for the cumulative
odds model, while panel B depicts the cumulative logit for the generalized cumulative odds model.
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TABLE 6. Monte Carlo simulation of generalized cumulative logit models based on 2000 samples of size 500

True βj (KLIC)* Method† Model‡ Mean β̂ Mean SE β̂ SD β̂¶ 95% CI coverage**

0,0,0 ML 1 β̂1 � β̂2 � β̂3 �0.01 0.16 0.16 0.95
(0) EE 1 �0.01 0.16 0.16 0.95

2 β̂1 �0.01 0.18 0.18 0.95
δ̂ 0.00 0.14 0.15 0.95

3 β̂1 �0.01 0.18 0.18 0.95
β̂2 0.00 0.20 0.19 0.96
β̂3 0.00 0.30 0.31 0.96

1, .5, 0 ML 1 β̂1 � β̂2 � β̂3 0.66 0.17 0.16 0.95
(0.67) EE 1 0.67 0.17 0.16 0.95

2 β̂1 1.00 0.20 0.19 0.96
δ̂ �0.50 0.16 0.16 0.95

3 β̂1 1.00 0.21 0.20 0.96
β̂2 0.50 0.19 0.18 0.96
β̂3 0.00 0.30 0.31 0.96

1,1,1 ML 1 β̂1 � β̂2 � β̂3 1.00 0.17 0.16 0.96
(1) EE 1 1.00 0.17 0.16 0.96

2 β̂1 1.00 0.20 0.19 0.96
δ̂ 0.00 0.14 0.14 0.95

3 β̂1 1.00 0.21 0.20 0.96
β̂2 1.00 0.19 0.18 0.96
β̂3 1.01 0.26 0.27 0.95

*Kullback-Leibler information criterion, assuming: β̂1 � β̂2 � β̂3.
†Maximum likelihood, estimating equation.
‡Model 1 assumes cumulative, model 2 a log-linear change, and model 3 non-cumulative odds.
¶Standard deviation of 2000 point estimates.
**Confidence interval (CI) coverage is the proportion of 2000 95% CIs that include the true value.
effect over thresholds as illustrated by Petersen and Harrell
(10) and Scharfstein and colleagues (14). We emphasize
caution regarding the exploration of numerous partially con-
strained models. When such searches are conducted arbi-
trarily they capitalize on chance. Therefore, specification
of particular partially constrained models should be either
stated in a prior research protocol or put to sensitivity
analysis [e.g., bootstrapping the entire model selection
process (20)]. Also, note that the present models are based
on estimating equations and are therefore not equivalent
to a likelihood-based approach. Although we did not ob-
serve any meaningful difference in efficiency, as measured
by the difference in the empirical standard deviations for
the maximum likelihood and estimating equation methods
in the simulations, a likelihood-based approach will be maxi-
mally efficient if the model is correct. Any gain in efficiency
by use of a maximum likelihood method would be at the
cost of requiring the analyst to program the likelihood ex-
plicitly in a general maximization routine, such as the SAS
program NLMIXED.

Compared with a cumulative logit model, generalized
cumulative logit models will commonly have less efficiency
(due to the increased number of parameters) but likely will
represent the threshold-specific exposure effects better when
these effects are heterogeneous. This is a straightforward
example of the ubiquitous tradeoff between bias and effi-
ciency in statistics. There are alternative formulations to
an ordered response model that may better suit a specific
application, such as the continuation-ratio model (which
compares levels 2+ vs. 1, levels 3� vs. 2, level 4 vs. 3, etc.)
and the adjacent-category logit model (which compares
level 2 vs. level 1, 3 vs. 2, 4 vs. 3, etc.). Greenland gives some
biologic considerations that can be used to make initial
choices among the formulations (2).

In summary, the proposed alternative method for fitting
cumulative and generalized cumulative odds ratios allows
great flexibility over the assumption of homogeneity of
threshold-specific covariate effects, and may allow more
appropriate application of models for ordered responses than
standard methods. The proposed method will be of great
benefit to epidemiologists who frequently encounter studies
with ordinal responses.

We thank Professor Sander Greenland for helpful suggestions and Dr. Ralf
Bender for the retinopathy data.
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