

Categorical Structural Equation Modeling

Kevin Grimm, Ph.D.

Upcoming Seminar: May 6-8, 2021, Remote Seminar

Categorical Structural Equation Modeling

Kevin J. Grimm

Statistical Horizons

Categorical Structural Equation Modeling

 Structural equation modeling (SEM) is a powerful data analytic framework for testing theories with statistical models and data

Statistical models can be complex

- Multivariate models with multiple outcomes
- Direct and indirect effects
- Latent variables
- Multiple groups to examine invariance of model parameters
- Longitudinal models to examine change over time

Categorical Structural Equation Modeling

Historically, SEM was a *linear* modeling framework

- Models were additive
- Data were assumed to have a multivariate normal distribution
- Essentially, an extension of the *linear regression modeling* framework

 Early work by Muthén (and others) extended SEM to involve binary and ordinal outcomes

- Introduced nonlinear link functions into SEM and developed estimation approaches
- Subsequently, extended to handle additional types of non-normal data (*count & nominal* outcomes)

Day 1: Structural Equation Modeling with *Binary* Outcomes

- Introduction to structural equation modeling
- Review of logistic and probit regression in R
- Introduction to Mplus and lavaan notation
- Logistic and probit regression in Mplus and lavaan
- Path models with binary mediators and outcomes
- Confirmatory factor models with binary indicators
- Model fit for maximum likelihood and weighted least squares estimators

Day 2: Structural Equation Models for Ordinal Outcomes

- Cumulative logit and probit regression models in R
- Cumulative logit and probit regression models in Mplus and lavaan
- Confirmatory factor models with ordinal indicators
- Latent variable path models with binary and ordinal indicators
- Multiple group analysis with binary and ordinal indicators
- Missing data handling with maximum likelihood and weighted least squares estimators

Day 3: Longitudinal Models & Count Outcomes

- Latent growth models with binary and ordinal outcomes
- Survival analysis
- Review of count regression models in R
- Count regression models in Mplus
- Zero-inflated count regression models in Mplus

Introduction to Structural Equation Modeling

Preliminary Steps

- Specify research question in terms of constructs, direct, indirect, and symmetric associations
- Choose manifestations of the constructs (appropriate representative samples, timing, etc.)
- Examine measurement properties of the manifest (observed) variables
- Examine univariate and multivariate distributions of all manifest variables

Steps in Structural Equation Modeling

- 1. Theory-Data: Form some basic ideas merging theory and data
- 2. **Specification**: Form explicit hypotheses regarding the associations among variables in terms of a path model
- 3. **Estimation**: Use SEM programs to estimate parameters, standard errors, and various indicators of model fit
- Evaluation & Interpretation: Examine the fit of the model, potentialy compare the fit of the proposed model to alternative models, and interpret the model parameters
- 5. Re-evaluation & Extension: Explore new ideas/models

Step #1: Theory-Data

- "The purpose of statistical procedures is to assist in establishing the plausibility of a theoretical model" (Cooley, 1978)
 - SEM is a general statistical framework that allows researchers to be explicit about theory and how it is reflected in one's data
- Statistical models are where theories and data collide
 Statistical models invoke a particular notion of reality that may or may not match one's theoretical ideas
- Goal is to match theory and model as close as possible and examine plausibility of model given the data

Step #1: Theory-Data

- SEM is a confirmatory framework for testing an *a-priori* hypothesis about the structure of the data
- Requires specific expectations regarding
 - One's theory
 - How one's theory is reflected by the particular structural equation model

Step #2: Model Specification

- Specify a model that matches the theory to be tested
- Statistical model carries a set of expectations (expected variances & covariances) to test against the observed data

Step #2: Model Specification

- There exists a unique solution (locally and globally)
- Particularly important in latent variable models

Step #2: Model Specification

Model Identification

Determine the total degrees of freedom available from the data

- The total degrees of freedom indicates how many parameters we can estimate
- Total degrees of freedom is equal to the number of unique pieces of information from the data
 - For our purposes, this is the number of variances and unique covariances in the covariance matrix

Step #3: Model Estimation

- There are several SEM programs (e.g., Mplus, lavaan, OpenMx, Lisrel, etc.) to estimate the model parameters
- Maximum Likelihood estimation is typically used to estimate the model's parameters
 - The maximum likelihood estimates (for multivariate normal data) are those that minimize the maximum likelihood fit function (*F_{ML}*)

$$F_{ML} = \log |\mathbf{\Sigma}\left(\hat{\theta}\right)| + \operatorname{tr}\left(\mathbf{S}\mathbf{\Sigma}^{-1}\left(\hat{\theta}\right)\right) - \log |\mathbf{S}| - (p+q)$$

where

- Σ (θ̂) is the model-implied covariance matrix with current estimates (i.e., θ̂)
- S is the observed covariance matrix
- (p + q) is the number of observed variables

Step #4: Model Evaluation & Interpretation

- Examine the fit of the model with respect to the model's χ² and degrees of freedom to determine if the model fits significantly worse than a perfect fitting model
- Examine the **fit** of the model with respect to other model fit statistics
 - Root Mean Square Error of Approximation (RMSEA)
 - Comparative Fit Index (CFI)
 - Tucker-Lewis Index (TLI)
 - Standardized Root Mean Square Residual (SRMR)
- Examine the **residual** covariance matrix

Step #4: Model Evaluation & Interpretation

- Interpret the parameter estimates obtained from the model
 - Primarily focused on the interpretation of path coefficients
 Direct, Indirect, & Total Effects
 - Can also discuss explained variance for outcomes

Step #5: Re-evaluation & Extension

 Consider alternative models based on the results of the fitted model(s)

Important Note

Must be discussed as exploratory and preliminary when the newly generated models are based on the results of previously fit models to the same data