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Chapter 20

Missing Data

Paul D. Allison

20.1. Introduction

Perhaps the most universal dilemma in statistics is what to do about missing data.
Virtually every data set of at least moderate size has some missing data, usually
enough to cause serious concern about what methods should be used. The good news
is that the last twenty-five years have witnessed a revolution in methods for handling
missing data, to the point where there is little overlap between this chapter and the
missing data chapter in the 1983 edition of this handbook. The methods that have
been developed in the interim have much better statistical properties than traditional
methods, while at the same time relying on weaker assumptions.

The bad news is that these superior methods have not been widely adopted by
practicing researchers. The most likely reason is ignorance. Many researchers have
barely even heard of modern methods for handling missing data. And if they have
heard of them, they have little idea how to go about implementing them. The other
likely reason is difficulty. Modern methods can take considerably more time and
effort, especially with regard to start-up costs. Nevertheless, with the development of
better software, these methods are getting easier to use every year.

Three broad classes of missing data methods have good statistical properties:
maximum likelihood (ML), multiple imputation (MI), and inverse probability
weighting. ML and MI can handle a wide array of applications, and many
commercial software packages implement some version of these methods. As of this
writing, inverse probability weighting is much more limited in its applications, and
easy-to-use software is not readily available. For that reason, I will not discuss
inverse probability weighting in this chapter. However, it should be noted that this
method may be more robust than ML and MI to certain kinds of misspecification
(Robins, Rotnitzky, & Zhao, 1995; Robins & Rotnitzky, 1995; Scharfstein,
Rotnitzky, & Robins, 1999).
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This chapter briefly reviews the strengths (few) and weaknesses (many) of
conventional methods for handling missing data. I then examine ML and MI in some
detail, emphasizing their conceptual foundations and illustrating their implementa-
tion using currently available software. Space does not permit a very rigorous or
technical treatment of these methods; see Allison (2001) for a more extended
introduction to them.

20.2. Example

To illustrate the various methods for handling missing data, I use data from the
National Survey of Families and Households (NSFH) (Sweet & Bumpass, 2002). The
NSFH is a national probability sample survey of 13,007 adults age 19 and older who
were interviewed initially in 1987–1988. They were reinterviewed in 1992–1994 and
again in 2001–2002. The analysis sample used here (N ¼ 3622) consists of couples
who met the following criteria: (a) they were married at wave 1, (b) both spouses
completed the initial interview, and (c) at least one spouse was reinterviewed at a
later wave.

Our analytical goal is to estimate a logistic regression model in which the
dependent variable is whether or not the couple divorced between the initial interview
and a later wave. There were 747 couples who divorced (20 percent), and no missing
data on the dependent variable. Table 20.1 lists the variables used as predictors in the
model, along with the number of nonmissing cases and the minimum and maximum
values for each variable. All the variables with a minimum value of 0 and a maximum
of 1 are dummy variables. The variables FBOD and MBOD are multiple-item scales
that measure, respectively, the wife’s and husband’s assessment of whether they
would be ‘‘better off divorced.’’

Only one predictor variable (CLT6) has no missing data. For the other variables,
the proportion of cases with missing data is generally small, with a maximum of 10
percent missing for FRELG. Nonetheless, 1182 cases (33 percent) have missing data
on at least one of the 14 variables, and all of them would by definition be lost to the
analysis under listwise deletion (complete case analysis).

The first panel of Table 20.2 presents estimates for a conventional logistic
regression using listwise deletion. Couples are more likely to divorce if either the
husband or the wife was previously divorced, if either spouse assessed the likelihood
of separation to be high, or if either spouse felt that they would be ‘‘better off
divorced.’’ Divorce is more likely if there are children under six or if the husband is
not Catholic.

20.3. Assumptions

When we think of missing data, we usually envision situations in which a variable has
some ‘‘real’’ value, but we simply do not observe it for one reason or another. For
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example, everyone has a real age but some people choose not to report it. In many
circumstances, however, a variable is not defined or has no meaning for some people.
For example, ‘‘marital happiness’’ has no meaning for people who are not married.
Likewise, ‘‘job satisfaction’’ is undefined for those who are not employed. Such
variables are usually accommodated by skip patterns in survey instruments.

The methods discussed in this chapter are primarily designed for the first situation
in which a real value happens to be missing, although some authorities (Schafer,
1997) endorse multiple imputation even for variables that are not defined for some
individuals. For the latter situation in which there is no real value to be imputed,
different methods may be appropriate. One such method, known as dummy variable
adjustment, is discussed in the next section.

There is no end to the list of possible reasons why real data might be missing.
People may refuse to answer questions or give incoherent answers. In a longitudinal

Table 20.1: Predictor variables for logistic regression.

Variable Label Non-missing

cases

Minimum Maximum

MEDUC Husband’s years of
education

3593 0 20.0000000

FEDUC Wife’s years of education 3601 0 20.0000000
FGENID Wife gender ideology

scale. High is
egalitarian

3444 �3.5322108 2.6024005

MPRVDV Husband previously
divorced

3603 0 1.0000000

FPRVDV Wife previously divorced 3594 0 1.0000000
CLT6 Presence of children

under 6
3622 0 1.0000000

FPRBLOW Wife assessment of prob
separate 1 ¼ low

3379 0 1.0000000

MPRBLOW Husband assessment of
prob separate 1 ¼ low

3386 0 1.0000000

FBOD Wife better off divorced
scale

3326 �1.9715052 4.1361923

MBOD Husband better off
divorced scale

3346 �2.2109966 3.7527237

FCATH Wife catholic 3578 0 1.0000000
MCATH Husband catholic 3572 0 1.0000000
FRELG Wife how often attends

religious services
3251 1.0000000 7.0000000

MRELG Husband how often
attends religious
services

3577 1.0000000 7.0000000

Missing Data 633
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survey, people may respond to earlier waves but not to later ones. Interviewers may
forget to ask some questions. Administrative data may be lost. With respect to
missing data methods, however, exactly why the data are missing does not really
matter. What does matter is whether the data are missing completely at random,
missing at random, or not missing at random.

20.3.1. Missing Completely at Random

Suppose that only one variable Y has missing data, and that another set of variables,
represented by the vector X, is always observed. The data are missing completely at
random (MCAR) if the probability that Y is missing does not depend on X or on Y
itself (Rubin, 1976). To represent this mathematically, let R be a ‘‘response’’
indicator having a value of 1 if Y is missing and 0 if Y is observed. We then have

PrðR ¼ 1jX ;YÞ ¼ PrðR ¼ 1Þ

A natural question to ask at this point is, what variables can be or should be in the
X vector? The answer is quite simple. The only variables that must be in X are those
that are part of the model to be estimated. Suppose, for example, that we seek only to
estimate the mean income for some population, and 20% of the cases are missing
data on income. In that case, we need not consider any X variables for the MCAR
condition. The only relevant question is whether the probability that income is
missing depends on income itself, for example, whether people with high income are
less likely to report their income. On the other hand, if our goal is to estimate the
correlation between income and years of schooling, the MCAR condition requires
that missingness on income not depend on either income or years of schooling.

How can we test the MCAR assumption? Testing for whether missingness on Y
depends on some observed variable X is easy. For example, we can test whether
missingness on income depends on gender by testing whether the proportions of men
and women who report their income differ. More generally, we could run a logistic
regression in which the dependent variable is the response indicator R and the
independent variables are all X variables in the model to be estimated. Significant
coefficients would suggest a violation of MCAR.

On the other hand, it is not so easy to test the other part of MCAR, that
missingness on Y does not depend on Y itself. For example, the only way to test
whether people with high incomes are less likely to report their incomes is to find
some other measure of income (e.g., tax records) that has no missing data. But this is
rarely possible.

The MCAR assumption is very strong, and is unlikely to be completely satisfied
unless data are missing by design (Graham, Hofer, & MacKinnon, 1996). A well-
known example is the General Social Survey (Davis, Smith, & Marsden, 1972–2006),
which typically has three different ‘‘ballots’’ containing different sets of questions on
social and political attitudes and behaviors. Each ballot is administered to a random
two-thirds of the respondents, and all pairs of items are administered to some

Missing Data 635
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respondents. The goal is to cover a wider range of topics without increasing interview
time. Any data that are missing by this design are missing completely at random.

This example illustrates another key point about MCAR. The assumption is not
violated if the probability that one variable is missing is related to whether another
variable is missing. In the General Social Survey design, the questions in each ballot
would be either all observed or all missing for any respondent.

20.3.2. Missing at Random

A considerably weaker (but still strong) assumption is that data are missing at
random (MAR). Again, this is most easily defined in the case where only a single
variable Y has missing data, and another set of variables X has no missing data. We
say that data on Y are missing at random if the probability that Y is missing does not
depend on Y, once we control for X. In symbols, we have

PrðR ¼ 1jX ;YÞ ¼ PrðR ¼ 1jXÞ

where R is the response indicator. Thus, MAR allows for missingness on Y to depend
on other variables that are observed. It just cannot depend on Y itself (after adjusting
for the observed variables).

As with MCAR, the only variables that must go into X are the variables in the
model to be estimated. But under MAR, there can be substantial gains from including
other variables as well. Suppose, for example, that we believe that people with high
income are less likely to report their income. That would violate both MCAR and
MAR. However, by adjusting for other variables that are correlated with income —
for example, education, occupation, gender, age, mean income in zipcode — we may
be able to greatly reduce the dependence of missingness of income on income itself.

The MAR condition is often equated with the phrase ‘‘ignorability of the missing
data mechanism,’’ but ignorability is actually somewhat stronger (Rubin, 1976). The
‘‘missing data mechanism’’ is simply the equation that expresses the probability of
missingness as a function of Y and X. Ignorability requires that the data be MAR,
and that the parameters that govern the missing data mechanism be functionally
distinct from the parameters of the model that govern the data itself. This is a rather
technical condition that is unlikely to be violated and, hence, will not be discussed in
any detail. As the word suggests, ignorability implies that we can obtain optimal
estimates of the data parameters without having to model the missing data
mechanism. Henceforth, I will use the terms MAR and ignorable interchangeably.

20.3.3. Not Missing at Random

We say that data are not missing at random (NMAR) if the MAR assumption is
violated, that is, if the probability that Y is missing depends on Y itself, after
adjusting for X. There are often strong reasons for suspecting that the data are
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NMAR, for example, people who have been arrested may be less likely to report their
arrest status. However, as previously noted, the data contain no information for
testing such suspicions. If the data are truly NMAR (and, thus, missingness is not
ignorable), then the missing data mechanism must be modeled as part of the
estimation process in order to produce unbiased parameter estimates. This is not
straightforward because one can always specify an infinite number of different
models for the missing data mechanism. Nothing in the data will indicate which of
these models is correct. And, unfortunately, results may be highly sensitive to the
choice of model.

Because of these difficulties, most software packages that implement ML or MI
assume ignorability (and, hence, MAR). Both ML and MI can produce optimal
estimates in the NMAR case (as discussed in Section 20.6) with a correct model for
the missing data mechanism, but it is difficult to have confidence that any given
model is correct.

20.4. Conventional Methods

Before proceeding to ML and MI, let us briefly review more conventional methods
for handling missing data, along with their strengths and weaknesses.

20.4.1. Listwise Deletion

The most common method for handling missing data is listwise deletion, also known
as complete case analysis. This method simply deletes observations that have missing
data on any variables in the model of interest. Only complete cases are used.

Listwise deletion has two big and obvious attractions: it is easy and can be used
with any statistical method. Furthermore, if the data are MCAR, listwise deletion
will not introduce any bias into estimates. That is because, under MCAR, the
subsample of complete cases is effectively a simple random sample from the original
sample, and it is well known that simple random sampling does not introduce bias
(see, e.g., Frankel, this volume). Last, and quite important, listwise deletion produces
estimated standard errors that consistently estimate the true standard errors. Thus,
unlike conventional imputation methods, listwise deletion is ‘‘honest’’: it does not
assume that one has more or better data than are actually available.

The obvious downside of listwise deletion is that, quite often, it discards a great
deal of potentially useful information. As a consequence, the true standard errors
may be much higher than necessary, implying unnecessarily wide confidence intervals
and high p-values. A second undesirable feature of listwise deletion is that parameter
estimates may be biased if the data are MAR but not MCAR. For example, if men
are less likely to report income than women, estimates of mean income for the whole
population are likely to be biased downward.

Violation of MCAR does not always result in biased estimates under listwise
deletion, however. In fact, when predictor variables in regression analysis (either

Missing Data 637
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linear or logistic) have missing data, listwise deletion yields unbiased estimates of
coefficients even when the data are not missing at random (Little, 1992). Thus, even if
high income people are less likely to report their income, coefficients for income as a
predictor are not biased by listwise deletion. For a proof, details and a caveat, see
Allison (2001). Of course, deletion of what may be a large number of cases may still
result in a loss of power.

20.4.2. Pairwise Deletion

Pairwise deletion, also known as available case analysis, is a popular method for
handling missing data when estimating linear regression and other linear models.
It rests on the fact that, for a wide class of linear models, the ‘‘minimal sufficient
statistics’’ are the means, variances, and covariances. That implies that the parameter
estimates can be computed using only these statistics, without any loss of
information. In pairwise deletion, the means and variances are estimated using all
nonmissing cases for each variable. Each covariance is estimated using all cases with
data present on both variables. Once the means, variances, and covariances have
been estimated, they are simply plugged into standard formulas for the linear model
parameters.

This method utilizes all the data and deletes no cases. It would seem that pairwise
deletion ought to perform much better than listwise deletion, and it is easily shown
that under MCAR, pairwise deletion provides consistent (and, hence, approximately
unbiased) parameter estimates (Glasser, 1964). But, like listwise deletion, pairwise
deletion can introduce bias if the data are MAR but not MCAR. Also, pairwise
deletion sometimes breaks down entirely because the correlation matrix may have
patterns that are simply not possible with complete data.

Last, and perhaps most important, with pairwise deletion it is difficult to obtain
accurate standard error estimates, p-values, and confidence intervals. When a
pairwise-deleted covariance matrix is used within linear modeling software, one must
specify a sample size to get standard errors and p-values. But what sample size is
appropriate? Certainly not the original sample size: that would not take into account
the fact that data, perhaps many data, are missing. But the listwise-deletion sample
size would be too small because pairwise deletion uses more of the data. The fact is
that no single sample size will give the correct standard errors for all the parameter
estimates under pairwise deletion.

20.4.3. Dummy Variable Adjustment

Another popular approach to handling missing data on predictors in regression
analysis is dummy variable adjustment (Cohen & Cohen, 1985). Its mechanics are
simple and intuitive. Suppose one predictor is income, with missing data on, say,
30% of the cases. The analyst creates a dummy variable with a value of 1 for people
who are missing income and 0 for people who are not. Next, for people with missing
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income, one ‘‘imputes’’ some constant value — for example, the mean for nonmissing
cases. Then a regression is estimated with both income and the dummy variable as
predictors, along with any other predictors. Such dummy variable adjustments can
be made for many (even all) predictor variables.

The appeal of this method is that it deletes no cases, and incorporates all available
information into the regression model. But Jones (1996) proved that dummy variable
adjustment yields biased parameter estimates even when the data are MCAR, which
pretty much rules it out. Jones also demonstrated that a related method for nominal
predictors produces biased estimates. That method treats missing cases for a
categorical variable simply as another category, creating an additional dummy
variable for that category.

Despite this apparently fatal flaw, dummy variable adjustment can be useful in
two situations. Suppose, first, that the primary goal is to generate good predictions,
and further that missing data are anticipated for at least some of the out-of-sample
cases for which predictions are desired. Unbiased parameter estimation is not
essential for good predictive modeling, and the coefficients for the dummy variables
will yield predictions even for cases with missing data.

Second, suppose that data are ‘‘missing’’ because a variable is undefined for some
subset of the sample, for example, marital satisfaction for unmarried persons. Jones’
proof presumes that a missing datum has some real value that is simply not observed.
It is easy to show, however, that the dummy variable adjustment method leads to
unbiased estimates under a simple but plausible model for the situation in which the
missing item is undefined (proof available on request).

20.4.4. Imputation

The basic principle of imputation is to generate plausible values for the missing
values, and then do analyses as if no data were missing. There are many ways to do
this. One of the simplest is to replace the missing values by sample means calculated
for the nonmissing cases. It is well known that mean substitution produces biased
estimates for most parameters, even under MCAR (Haitovsky, 1968). Better results
can be obtained by using linear regression to generate imputed values (sometimes
known as conditional mean imputation).

All conventional imputation methods suffer from two serious problems. First,
variances tend to be underestimated, leading to biases in other parameters (like
correlations and regression coefficients) that depend on variances. Mean substitu-
tion, for example, replaces the presumably different missing values with a single
value, thereby reducing the variance. Regression-based imputation also understates
variances, although to a lesser degree.

The second problem is equally serious. Standard data analysis software cannot
distinguish imputed data from real data. In particular, standard error calculations
presume that all data are real. The inherent uncertainty and sampling variability in
the imputed values is not taken into account. As a result, reported standard errors
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are too low, sometimes much too low — leading, of course, to confidence intervals
that are too narrow and p-values that are too low. In short, conventional imputation
methods are fundamentally dishonest. In the next section, we will see how multiple
imputation solves both of these problems.

20.5. Multiple Imputation

The three basic steps to multiple imputation are as follows:

1. Introduce random variation into the imputation process, and generate several
data sets, each with slightly different imputed values.

2. Perform an analysis on each of the data sets.
3. Combine the results into a single set of parameter estimates, standard errors, and

test statistics.

The first step is by far the most complicated, and there are many different ways to
do it. One popular method uses linear regression imputation. Suppose a data set has
three variables, X, Y, and Z. Suppose X and Y are fully observed, but Z has missing
data for, say, 20% of the cases. To impute the missing values for Z, a regression of Z
on X and Y for the cases with no missing data yields the imputation equation

Ẑ ¼ b0 þ b1X þ b2Y

Conventional imputation would simply plug in values of X and Y for the cases
with missing data and calculate predicted values of Z. But, as noted previously, such
imputed values have too small a variance. To correct this problem, we instead use the
imputation equation

Ẑ ¼ b0 þ b1X þ b2Y þ sE,

where E is a random draw from a standard normal distribution (with a mean of 0 and
a standard deviation of 1) and s is the estimated standard deviation of the error term
in the regression (the root mean squared error). Adding this random draw raises the
variance of the imputed values to approximately what it should be and, hence, avoids
the biases that usually occur with conventional imputation.

If parameter bias were the only issue, imputation of a single data set with random
draws would be sufficient. Standard error estimates would still be too low, however,
because conventional software cannot take account of the fact that some data are
imputed. Moreover, the resulting parameter estimates would not be fully efficient
(in the statistical sense), because the added random variation introduces additional
sampling variability.

The solution is to produce several data sets, each with different imputed values
based on different random draws of E. The desired model is estimated on each data
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set, and the parameter estimates are simply averaged across the multiple runs. This
yields much more stable parameter estimates that approach full efficiency.

With multiple data sets we can also solve the standard error problem, by calculating
the variance of each parameter estimate across the several data sets. This ‘‘between’’
variance is an estimate of the additional sampling variability produced by the
imputation process. The ‘‘within’’ variance is the mean of the squared standard errors
from the separate analyses of the several data sets. The standard error adjusted for
imputation is the square root of the sum of the within and between variances (applying
a small correction factor to the latter). The formula (Rubin, 1987) is as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

X

M

k¼1

s2k þ 1þ
1

M

� �

1

M � 1

� �

X

M

k¼1

ðak � �aÞ2

v

u

u

t

In this formula, M is the number of data sets, sk is the standard error in the kth
data set, ak is the parameter estimate in the kth data set, and �a is the mean of the
parameter estimates. The factor (1+ (1/M)) corrects for the fact that the number of
data sets is finite.

How many data sets are needed? With moderate amounts of missing data, five are
usually enough to produce parameter estimates that are more than 90 percent
efficient. More may be needed for good estimates of standard errors and associated
statistics, however, especially when the fraction of missing data is large. I discuss this
issue in more detail later.

20.5.1. Complications

This method for multiple imputation is pretty good, but it still produces standard
errors that are little too low, because it does not account for the fact that the
parameters in the imputation equation (b0, b1, b2, and s) are only estimates with
their own sampling variability. This can be rectified by drawing the imputation
parameter values used to create each data set at random from an appropriate
distribution. To use Bayesian terminology, these values must be random draws from
the posterior distribution of the imputation parameters.

Of course, Bayesian inference requires a prior distribution reflecting prior beliefs
about the parameters. In practice, however, multiple imputation almost always uses
noninformative priors that have little or no content. One common choice is the Jeffreys
prior, which implies that the posterior distribution for s is based on a chi-square
distribution. The posterior distribution for the regression coefficients (conditional on s)
is multivariate normal, with means given by the estimated values b0, b1, b2, and a
covariance matrix given by the estimated covariance matrix of those coefficients. For
details, see Schafer (1997). The imputations for each data set are based on a separate
random draw from this posterior distribution. Using a different set of imputation
parameters for each data set induces additional variability into the imputed values
across data sets, leading to larger standard errors using the formula above.
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Now we have a very good multiple imputation method, at least when only one
variable has missing data. Things become more difficult when two or more variables
have missing data (unless the missing data pattern is monotonic, which is unusual).
The problem arises when data are missing on one or more of the potential predictors,
X and Y, used in imputing Z. Then no regression that we can actually estimate
utilizes all of the available information about the relationships among the variables.
Iterative methods of imputation are necessary to solve this problem.

The Markov chain Monte Carlo (MCMC) method, widely used for Bayesian
inference (Schafer, 1997), is the most popular iterative algorithm for multiple
imputation. For linear regression imputation, one MCMC iteration proceeds
roughly as follows. We begin with some reasonable starting values for the means,
variances, and covariances among a given set of variables. For example, these
could be obtained by listwise or pairwise deletion. We divide the sample into
subsamples, each having the same missing data pattern (i.e., the same set of variables
present and missing). For each missing data pattern, we use the starting values to
construct linear regressions for imputing the missing data, using all the observed
variables in that pattern as predictors. We then impute the missing values, making
random draws from the simulated error distribution as described above, which
results in a single ‘‘completed’’ data set. Using this data set with missing data
imputed, we recalculate the means, variances, and covariances, and then make a
random draw from the posterior distribution of these parameters. Finally, we use
these drawn parameter values to update the linear regression equations needed for
imputation.

This process is usually repeated many times. For example, the SAS implementa-
tion (www.sas.com) runs 200 iterations of the algorithm before selecting the first
completed data set, and then allows 100 iterations between each successive data set.
So producing the default number of five data sets requires 600 iterations (each of
which generates a data set). Why so many iterations? The first 200 (‘‘burn-in’’)
iterations are designed to ensure that the algorithm has converged to the correct
posterior distribution. Then allowing 100 iterations between successive data sets gives
us confidence that the imputed values in the different data sets are statistically
independent. In my opinion, these numbers are far more than enough for the vast
majority of applications.

Many software packages implement the method just described. The first was a
stand-alone package called NORM (www.stat.psu.edu/Bjls), which has also been
incorporated into Splus (www.insightful.com). The SAS procedure MI is essentially a
NORM clone. And Stata (www.stata.com) now has a multiple imputation command
(mi) that uses this method.

If all assumptions are satisfied, the MCMC method produces parameter estimates
that are consistent (and hence approximately unbiased in large samples),
asymptotically normal, and almost fully efficient. Full efficiency would require an
infinite number of data sets, but a relatively small number gets very close. The key
assumptions are, first, that the data are missing at random (although multiple
imputation methods exist for the NMAR case). Second, linear regression imputation
implicitly assumes that the variables have a multivariate normal distribution.

642 Paul D. Allison



(C
) E

mer
ald

 G
ro

up
 P

ub
lis

hin
g L

im
ite

d

Although this is a strong assumption, the MCMC method seems to work well even
when it is clearly violated. But more on that later.

20.5.2. Example

We illustrate the MCMC linear imputation method for the NSFH data using the MI
procedure in SAS. The following code imputes the data:

proc mi data ¼ couple out ¼ divout;
var div m1educ f1educ f1genid m1prvdv f1prvdv
clt6 fprblow mprblow fbod mbod
fcatholic mcatholic frelg mrelg;

run;

The first line specifies the input SAS data set (‘‘couple’’), and the output SAS data
set (‘‘divout’’), which contains all of the imputed data sets. The remaining lines
specify a list of variables. At a minimum, the list should include all variables in
the model to be estimated to ensure that the imputed values accurately reflect all
the relationships among the variables. In particular, it is essential to include the
dependent variable (‘‘div’’ in this case) as a predictor for the other variables. I do not
generally recommend imputing the dependent variable itself, however, so I usually
delete cases missing data on the dependent variable before doing the imputation
(with one important exception noted in the next paragraph).

In addition, it is often desirable to include auxiliary variables that are not intended
to be in the final model. Ideally, these variables would be at least moderately
correlated with variables in the model that have missing data. By improving the
reliability of the imputations, using auxiliary variables can substantially reduce
standard errors in the model to be estimated. If auxiliary variables are also associated
with whether or not variables are missing, including them can reduce bias as well.
The one situation in which it is useful to impute the dependent variable occurs when
it is strongly associated with an auxiliary variable. This situation can be especially
relevant to longitudinal studies, where missing data for a variable are often well
predicted using the same variable measured at a different point in time as an auxiliary
variable.

By default, the MI procedure produces five completed data sets. These are
‘‘stacked’’ into a single SAS data set (‘‘divout’’), along with a new variable
‘‘_imputation_’’ with values 1 through 5 to distinguish the different data sets.

Next, we estimate the logistic regression model on each of the five data sets using
the ‘‘by’’ statement in SAS:

proc logistic data ¼ divout outest ¼ a covout;
model div(desc)¼ m1educ feduc fgenid mprvdv fprvdv clt6 fprblow
mprblow fbod mbod fcatholic mcatholic frelg mrelg;

by _imputation_;
run;
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This produces five sets of regression output. The ‘‘outest ¼ a’’ option writes the
regression coefficients to a SAS data set named ‘‘a.’’ The ‘‘covout’’ option includes
the covariance matrix of the coefficient estimates in that data set. Then the
companion procedure MIANALYZE combines the results:

proc mianalyze data ¼ a;
modeleffects intercept m1educ feduc fgenid mprvdv fprvdv
clt6 fprblow mprblow fbod mbod fcatholic mcatholic frelg mrelg;

run;

Using data set ‘‘a,’’ MIANALYZE calculates the means of the parameter
estimates across the five regression runs, and the standard errors using the formula
above. The second panel of Table 20.2 above shows the results.

The coefficients estimated by multiple imputation are fairly close to those
obtained with listwise deletion, except for the coefficient of FGENID, which is 50%
larger with MI. The most striking thing about the multiple imputation results,
however, is that all standard errors are lower than the corresponding ones for listwise
deletion — exactly what we hope for. As a consequence, two coefficients (for
FGENID and MRELG) that were not significant at the .05 level using listwise
deletion are now significant using MI. And p-values for several other variables have
declined as well. Typically, standard errors decrease the most for variables that have
the least missing data because we are adding real data for these variables, data that
listwise deletion does not use.

Because random draws are made at two critical points of the MCMC algorithm,
the MI results in Table 20.2 would all change if we ran the procedure again.
Sometimes the variability in results from one run to another can be large enough to
change conclusions. As explained below, however, increasing the number of data sets
can reduce this variability as much as desired.

20.5.3. Non-Normality

The MI method just illustrated assumes that the data have a multivariate
normal distribution, implying that optimal imputation can be based on linear
models. In the example, however, most of the imputed variables are dichotomous
and of those that are not, some (e.g., FRELG and MRELG) are highly skewed. It is
natural to question whether linear imputation models are appropriate for such
variables. When variables have no missing data, the normality assumption is of
little or no consequence. And a good deal of evidence suggests that linear
imputation models do a reasonably good job of imputing non-normal variables
(Schafer, 1997).

There are some important caveats, however. First, if a dichotomous variable has
an extreme split (e.g., 3 percent ones and 97 percent zeros), a linear model may not
give satisfactory imputations. Second, recent analytic and simulation results
(Horton, Lipsitz, & Parzen, 2003; Allison, 2006) strongly indicate that rounding
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imputed values for dichotomous variables to 0 or 1 makes things worse rather
than better, at least in terms of the quality of parameter estimates.1 Similarly,
transforming continuous but skewed variables to achieve approximate normality
before imputation and then reversing the transformation after imputation often
degrades parameter estimates, because the transformations make the imputation
model inconsistent with the analysis model (von Hippel, 2009), an issue to be
discussed below. Imposing upper and lower bounds on imputed values can also lead
to bias because it inappropriately reduces variances.

In short, linear imputation models usually do a satisfactory job with non-normal
variables, but the best practice is to leave the imputed values as they are, even if those
values are unlike the real values in some respects. Sometimes, however, a linear
imputation model is just not satisfactory (e.g., when imputing the dependent variable
in a logistic regression). Then it is better to use an imputation method specifically
designed for a particular kind of variable. We consider a few such models below.

20.5.4. How Many Data Sets?

As already noted, the MI procedure in SAS produces five imputed data sets by
default, although it is easy to request more. Five is usually enough for the parameter
estimates, but good estimates of standard errors, confidence intervals, and p-values
often require more. More are always better, but how many are enough? The
estimated degrees of freedom for each parameter, reported by most MI software,
is a useful diagnostic. The df is used with the t distribution to calculate p-values and
confidence intervals, and it increases as a linear function of the number of data sets.
When I do MI, I like every df to be at least 100. At that point, the t distribution
approaches the normal distribution, and little is to be gained from additional
data sets. For our divorce example, the lowest df was 179, suggesting no need for
additional data sets.

20.5.5. Multivariate Inference

A general principle of MI is that any population quantity can be estimated by simply
averaging its estimates over the repeated data sets. Besides regression coefficients,
this includes summary statistics like R2 and root mean squared error, although MI
software often does not report these. It is never correct to average test statistics, like
t, F, or chi-square statistics, however. Special methods are required to combine such
statistics across multiple data sets.

Multivariate inference, that is, testing hypotheses about more than one coefficient
at a time, often requires such methods. For example, we frequently need to test

1. This is contrary to my recommendation in Allison (2001).
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whether two coefficients are equal, or whether several coefficients are all equal to
zero. Three well-known approaches for constructing test statistics for such
hypotheses are likelihood ratio tests, Wald tests, and a method for combining chi-
squares. Details can be found in Schafer (1997), Allison (2001), or Little and Rubin
(2002). Likelihood ratio tests are considered the most accurate, but they are also the
most difficult to calculate.

20.5.6. Congeniality of the Imputation Model and the Analysis Model

For MI to perform optimally, the model used to impute the data must be
‘‘congenial’’ in some sense with the model intended for analysis (Rubin, 1987; Meng,
1994). The models need not be identical, but the imputation model must generate
imputations that reproduce the major features of the data that are the focus of the
analysis. That is the main reason I recommend that the imputation model include all
variables in the model of interest.

Using an imputation model that is less restrictive than the analysis model creates
no problems. As we have seen, it is often good for the imputation model to include
auxiliary variables that are not in the analysis model. But trouble can arise if the
imputation model is more restrictive than the analysis model. For example, if an
analysis model contains non-linearities and/or interactions, the imputation model
should also include them. With interactions, for instance, this means creating the
product variables before doing the imputation, and then imputing these along with
the original variables. Some MI software constrains imputed values of product
variables to equal the product of the imputed values of the original variables, but
von Hippel (2009) shows that this leads to biased estimates.

Ideally, multiple imputation should be tailored to the model of interest. An
important implication of these principles is that a single set of imputed data sets may
not be suitable for all models that users want to estimate.

20.5.7. Sequential Generalized Regression

Many different methods for producing multiple imputed data sets are consistent with
the general principles described here. They differ mainly in the distributional models
they assume for the data, and in the iterative algorithms they use to produce random
draws from the posterior distribution of the missing data.

Sequential generalized regression (Raghunathan, Lepkowski, Van Hoewyk, &
Solenberger, 2001), also known as multiple imputation by chained equations (MICE)
(Brand, 1999; Van Buuren & Oudshoorn, 2000) or fully conditional imputation,
has recently become very popular. It is attractive because of its ability to impute
both quantitative and categorical variables appropriately. It specifies a regression
equation for imputing each variable with missing data, usually linear regression
for quantitative variables, and logistic regression (binary, ordinal, or unordered
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multinomial) for categorical ones. Under logistic imputation, imputed values for
categorical variables will also be categorical. Some software can also impute count
variables by Poisson regression.

Imputation proceeds sequentially, usually starting from the variable with the least
missing data and progressing to the variable with the most missing data. At each
step, random draws are made from both the posterior distribution of the parameters
and the posterior distribution of the missing values. Imputed values at one step are
used as predictors in the imputation equations at subsequent steps (something that
never happens in MCMC algorithms). Once all missing values have been imputed,
several iterations of the process are repeated before selecting a completed data set.

Add-on software for sequential generalized regression is available for several
statistical packages, including SAS, Stata, and Splus. I illustrate the method for our
divorce example using the ice command in Stata (Royston, 1994; Carlin, Galati, &
Royston, 2008). As with the SAS MI procedure, it specifies the set of variables to
be used in the imputation, and a file name (‘‘coupleimp’’) for saving the imputed
data sets:

ice div meduc feduc fgenid mprvdv fprvdv clt6 fprblow mprblow
fbod mbod fcath mcath frelg mrelg, saving(coupleimp) m(5)

The ‘‘m(5)’’ option requests five data sets — the default is just one. As with SAS,
these data sets are stacked one on top of another in the single Stata data set
‘‘coupleimp’’. A new variable ‘‘_mj’’ has values of 1 through 5 to distinguish the
different data sets.

By default, ice imputes binary variables by logistic regression. Variables with more
than five distinct values are imputed by linear regression. Thus, in this example,
meduc, feduc, fgenid, fbod, mbod, frelg, and mrelg are all imputed by linear
regression. The remaining six variables are imputed by logistic regression.

In Stata, unlike SAS, one command (with the mim prefix) performs the analysis on
each data set, and also combines the results into a single set of estimates and
associated statistics:

mim: logit div meduc feduc fgenid mprvdv fprvdv clt6 fprblow
mprblow fbod mbod fcath mcath frelg mrelg

Results in the third panel of Table 20.2 are very similar to those obtained with the
MCMC method using linear regression for all imputations. In fact, the results differ
no more than one would expect from two different runs of multiple imputation using
exactly the same method.

Though attractive, sequential generalized regression has two disadvantages
compared with the linear MCMC method. First, it is much slower, computationally.
Second, no theory justifies it. If all assumptions are met, the MCMCmethods discussed
earlier are guaranteed to converge to the correct posterior distribution. Sequential
generalized regression carries no such guarantee, although simulation results by
Van Buuren, Brand, Groothuis-Oudshoorn, and Rubin (2006) are very encouraging.
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20.6. Maximum Likelihood

As methods for handling missing data, maximum likelihood and multiple
imputation are close competitors. Under identical assumptions, both methods
produce consistent, asymptotically efficient, and asymptotically normal estimates.
Nevertheless, I prefer ML whenever it can be implemented for several reasons.
First, ML produces a deterministic result while MI gives a different result
every time it is used, because of its random draws from posterior distributions.
Second, MI is often vulnerable to bias introduced by lack of congeniality between the
imputation model and the analysis model. No such conflict is possible with ML
because its estimates are based on a single, comprehensive model. Third, ML is
generally a much ‘‘cleaner’’ method, requiring many fewer decisions about
implementation.

The downside of ML is that it typically requires specialized, standalone software
that is only available for a limited set of models. Both the number of software
packages and the range of available models have greatly expanded recently, however.
Several packages can do ML estimation with missing data for almost any linear
model. And one of them, Mplus, can also estimate logistic regression models and
Cox regression models with data missing both on the response variable and on
predictors.

In general, the first step in ML estimation is to construct the likelihood function.
Suppose that we have n independent observations (i ¼ 1,y, n) on k variables
(yi1, yi2,y, yik) and no missing data. The likelihood function is

L ¼
Y

n

i¼1

f iðyi1; yi2; . . . ; yik; yÞ

where fi(.) is the joint probability (or probability density) function for observation i,
and y is a set of parameters to be estimated. To get the ML estimates, we find the
values of y that make L as large as possible. Many methods can accomplish this, any
one of which should produce the right result.

Now suppose that for a particular observation i, the first two variables, y1 and y2,
have missing data that satisfy the ignorability assumption. The joint probability for
that observation is just the probability of observing the remaining variables, yi3
through yik. If y1 and y2 are discrete, this is the above joint probability summed over
all possible values of the two variables with missing data:

f �i ðyi3; . . . ; yik; yÞ ¼
X

y1

X

y2

f iðyi1; . . . ; yik; yÞ

If the missing variables are continuous, we use integrals in place of summations:

f �i ðyi3; . . . ; yik; yÞ ¼
Z

y1

Z

y2

f iðyi1; yi2; . . . yik; yÞdy2dy1
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Essentially, then, for each observation’s term in the likelihood function, we sum or
integrate over the variables that have missing data, obtaining the marginal
probability of observing those variables that have actually been observed.

As usual, the overall likelihood is just the product of the likelihoods for all the
observations. For example, if there are m observations with complete data and n–m
observations with data missing on y1 and y2, the likelihood function for the full data
set becomes

L ¼
Y

m

i¼1

f iðyi1; yi2; . . . ; yik; yÞ
Y

n

mþ1

f �i ðyi3; . . . ; yik; yÞ

where the observations are ordered such that the first m have no missing data and the
last n–m have missing data.2 This likelihood can then be maximized to get ML
estimates of y, again in several different ways.

20.6.1. EM Algorithm

One popular method for maximizing the likelihood when data are missing is the EM
algorithm (Dempster, Laird, & Rubin, 1977). This iterative algorithm consists of two steps:

1. In the E (expectation) step, one finds the expected value of the log-likelihood,
where the expectation is taken over the variables with missing data, based on the
current values of the parameters.

2. In the M (maximization) step, the expected log-likelihood is maximized to
produce new values of the parameters.

These steps are repeated, usually many times, until the algorithm converges, i.e.,
until the parameter estimates do not change from one iteration to the next.

Most comprehensive software packages have procedures that implement the EM
algorithm. However, almost all assume multivariate normality, which implies that
the relevant parameters are the means, variances, and covariances for all the
variables. Under multivariate normality, the EM algorithm reduces to a kind of
iterated linear regression imputation.

The main products of the EM algorithm are the ML estimates of the means,
variances and covariances. These can then be used with linear modeling software to
get estimates of regression coefficients and other parameters, which are true ML
estimates of the relevant parameters. However, this two-step approach will generally
produce incorrect standard errors and test statistics. As with pairwise deletion, this is
because standard error estimates require that a sample size be specified, and no single
value yields correct standard errors for all parameters.

2. Additional missing data patterns would require separate, similarly constructed terms in the likelihood.
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20.6.2. Direct Maximum Likelihood

A better method is direct ML, also known as raw ML (because it requires raw data
rather than a covariance matrix) or full-information ML (Arbuckle, 1996; Allison,
2003). This method directly specifies the likelihood for the model to be estimated, and
then maximizes it by conventional numerical methods (like Newton–Raphson) that
produce standard errors as a by-product. This approach has been implemented for a
wide class of linear structural equation models (including ordinary linear regression)
in several packages: LISREL (www.ssicentral.com), EQS (www.mvsoft.com), Amos
(www.spss.com/amos), MX (www.vcu.edu/mx), and Mplus (www.statmodel.com).
For some of these packages (e.g., Amos and Mplus), direct ML is the default method
for handling missing data, and no special program instructions are necessary.

The special appeal of Mplus is its capacity to do direct ML for logistic regression
and Cox regression. We illustrate its use for our divorce example. For logistic
regression, listwise deletion is the default in Mplus. Several special instructions are
necessary to do direct ML. Here is the complete program code for doing the analysis:

data: file ¼ c: \couple.txt;
variable:
names ¼ div meduc feduc fgenid mprvdv fprvdv
clt6 fprblow mprblow fbod mbod
fcath mcath frelg mrelg;

missing ¼ . ; categorical ¼ div;
analysis: estimator ¼ ml; integration ¼ montecarlo;
model:
div on meduc feduc fgenid mprvdv fprvdv
clt6 fprblow mprblow fbod mbod
fcath mcath frelg mrelg;

meduc feduc fgenid mprvdv fprvdv
clt6 fprblow mprblow fbod mbod
fcath mcath frelg mrelg;

After reading in the data as a text file, we assign a missing data code (there is no
default) and specify that the dependent variable ‘‘div’’ is a categorical variable.
Specifying ‘‘estimator ¼ ml’’ implies that ‘‘div’’ will modeled by a logistic regression.
The ‘‘integration ¼ montecarlo’’ option is necessary to integrate the likelihood
function over the missing values. The model consists of two parts, separated by a
semicolon. The first specifies the logistic regression. The second part specifies that the
predictor variables have a multivariate normal distribution. While this may seem
undesirable since many of the variables are dichotomous, it is necessary to specify
some kind of joint distribution for the predictors. The multivariate normal is the
simplest and most computationally efficient specification. For each individual,
the likelihood is the product of the conditional distribution of ‘‘div’’ multiplied by the
joint distribution of the predictors, with numerical integration over the variables that
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have missing data. Results are shown in the fourth panel of Table 20.2. The ML
estimates (both coefficients and standard errors) are very similar to those for MI.

If the multivariate normal assumption for the predictors seems too strong, one can
specify a more complex model that treats the dichotomous predictors as categorical.
Here is the Mplus code for the divorce example:

data: file ¼ c: \couple.txt;
variable:
names ¼ div meduc feduc fgenid mprvdv fprvdv
clt6 fprblow mprblow fbod mbod
fcath mcath frelg mrelg;

missing ¼ . ; categorical ¼ div mprvdv fprvdv clt6
fprblow mprblow fcath mcath;

analysis: estimator ¼ ml; integration ¼ montecarlo;
model:
div on meduc feduc fgenid mprvdv fprvdv

clt6 fprblow mprblow fbod mbod
fcath mcath frelg mrelg;

mprvdv on fprvdv clt6 fprblow mprblow fcath mcath
meduc feduc fgenid frelg mrelg fbod mbod;

fprvdv on clt6 fprblow mprblow fcath mcath
meduc feduc fgenid frelg mrelg fbod mbod;

clt6 on fprblow mprblow fcath mcath
meduc feduc fgenid frelg mrelg fbod mbod;

fprblow on mprblow fcath mcath
meduc feduc fgenid frelg mrelg fbod mbod;

mprblow on fcath mcath
meduc feduc fgenid frelg mrelg fbod mbod;

fcath on mcath
meduc feduc fgenid frelg mrelg fbod mbod;

mcath on meduc feduc fgenid frelg mrelg fbod mbod;
meduc feduc fgenid frelg mrelg fbod mbod;

This program declares all the dichotomous variables to be categorical. In the
‘‘model’’ command, the logistic regression for ‘‘div’’ is followed by a series of
recursive logistic regression equations, expressing each dichotomous predictor
variable as a function of ‘‘prior’’ variables. The ordering of these variables is
completely arbitrary. Though the ordering could in principle make a difference,
different orderings produced exactly the same results for this example. The last line
of the program specifies that the quantitative variables have a multivariate normal
distribution. Results in the fifth panel of Table 20.2 (ML 2) are extremely close to
those obtained with the much simpler multivariate normality specification (ML 1).
So imposing that assumption made virtually no difference in this case.

Missing Data 651



(C
) E

mer
ald

 G
ro

up
 P

ub
lis

hin
g L

im
ite

d

20.7. Longitudinal Data

Longitudinal studies are particularly prone to missing data problems because it is
difficult to follow individuals over substantial periods of time (see Stafford, this
volume). Some people stop participating, some cannot be located, others may be
away at the time of re-contact. Either MI or ML can handle missing data in
longitudinal studies quite well. These methods usually can be implemented for
longitudinal data in a fairly straightforward manner.

Whatever method is used, it is important to use all available information over time
in order to minimize bias and standard errors. For example, suppose that one wishes
to estimate a random-effects regression model using panel data for 1000 people and
five time points per person, but some predictor variables have missing data. Most
random-effects software requires a separate observational record for each person and
point in time (the so-called ‘‘long’’ form), with a common ID number for all
observations for the same person. One should not do multiple imputation on those
5000 records. That would impute missing values using only information obtained at
the same point in time.

A much better method is to restructure the data so that there is one record per
person (the ‘‘wide’’ form): a variable like income measured at five points in time
would be represented by five different variables. Then multiple imputation with a
variable list including all the variables in the model at all five time points would
impute values for any variable with missing data using all the other variables at all
time points, including (especially) the same variable measured at other time points.
Once these missing data are imputed, the data set can be reshaped again for purposes
of analysis into one with multiple observations per person.

Making imputations using data from all time points can substantially reduce the
standard errors of the parameter estimates, and also reduce bias. If, for example, the
dependent variable is a measure of depression, and people who are depressed at time 1
are more likely to drop out at time 2, then imputing the time 2 depression score using
depression at time 1 can be very helpful in correcting for possible selection bias.

Using data at later time points to impute missing data at earlier ones may seem
unsettling, since it seems to violate conventional notions of causal direction. But
imputation has nothing to do with causality. It merely seeks to generate imputed
values that are consistent with all the observed relationships among the variables.

Some may also be troubled by the fact that this method generates imputed values
for all variables at all time points, even if a person dropped out after the first
interview. Is that too much imputation? If a person died after the first interview, a
reasonable case could be made for excluding records for times after death. But if
someone simply dropped out of the study, imputing all subsequent missing data is
better because selection bias may be substantially reduced. Remember that both MI
and ML account completely for the fact that the some data are imputed when
calculating standard errors, so the imputation of later waves does not artificially
inflate the sample size.

Everything here about MI for longitudinal data also applies to ML, although it
may be less obvious. Most structural equation modeling programs expect data sets
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with one record per person (i.e., in wide form). They will automatically use all data to
‘‘impute’’ missing values, and no special effort is needed. Some ML software for
estimating random effects models (e.g., PROC MIXED in SAS) will appropriately
handle missing data on the dependent variable even though the data include a record
for each person and time point. But they simply delete cases with missing data on
predictor variables from the analysis.

The considerations discussed in this section do not apply to our divorce example.
Although the NSFH study was longitudinal, our analysis is essentially cross-
sectional: the dependent variable (whether or not the couple divorced) is only
measured once and the predictor variables are only measured in the baseline wave.

20.8. Methods For Nonignorable Missing Data

All methods described above assume that the missing data mechanism is ignorable
and, hence, the data are missing at random. To reiterate, MAR means that the
probability of missingness on any variable is unrelated to the value of that variable,
once other observed variables are controlled. Unfortunately, this assumption is not
testable.

Although MAR is a much weaker assumption than MCAR, there are often strong
reasons to believe that is violated. If the variable of interest measures depression, for
example, it seems plausible that depressed people would be less likely to agree to be
interviewed, even after adjusting for prior and subsequent levels of depression. That
could lead to biased estimates.

Both MI and ML methods exist for the not missing at random (NMAR) situation.
If their assumptions are satisfied, their estimates have their usual desirable properties
of consistency, asymptotic efficiency, and asymptotic normality. However, to
accomplish this, they require a valid model for the missing data mechanism, and
that is not easily obtained, at least not with any confidence. Many models for the
missing data mechanism may be plausible, but their fit to the data cannot be
compared, and results may depend greatly on which one is chosen.

Before examining some NMAR methods, recall from Section 20.3 that listwise
deletion actually handles data that are not missing at random on predictor variables
pretty well in any kind of regression analysis. Specifically, if the probability of
missing data on a predictor is unrelated to the dependent variable, listwise deletion
will not produce bias in coefficient estimates, though reduction in power due to the
loss of cases may be substantial.

Methods for nonignorable missing data fall into two classes: selection models and
pattern-mixture models (Little & Rubin, 2002). Some notation helps to explain the
difference. Let yi be a k � 1 random vector containing all variables in the model of
interest for individual i. Let ri be a k � 1 random vector of dummy (indicator)
variables having values of 1 if the corresponding variable in yi is observed and 0 if
that variable is missing. Each individual’s contribution to the likelihood function is
then given by f(yi, ri), the density for the joint distribution of yi and ri.
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Using the definition of conditional probability, we can factor this joint density in
two different ways. For selection models, we have

f ðyi; riÞ ¼ PrðrijyiÞf ðyiÞ,

where f(yi) is the marginal density function for yi, and Pr(ri|yi) the conditional
probability of ri given yi. (This conditional probability is what we mean by the
‘‘missing data mechanism’’, which can be ignored when the data are missing at
random.) Modeling then proceeds by specifying each of these two components in
more detail. For example, f(yi) could be specified as a multivariate normal
distribution, and Pr(ri|yi) as a set of logistic regression models.

For pattern-mixture models, the factorization is

f ðyi; riÞ ¼ f ðyijriÞPrðriÞ,

i.e., the conditional density of yi given ri, times the probability of ri. Again, modeling
proceeds by further specification of each of the two factors.

Although these two factorizations are both mathematically correct, pattern-
mixture models are conceptually less appealing because they suggest that the
distribution of y depends on whether we observe it or not. And even if one can
estimate f(y|r) (which is not always possible), it is usually necessary to sum those
distributions over the patterns in r to get the parameter estimates that are actually
desired. Hence, I will not consider pattern-mixture models further here. See Little
(1993) for details on formulating and estimating such models.

The best-known selection model is undoubtedly Heckman’s (1979) model for
selection bias. This model describes f(yi) by a conventional linear regression,

yi ¼ bxi þ �i,

where xi is a vector of predictor variables. The random disturbance ei is assumed to
have a normal distribution with a mean of 0, constant variance s2, and a covariance
of 0 across observations. This implies that f(yi) is a normal density function with
mean bxi and variance s2. With no missing data, the coefficient vector b could be
optimally estimated by ordinary least squares.

Now suppose that some data are missing on yi, and we want to allow the
probability that y is missing to depend on y itself, even after adjusting for x. Let
R ¼ 1 if y is observed and 0 if y is missing. A probit model for R states that:

PrðRi ¼ 1jyi;xiÞ ¼ Fðdyi þ axiÞ

where F(.) is the cumulative distribution function for a standard normal variable, d is
the coefficient for y, and a is a vector of coefficients for x. If d ¼ 0, the data are
MAR. If both d and a are 0, the data are MCAR.

Clearly, the probit equation cannot be estimated by itself because all ys are
missing when R ¼ 0. Remarkably, however, all the parameters are identified when
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the regression equation and the probit equation are combined in the likelihood
function. The likelihood can be easily maximized using conventional numerical
routines available in many statistics packages.

Unfortunately, Little and Rubin (2002) have shown that the Heckman model is
exquisitely sensitive to the normality assumption on e in the regression equation. If
the e distribution is skewed, for example, the Heckman method can easily yield more
biased estimates than those obtained with listwise deletion. This is typical of selection
models: because they are identified only by choosing specific functional forms and
distributional shapes, slight variations on those choices can have major con-
sequences.

Little and Rubin strongly advise that a sensitivity analysis should accompany any
use of NMAR models. That is, one should try out a variety of different models to see
how stable the results are. That good advice is not so easy to implement, given the
limited availability of software for NMAR models.

Daniels and Hogan (2008) argue that pattern-mixture models are much more
amenable to sensitivity analysis than selection models, and develop such models in
some detail. But their approach is strictly Bayesian, requiring informative prior
distributions and the use of WinBugs software (www.mrc-bsu.cam.ac.uk/bugs).
Moreover, their models are quite complex, even for very simple missing data
patterns.

The bottom line is that although NMAR methods are available, they should be
used with a great deal of caution. Proper use of these methods requires considerable
knowledge and understanding of the missing data process, and a substantial
commitment to try out different plausible models.

20.9. Summary

Conventional methods for handling missing data leave much to be desired. They
typically yield biased parameter estimates or standard error estimates that are too
low. They often require unrealistically strong assumptions about the missing data
mechanism. In my opinion, the best of them is still listwise deletion. It is unbiased if
data are missing completely at random. It yields unbiased estimates of regression
coefficients when missing data are for predictor variables in a regression model, even
when the data are not missing at random. Most importantly, it gives honest estimates
of standard errors.

Despite these good qualities, listwise deletion can needlessly discard a lot of data,
often far more than researchers are willing to tolerate. To avoid this, use multiple
imputation or maximum likelihood. If assumptions are met, these two methods yield
approximately unbiased estimates, along with standard error estimates that
accurately reflect the amount of information in the data. Standard implementations
of these methods require the missing at random assumption. Although though this
assumption is strong, it is much weaker than the MCAR assumption required for
most conventional methods.
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Although the two methods have similar assumptions and properties, I prefer
maximum likelihood whenever it is available. It produces deterministic results, and
entails no potential conflict between an imputation model and an analysis model. The
downside is that ML typically requires stand-alone software, and it is not available
for many models. MI, on the other hand, is available in most major statistical
packages and can be used for virtually any kind of model.

For our empirical example, maximum likelihood and multiple imputation
produced very similar results for both coefficient estimates and their standard
errors. Furthermore, for either method, it made little difference whether the
dichotomous variables with missing data were modeled by linear regressions or
logistic regressions. These similarities are reassuring and fairly typical.
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