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DISCRETE-TIME METHODS FOR 
THE ANALYSIS OF 

EVENT HISTORIES 

Paul D. Allison 
UNIVERSITY OF PENNSYLVANIA 

The history of an individual or group can always be 
characterized as a sequence of events. People finish school, 
enter the labor force, marry, give birth, get promoted, change 
employers, retire, and ultimately die. Formal organizations 
merge, adopt innovations, and go bankrupt. Nations experi- 
ence wars, revolutions, and peaceful changes of government. It 
is surely the business of sociology to explain and predict the 
occurrence of such events. Why is it, for example, that some 
individuals try marijuana while others do not? Why do some 
people marry early while others marry late? Do educational 

For helpful suggestions, I am indebted to Charles Brown, Rachel Ro- 
senfeld, Thomas Santner, Nancy Tuma, and several anonymous referees. 
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enrichment programs reduce the likelihood of dropping out of 
school? What distinguishes firms that have adopted compu- 
terized accounting systems from those that have not? What are 
the causes of revolutions? 

Perhaps the best form of data for answering questions 
like these is an event history. Quite simply, an event history is a 
record of when events occurred to a sample of individuals 
(Tuma and Hannan, 1978). If the sample consists of women of 
childbearing age, for example, each woman's event history 
might consist of the birthdates of her children, if any. If one is 
interested in the causes of events, the event history should also 
include data on relevant explanatory variables. Some of these, 
like race, may be constant over time while others, like income, 
may vary. 

Although event histories are almost ideal for studying 
the causes of events, they also typically possess two features- 
censoring and time-varying explanatory variables-that create 
major difficulties for standard statistical procedures. In fact, 
the attempt to apply standard methods to such data can lead to 
serious bias or loss of information. These difficulties are dis- 
cussed in some detail in the following pages. In the last decade, 
however, several innovative methods for the analysis of event 
histories have been proposed. Sociologists will be most familiar 
with the maximum-likelihood methods of Tuma and her col- 
leagues (Tuma, 1976; Tuma and Hannan, 1978; Tuma, 
Hannan, and Groeneveld, 1979). Similar procedures have been 
developed by biostatisticians interested in the analysis of sur- 
vival data (Gross and Clark, 1975; Elandt-Johnson and 
Johnson, 1980; Kalbfleisch and Prentice, 1980). A related ap- 
proach, known as partial likelihood, offers important advan- 
tages over maximum-likelihood methods and is now in wide- 
spread use in the biomedical sciences (Cox, 1972; Kalbfleisch 
and Prentice, 1980; Tuma, present volume, Chapter 1). 

Most methods for analyzing event histories assume that 
time is measured as a continuous variable-that is, it can take 
on any nonnegative value. Under some circumstances 
discrete-time models and methods may be more appropriate 
or, if less appropriate, highly useful. 
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First, in some situations events can only occur at regular, 
discrete points in time. For example, in the United States a 
change in party controlling the presidency only occurs quad- 
rennially in the month of January. In such cases a discrete- 
time model is clearly more appropriate than a continuous-time 
model. 

Second, in other situations events can occur at any point 
in time, but available data record only the particular interval of 
time in which each event occurs. For example, most surveys ask 
only for the year of a person's marriage rather than the exact 
date. It would clearly be inappropriate to treat such data as 
though they were continuous. Two alternative approaches are 
available, however. One is to assume that there is an underlying 
continuous-time model and then estimate the model's parame- 
ters by methods that take into account the discrete character of 
the data. The other approach is simply to assume that events 
can occur only at the discrete time points measured in the data 
and then apply discrete-time models and methods. In practice, 
these two approaches lead to very similar estimation proce- 
dures and, hence, both may be described as discrete-time 
methods. 

Discrete-time methods have several desirable features. It 
is easy, for example, to incorporate time-varying explanatory 
variables into a discrete-time analysis. Moreover, when the 
explanatory variables are categorical (or can be treated as such), 
discrete-time models can be estimated by using log-linear 
methods for analyzing contingency tables. With this approach 
one can analyze large samples at very low cost. When explana- 
tory variables are not categorical, the estimation procedures 
can often be well approximated by using ordinary least-squares 
regression. Finally, discrete-time methods are more readily un- 
derstood by the methodologically unsophisticated. 

For all these reasons, discrete-time methods for the anal- 
ysis of event histories are often well suited to the sorts of data, 
computational resources, and quantitative skills possessed 
by social scientists. The aim of this chapter is to examine 
the discrete-time approach closely and compare it with 
continuous-time methods. Before undertaking this task, I shall 
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first discuss the problems that arise in the analysis of event his- 
tories and then summarize the continuous-time approach. 

PROBLEMS IN ANALYZING EVENT HISTORIES 

Whether time is measured on a continuous or discrete 
scale, standard analytic techniques are not well suited to the 
analysis of event-history data. As an example of these diffi- 
culties, consider the study of criminal recidivism reported by 
Rossi, Berk, and Lenihan (1980). Approximately 430 inmates 
released from Maryland state prisons were followed up for one 
year after their release. The events of interest were arrests; the 
aim was to determine how the likelihood of an arrest depended 
on various explanatory variables. 

Although the date of each arrest was known, Rossi and 

colleagues simply created a dummy variable indicating whether 
or not a person was arrested during the 12-month follow-up 
period. They then regressed this dummy variable on possible 
explanatory variables including age at release, race, education, 
and prior work experience. While this is not an unreasonable 
exploratory method, it is far from ideal. Aside from the well- 
known limitations of using a dummy dependent variable in a 

multiple regression (Goldberger, 1964), the dichotomization of 
the dependent variable is both arbitrary and wasteful of infor- 
mation. It is arbitrary because there was nothing special about 
the 12-month interval except that the study ended at that point. 
Using the same data, one might just as well compare those ar- 
rested before and after a 6-month dividing line. It is wasteful of 
information because it ignores the variation on either side of 
the cutoff point. One might suspect, for example, that a person 
arrested immediately after release had a higher propensity 
toward recidivism than one arrested 11 months later. 

To avoid these difficulties, it is tempting to use the 

length of time from release to first arrest as the dependent vari- 
able in a multiple regression. But this strategy poses two new 

problems. First, the value of the dependent variable is 
unknown or "censored" for persons who experienced no ar- 
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rests during the one-year period. An ad hoc solution to this di- 
lemma might be to exclude all censored observations and just 
look at those cases for whom an arrest is observed. But the 
number of censored cases may be large (47 percent were cen- 
sored in this sample), and it has been shown that their exclusion 
can lead to large biases (SBrensen, 1977; Tuma and Hannan, 
1978). An alternative ad hoc approach is to assign the max- 
imum length of time observed, in this case one year, as the 
value of the dependent variable for the censored cases. Ob- 
viously this strategy underestimates the true value, and again 
substantial biases may result (Tuma and Hannan, 1978). 

Even if none of the observations were censored, one 
would face another problem: how to incorporate explanatory 
variables that change in value over the observation period in 
the linear regression. In this study, for example, the individuals 
were interviewed at one-month intervals to obtain information 
on changes in income, marital status, employment status, and 
the like. It might seem reasonable to include 12 different in- 
come measures in the multiple regression, one for each month 
of follow-up. While this method might make sense for the 
person who is not arrested until the eleventh month, it is surely 
inappropriate for the person arrested during the first month 
after release; his or her later income should be irrelevant to the 
analysis. Indeed, the person may have been incarcerated 
during the remainder of the follow-up period so that income 
then becomes a consequence rather than a cause of recidivism. 
It is also dangerous to use income during the month of arrest as 
a single independent variable. If income has an exogenous 
tendency to increase with time, this procedure could erron- 
eously make it appear that higher incomes are associated with 
longer times to arrest. As Flinn and Heckman (1980) have 
shown, ad hoc efforts to introduce time-varying exogenous 
variables into regressions predicting duration usually have the 
unintended consequence of making those same variables en- 
dogenous. 

These two problems-censoring and time-varying 
explanatory variables-typically occur in analyzing event his- 
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tories. Both problems have been solved by the continuous-time 
methods of maximum likelihood and partial likelihood re- 
viewed in the next section. 

CONTINUOUS-TIME METHODS 

In many event histories, each individual may experience 
multiple events of several different kinds. While both 
continuous-time and discrete-time methods can handle such 
data, the discussion is greatly simplified if we begin with a much 
more restricted kind of data. Specifically, let us assume that 
each individual experiences no more than one event and that 
all events are identical or at least can be treated as identical for 
purposes of analysis. 

The setup for continuous-time models is as follows. We 
have a sample of n independent individuals (i = 1, . . ., n), 
and we begin observing each individual at some natural starting 
point t = 0. In many cases, the appropriate starting point will 
be apparent. If the event of interest is divorce, the obvious 
starting point is the date of the marriage. In the recidivism ex- 
ample the natural starting point is the date of release from 
incarceration. Sometimes the choice of starting points is not so 
obvious, however, a problem that will be discussed further 
when we consider repeated events. 

Assuming there is an observed starting point for each 
individual, the observation continues until time ti, at which 

point either an event occurs or the observation is censored. 

Censoring means that the individual is not observed beyond ti, 
either because the study ends at that point or because the indi- 
vidual is lost to follow-up for some reason.1 For a discussion of 
alternative censoring mechanisms and their implications see 
Kalbfleisch and Prentice (1980) or Lagakos (1979). Virtually all 
models assume that censoring is independent of the occurrence 

1 Only right-censoring is considered in this chapter. Data are right- 
censored if the time of event occurrence is known only to be greater than 
some value. Much less common (but much more troublesome) are left- 
censored data in which the time of event occurrence is known only to be less 
than some value. For discussions of left-censoring, see Turnbull (1974, 1976). 
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of events-that is, individuals are not selectively withdrawn 
from the sample because they are more or less likely to experi- 
ence an event. While this assumption is not always realistic, 
there does not yet appear to be a satisfactory alternative. 

We define a dummy variable 8i, which equals 1 if the ob- 
servation is uncensored and zero if censored. We also observe 
xi, a K x 1 vector of explanatory variables that are constant 
over time. The generalization to time-varying explanatory vari- 
ables is considered later. The problem is to specify how the 
occurrence of an event depends on x, the vector of explanatory 
variables. By far the most common approach is to define an 
unobservable or latent variable that controls the occurrence or 
nonoccurrence of the event, as well as the length of time until 
an event occurs (Tuma, Hannan, and Groeneveld, 1979; Kalb- 
fleisch and Prentice, 1980). This variable, commonly called a 
hazard rate, is defined as follows. First let T be a random variable 
denoting the uncensored time of event occurrence (which may 
not be observed), and denote the hazard rate by X(t). Then 

X(t) = lim Pr(t < T < t + A T > t)/A (1) 
A--0 

Here X(t) may be thought of as the instantaneous probability 
that an event occurs at time t, given that it has not already oc- 
curred. It is not really a probability, however, since it may be 
greater than 1. Alternatively, it may be thought of as the ex- 
pected number of events in a time interval that is 1 unit long. 

We let X(t) be a function of time to indicate that the prob- 
ability of an event may vary with time. Sometimes, however, it is 
assumed that X(t) = X, a constant over time. This implies that T, 
the length of time until the occurrence of an event, has an 
exponential distribution. More generally, the function X(t) com- 
pletely determines the probability distribution of T. It can also 
be shown that 

A(t) =f(t)/[1 - F(t)] (2) 

wheref(t) is the probability density for T and F(t) is the cumula- 
tive distribution function for T. 
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The next step is to express the hazard rate as a function 
of both time and the explanatory variables. The most widely 
used functional form is the so-called proportional hazards 
model, 

log X(t, x) = a(t) + 3'x (3) 

where a(t) is an unspecified function of time and 8f is a K x 1 
vector of constants.2 It is called the proportional hazards model 
because the ratio of the hazard rates for any two individuals at 
any point in time is a constant over time. The vector 8f repre- 
sents the effects of the explanatory variables on the instanta- 
neous probability of an event. Thus if x1 has a positive coeffi- 
cient f3, an increase in x, produces an increase in the likelihood 
that an event will occur. By assumption, these effects are con- 
stant over time in the proportional hazards model. 

Special cases of this model are obtained by further speci- 
fying the function a(t). The simplest assumption is that c(t) = 
a, which again implies that T has an exponential distribution. 
If, however, it is assumed that 

c(t) = ao + a1 log t (4) 

one gets a Weibull distribution for T (Kalbfleisch and Prentice, 
1980). Alternatively, the specification 

a(t) = ao + alt (5) 

gives a Gompertz distribution for T (Tuma and Crockford, 
1976). In general, specifying the function a(t) is equivalent to 
specifying the probability distribution for T. 

The problem, of course, is that we do not observe T for 
the censored cases. Nevertheless, the method of maximum like- 
lihood (ML) allows one to make full use of the information 
available for these cases. The general likelihood equation for 
censored data is3 

n 

L = n [f(ti)]i [1 - F(ti,)1' (6) 
i=1 

In words: Each sample member contributes a factor that is the 
2 Natural logarithms are used throughout. 
3 This likelihood is only valid for right-censored data. See footnote 1. 

68 



DISCRETE-TIME METHODS 

density function for T if T is observed and 1 minus the cumula- 
tive distribution function if the individual is censored at ti. The 
latter is the probability that an event occurs at some time 
beyond ti. Substituting from (2) and also letting the functions 
depend on x yields 

n 
L = n [X(ti, xi)]6i [1 - F(ti, xi)] (7) 

i=1 

Equation (2) implies that 

F(ti, xi) = 1 - exp - X(u, xi)duJ (8) 

which allows the likelihood function to be expressed entirely in 
terms of the hazard rate: 

L = [X(ti, xi)]i exp[- X(u, xi)du] (9) 
i=l 1 

Maximum-likelihood estimates are then obtained by substi- 
tuting into (9) the appropriate expression for X(t, x) and then 
choosing parameter estimates to maximize L. Usually the solu- 
tion requires an iterative algorithm; for an example of one, see 
Kalbfleisch and Prentice (1980, pp. 55-56). 

While ML estimation represents a great advance over ad 
hoc regression methods, it has the disadvantage of requiring 
that one specify the form of a(t) in order to use the method. 
Typically there is insufficient theoretical or empirical basis for 
choosing among alternative specifications, yet results may vary 
considerably depending on the specification chosen. In an 
extremely influential paper, Cox (1972) proposed a method 
whereby f could be estimated without imposing restrictions on 
a(t). Later called partial likelihood (PL), this method has since 
been shown to be highly efficient (Efron, 1977) and has been 
widely used in the analysis of medical experiments. For further 
details, see Kalbfleisch and Prentice (1980). 

Both ML and PL methods can be extended to handle 
multiple kinds of events and repeated events (Tuma, Hannan, 
and Groeneveld, 1979; Kalbfleisch and Prentice, 1980; Tuma, 
present volume, Chapter 1). The proportional hazards model 
can also be generalized to allow the explanatory variables to 
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change over time, simply by substituting x(t) for x in (3). Such a 
model can readily be estimated by the PL method (see, for ex- 
ample, Crowley and Hu, 1977). Time-dependent explanatory 
variables can also be incorporated into ML estimation, but this 
strategy often leads to rather cumbersome computational pro- 
cedures. Tuma, Hannan, and Groeneveld (1979), for example, 
allow for such variables by dividing time into several disjoint in- 
tervals and assuming that the explanatory variables have con- 
stant values within each interval. 

DISCRETE-TIME METHODS 

Although continuous-time models are usually plausible 
representations of the processes generating events, in practice 
time is always observed in discrete units, however small. When 
these discrete units are very small, relative to the rate of event 
occurrence, it is usually acceptable to ignore the discreteness 
and treat time as if it were measured continuously. When the 
time units are very large-months, years, or decades-this 
treatment becomes problematic. 

In the case of continuous-time ML methods, the discrete 
character of the data can be all too easily ignored. The estima- 
tion procedure requires only that there be a numerical value 
for the time of event occurrence or censoring for each individ- 
ual, and available programs have no way of distinguishing dis- 
crete data from (almost) continuous data. For Cox's PL 
method, on the other hand, the use of large intervals of time 
can lead to extremely difficult computational problems. These 
problems arise when the time intervals are large enough that 
more than one individual experiences an event in the same 
time interval. While such tied data can be handled in theory, 
the computational requirements can easily become so large as 
to outstrip currently available hardware. Approximate for- 
mulas that reduce the computational burden are in widespread 
use, but their adequacy has recently been called into question 
(Farewell and Prentice, 1980). 

Among biostatisticians, these difficulties have been a 
major impetus to the development of discrete-time models and 
estimation methods that possess the virtues of the PL method. 
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As noted earlier, there are two general approaches to this 
problem. The simplest is to treat time as though it were truly 
discrete, an approach taken by Myers, Hankey, and Mantel 
(1973), Byar and Mantel (1975), Brown (1975), and Mantel and 
Hankey (1978). The alternative is to start with a continuous- 
time model, usually the proportional hazards model of (3), and 
then derive estimators of that model which are appropriate for 
data grouped into intervals. This approach has been used by 
Holford (1976, 1980), Thompson (1977), and Prentice and 
Gloeckler (1978). Whichever direction one takes, the results are 
remarkably similar. Accordingly, I shall make an integrated 
presentation of all the methods, noting any variations where 
appropriate. 

The notation for discrete-time models is similar to that 
for continuous time. It is assumed that time can take on only 
positive integer values (t = 1, 2, 3, . . . ) and that we observe a 
total of n independent individuals (i = 1, . . . , n) beginning 
at some natural starting point t = 1. The observation continues 
until time ti, at which point either an event occurs or the obser- 
vation is censored. Censoring means that the individual is ob- 
served at ti but not at ti + 1.4 As usual, it is assumed that the 
time of censoring is independent of the hazard rate for the 
occurrence of events. The variable 68 is set equal to 1 if i is un- 
censored; otherwise it is zero. Also observed is a K x 1 vector 
of explanatory variables xt, which may take on different values 
at different discrete times.5 

4 If there is an underlying continuous-time process generating the 
data, this definition of censoring implicitly assumes that data are censored at 
the endpoint of the interval corresponding to ti. This assumption preserves 
the consistency and asymptotic normality of ML estimates even if censoring 
actually occurred at some point within the interval corresponding to ti + 1 
(Prentice and Gloeckler, 1978). For an alternative treatment of censoring for 
grouped data, see Thompson (1977). 

5 It is assumed that at each point in discrete time there is one and only 
one value for each of the explanatory variables. If the data do not conform to 
this assumption, some ad hoc approximation or adjustment is necessary. It 
may happen, for example, that an explanatory variable is measured at every 
fifth discrete-time unit. One might then assume that the value in that time 
unit also holds for the four surrounding time units. Alternatively, one could 
use linear interpolation to generate values for the explanatory variable in the 
unmeasured time units. If, on the other hand, an explanatory variable is mea- 
sured more than once in each time unit, a simple average should suffice. 
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We begin by defining a discrete-time hazard rate 

Pit = Pr[Ti = t I Ti - t, xt] (10) 

where T is the discrete random variable giving the uncensored 
time of event occurrence. This is just the discrete-time analog 
of the hazard rate defined in (1). It is also the conditional prob- 
ability that an event occurs at time t, given that it has not 
already occurred. 

The next step is to specify how this hazard rate depends 
on time and the explanatory variables. The most popular 
choice (Cox, 1972; Myers, Hankey, and Mantel, 1973; Byar and 
Mantel, 1975; Brown, 1975; Thompson, 1977; Mantel and 
Hankey, 1978) is the logistic regression function 

Pit = 1/[1 + exp(-at - 'xit)] (11) 

which can also be written in logit form: 

log[Pit/(1 -Pit)] = at + P'xit (12) 

Note that at (t = 1, 2, . . . ) is just a set of constants. Leaving 
them unspecified is analogous to leaving the function a(t) un- 

specified in the proportional hazards model (3). 
Although the logistic regression model is a somewhat ar- 

bitrary choice, it does have several virtues: it constrains Pit to lie 
in the unit interval for any values of f and x; it is computation- 
ally convenient; and it implies that there are sufficient statistics. 
On the other hand, if one assumes that the data are really gen- 
erated by the continuous-time proportional hazards model (3), 
it has been shown (Holford, 1976; Prentice and Gloeckler, 
1978) that the corresponding discrete-time hazard function is 

given by 

Pit = 1 - exp[-exp(at + P'xit)] (13) 

where the coefficient vector f3 is identically equal to 8f in the 
proportional hazards model (3). Equation (13) may be solved to 
yield the so-called complementary log-log function: 

log[-log(1 - Pit)] = at + ft'Xit 
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The fact that f8 is the same in (3) and (13) implies that 
discrete-time estimates based on (13) are also estimates of the 
underlying continuous-time model. It also follows that the coef- 
ficient vector of the complementary log-log model is invariant 
to the length of the time intervals.6 This property is not shared 
by the logistic model.7 In practice, however, the difference 
between the two models is likely to be trivial. The smaller 
the time interval the smaller that difference will be because as 
the interval width becomes smaller, the logistic model con- 
verges to the proportional hazards model (Thompson, 1977). 

Some special cases of these models are obtained by 
imposing restrictions on the set of constants at. For example: 

at = a (15) 

at = aO0 + alt (16) 

or 

at = ao + a, log t (17) 

Mantel and Hankey (1978) propose that at be expressed as a 
polynomial in t. It is also possible to generalize the models so 
that the effects of the explanatory variables can themselves vary 
with time, simply by substituting it for P in (11) or (13). 

How can these models be estimated? For the logit model 
(11), Cox (1972) proposed a PL estimator analogous to that for 

6 
Singer and Spilerman (1976) and Flinn and Heckman (1980) have 

warned that discrete-time analyses can lead to inferences that are sensitive to 
the arbitrary choice of interval length. Nevertheless, they also observe that 
discrete-time models derived from continuous-time models do not suffer 
from this defect. If the aim of an analysis is to estimate fundamental structu- 
ral parameters that can be compared with estimates for other periods, popu- 
lations, and data collection procedures, then invariance to interval length 
should be a major consideration. But if the goal is merely to identify the 
explanatory variables that have significant effects or to gauge the relative im- 
portance of different variables for a single population, the advantages of 
interval invariance are slight-analyses based on the logit model or the com- 
plementary log-log model will nearly always yield the same qualitative con- 
clusions. 

7 Myers, Hankey, and Mantel (1973) proposed a version of the logistic 
model that is invariant to the length of the interval, but their model has the 
disadvantage of constraining at to be the same for all t. 
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continuous-time data. As previously noted, this method be- 
comes extremely demanding computationally if events occur to 
many individuals during the same unit of time. Fortunately, 
conventional ML estimation of models (11) and (13) is possible 
in discrete time without any restrictions on at. The construction 
of the likelihood function merits examination in some detail 
since it has important conceptual and computational implica- 
tions. 

For either (11) or (13), the likelihood of the data may be 
written as 

L = I [Pr(T, = ti)]6' [Pr(T, > ti)]l-' (18) 
i=1 

which is analogous to the continuous-time likelihood in (6). 
Each of the probabilities in (18) can be expressed as a function 
of the hazard rate. Using elementary properties of conditional 
probabilities, it can be shown that 

t-1 

Pr(Ti = t) = Pit Il (1 - Pij) (19) 
j=l 

Pr(Ti > t) = n (1 - P2j) (20) 
j=1 

Substituting (19) and (20) into (18) and taking the logarithm 
yields the log-likelihood function 

log L = 8i log {Pit,/(1 - Pit)} 
i=1 

n ti 

+ E E log (1 - PVj) (21) 
i=1 j=l 

At this point one can substitute the appropriate regression 
model for Pit (either Equation 11 or 13) and then proceed to 
maximize log L with respect to at (t = 1, 2, . . . ) and f. Most 

investigators stop at this point. A little further manipulation, 
however, leads to something more familiar. If we define a 
dummy variable yit equal to 1 if person i experiences an event at 
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time t, otherwise zero, then (21) can be rewritten as 

n ti 

log L = Yit log {Pij/(l -Pi,)} 
i=1 j=l 

n ti 

+ E E log (l - Pi) (22) 
i=1 j=l 

But this is just the log likelihood for the regression analysis of 
dichotomous dependent variables (Cox, 1970; Nerlove and 
Press, 1973; Hanushek and Jackson, 1977). This identity im- 

plies that discrete-time hazard rate models can be estimated by 
using programs for the analysis of dichotomous data-an ap- 
proach to estimation first noted by Brown (1975) but generally 
ignored by others. 

In practice, the procedure amounts to this: Each discrete 
time unit for each individual is treated as a separate observation 
or unit of analysis. For each of these observations, the depen- 
dent variable is coded 1 if an event occurred to that individual in 
that time unit; otherwise it is coded zero. Thus if an individual 
experienced an event at time 5, five different observations 
would be created. For the fifth observation, the dependent vari- 
able would be coded 1. For the other four observations, the 
dependent variable would be coded zero. The explanatory vari- 
ables for each of these new observations would be assigned 
whatever values they had at that particular unit of time. Lagged 
values could also be included. To estimate the constants at (t = 
1, 2, . . . ), a dummy independent variable would be created 
for each of the possible time units less 1. To estimate models 
like (16) or (17), which impose restrictions on at, time itself (or 
some function of time) may be included as an explanatory vari- 
able. 

The final step is to pool these observations and compute 
ML estimates of the appropriate regression model, either (11) 
or (13), for a dichotomous dependent variable. To my knowl- 
edge, the only publicly available program for estimating the 
complementary log-log model is GLIM (Baker and Nelder, 
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1978).8 The logistic regression model can be estimated by using 
any ML logit program. Moreover, if the explanatory variables 
are all categorical (or can be treated as such) the logit hazard 
model can be estimated from a contingency table by using 
log-linear programs like ECTA. Finally, a linear model of the 
form Pit = at + 1'xit is often a good approximation to the 
models in (11) or (13), which suggests that ordinary least 

squares with a dummy dependent variable be applied to the 

pooled time units. While this approach has well-known limita- 
tions (Goldberger, 1964; Nerlove and Press, 1973), it can be 

quite useful as an exploratory method. 

AN EXAMPLE 

To illustrate the discrete-time methods, I have analyzed 
a set of event histories in which the event of interest is a change 
of employers. The sample consists of 200 male biochemists who 
received Ph.D.'s in the late 1950s or early 1960s, and who at 
some point in their careers held positions as assistant professors 
in graduate university departments. For a detailed description 
of the sample see Long, Allison, and McGinnis (1979). They 
were observed for a maximum of 5 years beginning in the first 

year of their first positions as assistant professors. Table 1 
shows the number of biochemists who changed employers in 
each of the 5 years of observation. Of the 200 cases, 129 did not 

change employers during the observation period and are con- 
sidered censored. 

We begin with a simple model in which the hazard rate 
varies in each of the 5 years but does not depend on explana- 
tory variables. It can be shown that, in this case, the ML esti- 
mate of the hazard rate is obtained by taking the ratio of the 
number changing employers in year t to the number at risk in 

8 GLIM is a general-purpose program for fitting linear, log-linear, 
logistic, probit, and other models. It was developed by the Working Party on 
Statistical Computing of the Royal Statistical Society. Further details are avail- 
able from The GLIM Coordinator, NAG(USA) Inc., 1250 Grace Court, 
Downers Grove, IL 60515, or directly from The GLIM Coordinator, NAG 
Central Office, 7 Banbury Road, Oxford OX2 6NN, U.K. 

76 



DISCRETE-TIME METHODS 

TABLE 1 
Distribution of Year of Employer Change for 200 Biochemists 

Number Changing Number Estimated 
Year Employers at Risk Hazard Rate 

1 11 200 0.055 
2 25 189 0.132 
3 10 164 0.061 
4 13 154 0.084 
5 12 141 0.085 

>5 129 
Total 200 848 

year t. The third column of Table 1 gives the number at risk of 
changing employers in each of the 5 years. In year 1, all 200 
cases are at risk. In year 2, the number at risk is diminished by 
11, the number who changed employers in year 1. (These 11 
persons could obviously change employers again, but this anal- 
ysis is restricted to the first such change.) The estimated hazard 
rate for each year is shown in the last column of Table 1. Since 
the number at risk steadily diminishes, it is possible for the haz- 
ard rate to increase even when the number who change 
employers declines. The hazard rate in year 3, for example, is 
greater than the hazard rate in year 1 even though more 
persons changed employers in year 1. 

These calculations assumed that, within each year, 
everyone's hazard rate is the same. We now turn to models in 
which the unobserved hazard rate depends on explanatory 
variables. Five independent variables were considered. Two of 
them described the employing institution and are assumed to 
be constant over time: a measure of the prestige of the em- 
ploying department (Roose and Andersen, 1970) and a mea- 
sure of federal funds allocated to the institution for biomedical 
research. Three variables describing individual biochemists 
were measured annually: cumulative number of published ar- 
ticles; number of citations made by other scientists to each indi- 
vidual's life work; and academic rank coded as 1 for associate 
professor and zero for assistant professor. (Although all the bio- 
chemists began the observation period as assistant professors, 
some were later promoted.) The aim is to find out how the 
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probability of changing employers depends on these five vari- 
ables. 

To implement the method described above, the first step 
was to create a separate observation for each year that each 
person was observed, up to the year in which an employer 
change occurred. Thus persons who changed employers in 
year 1 contributed 1 person-year each; those who changed jobs 
in year 3 contributed 3 person-years. Censored individuals- 
those who were still with the same employer in the fifth 
year-contributed the maximum of 5 person-years. For the 
200 biochemists, there were a total of 848 person-years. From 
Table 1, it can be seen that this total may be obtained by sum- 

ming the number at risk in each of the 5 years. 
The dependent variable for each person-year was coded 

1 if the person changed employers in that year; otherwise it was 
coded zero. The independent variables were simply assigned 
the values they took on in the given person-year. Taking the 
848 person-years as a single sample, several logit models were 
fit by the ML method using the program GLIM (Baker and 
Nelder, 1978). Results for two of the models are shown in 
Table 2. 

Model 1 imposes the constraint that at = a. This is 

equivalent to assuming that each person's hazard rate does not 

change autonomously over time-any changes must occur in 

response to changes in the explanatory variables. Table 2 gives 
coefficient estimates and large-sample t statistics for the null hy- 
pothesis that each coefficient is equal to zero. The coefficient 
estimates are like unstandardized regression coefficients in that 

they depend on the metric of each independent variable. For 
our purposes, it is more instructive to focus on the t statistics 
that are metric-free and give some indication of relative impor- 
tance. 

The results for model 1 indicate that three of the vari- 
ables have a significant impact on the hazard rate for changing 
employers. Specifically, persons with many citations are more 

likely to change employers. Persons employed by institutions 

receiving high levels of funding are less likely to change 
employers. And, finally, associate professors are less likely to 
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TABLE 2 
Estimates for Logit Models Predicting the Probability of an Employer Change 

in 848 Person-Years 

Model 1 Model 2 
Independent 

Variables f t OLS t /3 t OLS t 

Prestige of 
department 0.045 0.21 0.22 0.056 0.26 0.25 

Funding -0.077 -2.45 -2.34 -0.078 -2.47 -2.36 
Publications -0.021 -0.75 -0.86 -0.023 -0.79 -0.91 
Citations 0.0072 2.44 2.36 0.0069 2.33 2.23 
Rank -1.4 -2.86 -2.98 -1.6 -3.12 -3.26 
Year 1 -0.96 -2.11 -2.07 
Year 2 -0.025 -0.06 0.18 
Year 3 -0.74 -1.60 -1.54 
Year 4 -0.18 -0.42 -0.38 
Constant 4.95 2.35 
Chi square 461.9 452.5 
DF 842 838 

change employers than assistant professors. Prestige of depart- 
ment and number of publications seem to make little dif- 
ference. 

Model 2 relaxes the constraint imposed in model 1 by al- 
lowing the hazard rate to be different in each of the 5 years 
even when other variables are held constant. This was accom- 
plished by creating a set of four dummy variables, one for 
each of the first 4 years of observation. Coefficient estimates 
and test statistics are shown in Table 2. The coefficient for each 
dummy variable gives the difference in the logarithm of the 
odds of changing employers in that particular year and the log 
odds of changing employers in year 5, net of other variables. 
No clear pattern emerges from these coefficients, although 
there is some tendency for the hazard rate to increase with 
time. Note that the introduction of the four dummy variables 
makes little difference in the estimated effects of the other 
independent variables. This will not always be the case, how- 
ever. 

By comparing the fit of models 1 and 2, one can test the 
null hypothesis that the hazard rate for changing employers 
does not vary with time, net of other variables. For each logit 
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model fitted, one gets a likelihood-ratio chi-square statistic with 
an associated number of degrees of freedom. The values for 
models 1 and 2 are shown at the bottom of Table 2. If one 
model is a special case of another model, their fit may be com- 
pared by using the difference in their likelihood-ratio statistics. 
Under the null hypothesis that there is no difference, the dif- 
ference between the likelihood-ratio statistics will have a chi- 
square distribution. The associated degrees of freedom will be 
the difference in degrees of freedom for the two models. In 
this case, the difference is 9.4 with 4 degrees of freedom, which 
is just below the critical value for the 0.05 level of significance. 
Thus the evidence is marginal that the hazard rate varies with 
time. Note that while the difference in likelihood-ratio statistics 
has an approximate chi-square distribution, each statistic by it- 
self does not have an approximate chi-square distribution (Ha- 
berman, 1978, p. 341). Hence the fact that the likelihood-ratio 
statistics for models 1 and 2 are extremely low relative to their 
degrees of freedom should not be taken as evidence either for 
or against the models. 

The next step was to test whether the effects of the inde- 
pendent variables changed over time. Instead of doing this for 
all the variables simultaneously, I estimated five different 
models, each of which allowed the coefficients for one of the 
explanatory variables to vary with year. In each case, this was 
accomplished by adding four new variables to model 2. These 
variables were constructed by multiplying an explanatory vari- 
able by each of the four dummy variables representing the four 
different years. The logic behind this approach is essentially 
the same as that for analysis of covariance with dummy vari- 
ables (Blalock, 1979, pp. 534-538). One can test the null hy- 
pothesis that the coefficients do not vary over time by taking the 
difference between the likelihood-ratio chi square for each of 
these five models and the likelihood-ratio chi square for model 
2. Since none of these differences approached statistical signifi- 
cance, the detailed results are not reported here. Thus these 
data offer little evidence that the effects of the explanatory 
variables change over time. 

All these models were reestimated under the comple- 
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mentary log-log specification of (14) by using the program 
GLIM. Results were virtually identical. Earlier I also suggested 
that a simple linear function might serve as an approximation 
to the logit or complementary log-log functions and that such a 
model could be estimated by ordinary least squares (OLS) with 
a dummy dependent variable. Models 1 and 2 were again rees- 
timated with that procedure. That is, OLS regressions were run 
on the 848 person-years with the dependent variable coded 1 if 
a move occurred in that person-year and otherwise coded zero. 
The t statistics for these regressions are given in Table 2, next 
to the t statistics for the logit model. The results are remarkably 
similar.9 Of course, the fact that least-squares regression 
worked well for these data is no guarantee that it will do so for 
other data sets. For guidance as to when least squares will give a 
good approximation, see Goodman (1975). Perhaps the best 
approach is to use least squares as an exploratory method. 
Then, when one has identified a small number of models that 
are serious contenders, reestimate the models by using ML with 
either the logit or complementary log-log specification. 

PROBLEMS WITH THE DISCRETE-TIME APPROACH 

We have seen that discrete-time models for event his- 
tories may be estimated by treating each individual's history as a 
set of independent observations, one for each observed time 
unit. While this strategy has conceptual and computational ad- 
vantages, it also raises two serious questions about the legitimacy 
and practicality of the procedure. Both issues are discussed in 
this section. 

9 The least-squares coefficients are not reported because they are not 
readily comparable to the logit coefficients. An approximate comparison is 
possible by using the adjustment formula b/[p(l - p)], where b is the least- 
squares coefficient and p is the marginal proportion of sample units coded 1 
on the dependent variable. This adjusted value can be interpreted as an esti- 
mate of the corresponding coefficient in the logit model. To make least- 
squares coefficients comparable to the coefficients in the complementary 
log-log model (13), the adjustment formula is -b/[(l - p)log(1 - p)]. Both 
formulas are obtained from the first term in a Taylor series expansion of (11) 
or (13). 
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Is it legitimate to treat the multiple time units for each 
individual as though they were independent? In the example 
just considered, we started with just 200 observations but ended 
up analyzing 848 observations. To some, this may appear to be 
an artificial inflation of the sample size, leading to test statistics 
that are misleadingly high. To answer this objection, let us sup- 
pose that either Model (11) or (13) for the discrete-time hazard 
rate is a true description of how the data were generated. If 
that is the case, then the derivations in (18) through (22) show 
that the estimation procedure proposed here is indeed the ML 
estimator for the corresponding model. Thus, under weak reg- 
ularity conditions, the estimates possess the well-known proper- 
ties of being consistent, asymptotically efficient, and asymptoti- 
cally normally distributed. Moreover, the estimated standard 
errors will be consistent estimators of the true standard errors. 
The fact that the ML estimator can be obtained by treating all 
the time units for all individuals as though they were indepen- 
dent is merely an incidental convenience. 

All this depends of course on the truth of the original 
model. Unfortunately, these models tend to be unrealistic in 
one key respect. Consider, for example, the complementary 
log-log model of (14), which was 

log[-log(l - Pit)] = at + 'xit (14) 

This model implicitly asserts that the variables in the vector x 
exhaust all the sources of individual variation in the hazard 
rate. Obviously this will rarely be the case. By analogy with 
linear models, a more plausible specification would include a 
random disturbance term Eit such that 

log[-log(l - Pit)] = at + t'Xit + eit (23) 

where xit and it are assumed to be independent for all i and t. 
This complication would be relatively innocuous were it not for 
the fact that, for a given individual, Et will almost surely be cor- 
related with Et+i, Et+2, and so on. In other words, the unob- 
served sources of variation in the hazard rate will have some 

stability over time. Although the exact consequences are diffi- 
cult to derive, this fact will almost certainly create difficulties 
for the discrete-time estimator. In particular, it will no longer 
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be correct to treat the multiple time units for each individual as 
though they were independent. By analogy with ordinary 
least-squares regression, one would expect this dependence 
among the observations to lead to inefficient coefficient esti- 
mates and estimated standard errors that are biased downward. 

While this problem must be taken seriously, it should not 
lead one to abandon the discrete-time approach in favor of 
continuous-time methods. In fact, the continuous-time models 
suffer from precisely the same difficulty, although it is some- 
what less conspicuous. For example, the continuous-time pro- 
portional hazards model (3) also assumes that the hazard rate is 
completely determined by the measured explanatory variables. 
Again it would be more appropriate to modify the model by in- 
troducing a disturbance term, so that 

log X(t) = a(t) + /P'x(t) + e(t) (24) 

where E(t) may be regarded as a continuous-time stochastic 
process. While this complication does not induce dependence 
among the original observations, it does imply that the distribu- 
tion of the time until event occurrence is different from what it 
would be without the random disturbance. If this disturbance is 
ignored in the estimation procedure, it can again lead to bias, 
inefficiency, and inconsistent standard errors (Fennell, Tuma, 
and Hannan, 1977; Chamberlain, 1979). Moreover, for analo- 
gous models the consequences should be virtually identical for 
discrete-time and continuous-time estimators. This should not 
be surprising since the mathematical construction and justifica- 
tion for the continuous-time and discrete-time ML estimators 
are essentially the same. Again the fact that the discrete-time es- 
timator can be obtained by treating time units as separate, inde- 
pendent observations is incidental. 

In some cases, it is possible to modify the estimation pro- 
cedure to allow explicitly for a random disturbance. Tuma 
(forthcoming), for example, proposed the continuous-time 
model 

log X(t, x) = a + 83'x + E 

where exp(E) has a gamma distribution with a mean of 1 and a 
constant variance o-2. She then obtained ML estimators for a, ,3, 
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and 0-2. Flinn and Heckman (1980) proposed a general model 
for the introduction of a random disturbance. Similar modifi- 
cations can be made for discrete-time models and estimation 
methods. For example, a disturbance term may be added to a 
constant-rate version of (11) to yield10 

Pit = [1 + exp(-a - f'xi)]-1 + Ei (25) 

Weighted least-squares and ML estimators for this and similar 
models are discussed in Allison (1980). The methods of Cham- 
berlain (1980) could also be adapted to provide discrete-time 
estimators of such models. 

It appears, then, that the possibility of dependence 
among the time units confers no special disadvantage on 
discrete-time estimators. The discrete-time approach may be- 
come impractical, however, when the time units are small rela- 
tive to the total period of observation. Consider, for example, 
the biochemists' employment histories. If we had used 
person-days instead of person-years, the effective sample size 
would have been more than 300,000. And this was from an 

original sample of only 200. The problem is even worse when 
one is estimating models that allow the hazard rate to be an ar- 

bitrary function of time. For such models, a dummy variable 
must be included for each point in discrete time (less 1). With 

many time points, the number of dummy variables becomes 

impossibly large.11 
10 While it may seem unusual to add the disturbance term after the 

logistic function has been applied to the linear combination of the explana- 
tory variables, this construction is far more tractable than the alternative of 
adding the disturbance directly to the linear combination. Moreover, the 
model in (25) is merely a generalization of the well-known beta binomial 
model used, for example, by Heckman and Willis (1977). 

11 For large numbers of dummy variables, Prentice and Gloeckler 
(1978) suggest a version of the Newton-Raphson algorithm that reduces 
computation. Note also that estimation of models in which at is an arbitrary 
function requires the exclusion of data pertaining to time units in which no 
events occurred to any individuals. If no biochemists had changed employers 
in year 4, for example, no person-years for year 4 could be included in the 
pooled sample. If those person-years were mistakenly included, the coeffi- 
cient for the dummy variable for year 4 would tend toward minus infinity and 
the iterative algorithm would not converge. A consequence of this fact is that, 
no matter how small the time intervals, the maximum number of dummy 
variables is the number of individuals in the sample. 
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One can always avoid these problems by aggregating the 
data into larger intervals of time, but that tactic necessarily dis- 
cards some information. While it might seem clearly preferable 
to use continuous-time ML or PL methods, the situation is not 
quite that simple. There are several cases in which, even with 
very small time units, the discrete-time ML estimator compares 
favorably in cost with the continuous-time ML and PL esti- 
mators. 

One such case occurs when the explanatory variables are 
constant over time and the baseline hazard function a(t) is also 
constant over time. Under these assumptions, the multiple time 
units for each individual can be regarded as a set of indepen- 
dent trials, all with the same probability of a "success" (success 
being the occurrence of an event). The probability of a success 
depends in turn on explanatory variables according to Func- 
tion (11) or (13). The upshot is that one can use computational 
methods for grouped binomial data rather than computing over 
each dichotomous observation separately. If a grouped estima- 
tion procedure is used, the computation time is invariant to the 
length of the time intervals, so that no information need be lost. 
In fact, if the intervals are made small enough, the discrete- 
time ML estimator of f will coincide almost exactly with the 
continuous-time ML estimator. Most maximum-likelihood logit 
programs will handle grouped binomial data (sometimes called 
replicated data). The program GLIM (Baker and Nelder, 1978) 
will do so for both the logit model (11) and the complementary 
log-log model (13). In practice, each individual is treated as a 
single observation with a dependent variable composed of two 
parts: the number of trials and the number of successes. If, for 
example, an individual was observed for a total of eight time 
units, the number of trials would be eight. If the individual 
experienced an event in the eighth time unit, the number of 
successes would be one. If the individual were censored at that 
point, the number of successes would be zero. Thus all individ- 
uals will either have 1 or 0 for the number of successes. 

In a time-independent model, therefore, continuous- 
time and discrete-time estimators can be equally inexpensive to 
compute, no matter how small the discrete time unit. On the 
other hand, when explanatory variables change in value over 
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time-and do so at frequent intervals-continuous-time and 
discrete-time estimators can all become very expensive. There 
is no getting around the fact that such data sets contain a great 
amount of information, and the complete use of that informa- 
tion will be costly. Thus if one makes monthly observations on 
1,000 persons over a 5-year period, the effective number of ob- 
servations for an event-history analysis is much closer to 60,000 
than it is to 1,000. It is not yet clear whether any of the three es- 
timators discussed here (PL, discrete ML, or continuous ML) is 
more computationally efficient than the others in this situation. 
The PL estimator may be preferable, however, since it ignores 
all data pertaining to time units in which no events occurred to 

any individual. 
Small time intervals also pose little difficulty for the 

discrete-time estimator when all the explanatory variables are 

categorical (or can be treated as such). Consider a case in which 
there are observations on 500,000 person-days with five dicho- 
tomous, time-varying explanatory variables. Suppose also that 
the baseline hazard function is a constant-that is, at = a. In 
effect, one has six dichotomous variables: the five explanatory 
variables and a sixth variable indicating the occurrence or non- 
occurrence of an event in each person-day. Instead of analyz- 
ing these data at the individual level, it is much more efficient to 
form the 64-cell contingency table and analyze it since the cost 
of the analysis then depends on the number of cells in the 
table and not on the number of person-days. It is well known 
that logit models like (11) are special cases of log-linear models 
for contingency tables. Hence standard log-linear techniques 
(Goodman, 1972; Fienberg, 1977) can be readily applied.12 A 

time-dependent hazard rate can also be introduced by in- 

cluding time itself as another categorical variable. The number 
of categories for time should not be too large, however, or the 
number of cells in the table will become impractically large. 
Still, for the 64-cell table just considered, the addition of a 

12 The program GLIM will also estimate complementary log-log 
models for contingency tables. Note also that the contingency table approach 
is closely related to the analysis of continuation odds proposed by Fienberg 
and Mason (1978). 
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10-category time variable would produce a table of only 640 
cells, a quite manageable number. 

MULTIPLE KINDS OF EVENTS 

To this point we have assumed that events are only of 
one kind. It is often useful to distinguish among different kinds 
of events, however, especially when there is reason to believe 
that effects of the explanatory variables differ among different 
kinds of events. For example, the biochemists' employer 
changes studied earlier could be divided into voluntary and 
involuntary changes. It would be reasonable to expect that the 
prestige of the department would have a negative effect on the 
hazard rate for voluntary moves but a positive effect on the 
hazard rate for involuntary moves. 

The continuous-time hazard rate models can easily be 
generalized to allow for multiple kinds of events (Tuma, 
Hannan, and Groeneveld, 1979; Kalbfleisch and Prentice, 
1980). This generalization is accomplished by defining a sepa- 
rate hazard rate for each different kind of event, an approach 
sometimes referred to as modeling "competing risks." Suppose, 
for example, that there are m different kinds of events (j = 
1, . . . , m), and letJ be a random variable indicating which of 
the m events occurs. The hazard rate13 for event j is then de- 
fined as 

A,(t) = lim Pr(t < T < t + A, J =j T t)/A (26) A---0 

It follows that the overall hazard rate X(t), defined in (1), is just 

X(t) = z Xj(t) (27) 

Next we express the dependency of each of the m hazard rates 
on the explanatory variables. The most common specification 

13 These event-specific hazard rates are formally equivalent to the tran- 
sition rates or transition intensities defined for continuous-time semi-Markov 
processes (Coleman, 1964; Tuma, Hannan, and Groeneveld, 1979). In this 
context, however, there is only a single origin state that is not explicitly 
defined. 
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is, again, the proportional hazards model 

log Xj(t) = ac(t) + fpjx(t) (28) 

Note that both aj and fij are allowed to differ across different 
kinds of events. 

Maximum-likelihood estimation of the ij's involves 

nothing new, owing to the fact that the likelihood function 
factors into a separate component for each different kind of 
event. This implies that each fBj can be estimated separately. 
Moreover, the estimation procedure for each fij is the same as if 
there were only a single kind of event; events other than j are 
treated as though the individual were censored at the time the 
event occurred. Thus the ML estimation procedures already 
discussed are appropriate. The same conclusions apply to PL 
estimation. For further details, see Kalbfleisch and Prentice 
(1980). 

While it is also straightforward to develop discrete-time 
models for multiple kinds of events, the results are somewhat 
different. As with the continuous-time model, the first step is to 
define a discrete-time hazard rate for each different kind of 
event: 

Ptj = Pr(T = t,J = j T t) (29) 

It follows that Pt = -jPtj is the overall hazard rate defined in 
(10). Before specifying the dependence of Ptj on the explana- 
tory variables, it is instructive to examine the likelihood func- 
tion based on (29). Suppose that individual i experiences event 
ji at time ti or else is censored at ti. As usual, we set 8i = 1 if an 
event occurred at time ti and otherwise set it at zero. The likeli- 
hood function can then be shown to be 

n ti 

L = l [Pt,j,/(l 
- Pt,)]6' n (1 - Pk) (30) 

i=1 k=l 

The important thing about (30) is that, unlike the likelihood 
function for the continuous-time model, the discrete-time like- 
lihood cannot be factored into separate components for each of 
the m kinds of events. Hence ML estimation must be done 

simultaneously for all kinds of events. 
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While this conclusion does not depend on the function 

relating Ptj to xt, some specifications are much more tractable 
than others.14 Here I shall consider a generalization of the 
logistic model (11). Specifically, let 

Ptj = exp[ajt + ,8jxt]/(l + exp[alt + Pi t) (31) 

j= l, . . . , m 

which reduces to (11) when m = 1. Substituting (31) into (30) 
and taking the logarithm yields the log likelihood for a multino- 
mial logit problem in which all observed time units for all indi- 
viduals are treated as separate, independent observations (see, 
for example, Hanushek and Jackson, 1977). Thus, just as the 
single-event model can be estimated with a binomial logit pro- 
gram, the multiple-event model can be estimated by using a 
multinomial logit program. 

When all the independent variables are categorical, esti- 
mation of the multinomial logit model is most easily accom- 
plished by log-linear methods (Fienberg, 1977; Goodman, 
1970). As before, the procedure is first to break up each indi- 
vidual's event history into a set of discrete time units. The 
dependent variable is a polytomy having m + 1 categories. 
(The extra category is for the nonoccurrence of any of the m 
events.) Pooling all the time units, the next step is to form a con- 
tingency table for all the categorical variables. Finally, one fits 
log-linear models corresponding to logit models for the m + 1 
category dependent variable.15 

The necessity of estimating discrete-time models simul- 
taneously for all kinds of events may seem to be a serious de- 
fect. Suppose, for example, that the event of interest is a death 
resulting from cancer. For the continuous-time model, one can 

14 It is possible to construct a generalization of the complementary 
log-log specification in (13) for multiple kinds of events, but such a model 
cannot be estimated by existing computer programs. 

15 Log-linear programs like ECTA that constrain the sum of a set of 
parameters to be zero will not directly yield estimates of the parameters de- 
fined in (31). In particular, ECTA will estimate an additional parameter per- 
taining to the nonoccurrence of any of the m events. To get estimates of the 
parameters defined in (31), it is only necessary to subtract this extra parame- 
ter from the remaining parameter estimates. For a related approach based on 
weighted least squares, see Johnson and Koch (1978). 
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treat a death due to any other cause as though the individual 
were censored at that point in time and then proceed to apply 
the usual methods for analyzing censored data for a single kind 
of death. It would appear that for the discrete-time model, on 
the other hand, one must carefully specify each different kind 
of death before estimating the appropriate multinomial logit 
model. This is indeed a cumbersome procedure, but there is a 
simpler alternative which is analogous to that for continuous- 
time methods. Suppose one were to treat all noncancer deaths 
as though the individual were censored at the beginning of the 
interval in which the death occurred. This tactic would amount 
to discarding all time units in which noncancer deaths oc- 
curred. In all the remaining time units, either a cancer death or 
no death will have occurred. Then one could apply the 
methods for single kinds of events described in earlier sections. 
It can be shown that this procedure yields a conditional ML esti- 
mator that possesses the usual ML properties of consistency 
and asymptotic normality (see Andersen, 1980, for a proof of a 
special case). Unlike the multinomial logit estimator, however, 
it is not fully efficient (Andersen, 1973). Nevertheless, the 
standard error estimates generated by this procedure are con- 
sistent estimates of the true standard errors. 

REPEA TED EVENTS 

Until now it has been assumed that each individual in 
the sample experiences no more than one event. While that 
assumption simplifies matters greatly, one often finds data 
on such repeatable events as births, marriages, changes of em- 
ployer, or changes of residence, especially when observation 
continues over a long period of time. Continuous-time methods 
have been generalized to handle repeated events (Tuma, 
Hannan, and Groeneveld, 1979; Gail, Santner, and Brown, 
1980; Kalbfleisch and Prentice, 1980), and similar general- 
izations can be made for discrete-time methods. 

Before examining these generalizations, it is essential to 
clear up any confusion about the origin of the time scale. 
Although it has been assumed so far that each individual is ob- 
served at times t = 1, 2, 3, . . ., ti, it is not always clear what 
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time is time 1. For many data sets, one may have to choose 

among several possible starting times. Moreover, observation 
may begin long after the natural starting time, and it may begin 
at different times for different individuals. Suppose, for ex- 
ample, that a panel of persons is interviewed annually for five 
consecutive years and that the event of interest is a change of 
residence. One way to fix the starting time is to let the first in- 
terview year be time 1. Although that strategy simplifies 
matters, it ignores the fact that the year of the first interview is 
likely to be an arbitrary point in the individual's life having little 
to do with processes that affect residence change. It is surely 
more plausible to assume that rates of residence change vary 
systematically with either the individual's age or the length of 
time since the last residence change. Actually, one could easily 
construct a model in which the hazard rate depends on both 
age and length of time since the last residence change simply by 
including both these time scales as independent variables 
(Tuma, 1976). The important things to remember are that the 
starting time should be carefully chosen and the choice should 
be based on expectations as to how rates of event occurrence 
vary with time. 

The choice of starting time is always problematic when 
the data contain repeated events. In general, the method of 
analysis for repeated events is not much different than for 
single events: Simply break up each individual's event history 
into a set of discrete time units that are treated as independent 
observations, and construct a dichotomous dependent variable 
indicating whether or not an event occurred in each time unit.16 

16 It is assumed that the time interval is sufficiently short that no more 
than one event occurs in any discrete time unit. If this assumption is not satis- 
fied, there are two alternatives. One is to treat intervals with more than one 
event as if only one event occurred. This approach is especially appropriate 
for the complementary log-log model of (13) because that model actually pre- 
dicts the probability that at least one event occurs in an interval. When the 
number of time units with more than one event is large, however, such a pro- 
cedure can discard considerable information. The alternative is to assume 
that the number of events in an interval has a Poisson distribution, condi- 
tional on the explanatory variables. The Poisson distribution is implied by sev- 
eral continuous-time models for recurrent events (Allison, 1977). 
Maximum-likelihood estimation of regression models for Poisson-distributed 
variables can be accomplished with the program GLIM (Baker and Nelder, 
1978). 
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The difference is that now each individual may contribute 
more than one event to the sample. As a consequence, it be- 
comes necessary to consider more complex models for the 
dependence of the hazard rate on time and on the individual's 
previous event history. 

Some additional notation is needed to discuss such 
models. Let Tk (k = 1, 2, 3, . . . ) be a set of random variables 

denoting the time at which the kth event occurs to some individ- 
ual, and let tk be the realized value of Tk. The discrete-time haz- 
ard rate for the kth event is then defined as 

Pk(t) = Pr(Tk = t I Tk - t, T, = t, (32) 
T2 = t2, . . . , Tk- = tk-1) 

which is identically equal to zero if t < tk-1. The next step is to 
let this hazard rate depend on explanatory variables. A very 
simple model is 

Pk(t) = G[f,'x(t)] (33) 

where G could be either the logistic function in (11) or the in- 
verse of the complementary log-log function as in (13). This 
model says that the hazard rate changes with time only through 
changes in the explanatory variables. 

If we now wish to introduce an explicit dependence of 
the hazard rate on time, we must choose between using the 
same starting time for all events or "resetting the clock" each 
time an event occurs. The former approach is symbolized by 

Pk(t) = G[a(t) + f'x(t)] k = 1, 2, . . . (34) 

while the latter is represented by 

Pk(t) = G[a(t - tk-1) + 'x(t)] k = 1, 2, . .. (35) 

As usual, a(t) is some function that may be further specified or 
left arbitrary. While it usually makes more sense to choose the 

specification in (35), one could nevertheless allow for depen- 
dence on both the initial starting time and the time since last 
event. In all cases, the models are easily estimated by including 
appropriate independent variables to represent the different 
time scales. 
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One limitation of Models (34) and (35) is the assumption 
that the processes affecting the occurrence of the first event are 
the same as those for the second, third, and later events. To 
allow for differences, one can simply rewrite (35) as 

Pk(t) = G[ak(t - tk-1) + Pfk(t)] k = 1, 2, . . . (36) 

There are two different ways to estimate this model. One is to 
do a separate analysis for each event k, eliminating from the 
pooled sample all time units after tk or before (and including) 
tk-1. A second approach is to construct a set of dummy variables 
representing the different events in the sequence. Thus the 
dummy variable for the kth event is coded 1 for all time units 
between tk-I + 1 and tk, inclusive, and otherwise coded zero. 
One then forms the products between these dummy variables 
and the explanatory variables in the model. Again the proce- 
dure is analogous to that for analysis of covariance using 
dummy variables (Blalock, 1979, pp. 534-538). The advantage 
of this method is that it allows one to test explicitly whether the 
a's and f8's differ for different events in the sequence. More- 
over, one can allow the fi's to differ across different events 
while forcing the a's to be the same, or vice versa. 

One further limitation of all these models is the implicit 
assumption that, conditional on the explanatory variables, the 
time at which an individual's kth event occurs is independent of 
the previous event history. Obviously this is an unrealistic as- 
sumption. The easiest way to relax the assumption is to intro- 
duce additional independent variables representing the depen- 
dency of the hazard rate on the individual's previous history 
(Tuma, 1976). For example, one could estimate a model of the 
form 

Pk(t) = G[a(t - tk-1) + 'x(t) + (k - 1)y7 
+ (tk-1 - tk-2)2] (37) 

where y, and 72 are fixed constants. This model says that the 
hazard rate for the kth event depends on the number of pre- 
vious events (k - 1) and the length of time between the last two 
events (tk- - tk-2). One could specify much more complex 
kinds of dependence on previous history but, in most cases, 
relatively simple models should suffice. 

93 



PAUL D. ALLISON 

CONCLUSION 

Problems of censoring and time-varying explanatory 
variables are major impediments to the application of standard 

analytic techniques to longitudinal data on the occurrence of 
events. While these problems have largely been solved by the 

development of maximum-likelihood and partial-likelihood 
methods, the emphasis has been on data in which the timing of 
events is precisely measured. In the social sciences, however, 
much of the available event-history data contains only the in- 
formation that events fell within certain intervals of time. For 
such data, it is often desirable to use discrete-time methods. In 

practice, these methods have considerable intuitive appeal and 
are relatively easy to apply. The essence of the methods is to 
break up each individual's event history into a set of discrete 
time units in which an event either did or did not occur. 

Pooling these time units over all individuals, one then obtains 
maximum-likelihood estimators for binary regression models. 
While this strategy has the flavor of an ad hoc approach, the re- 

sulting estimators are true maximum-likelihood estimators of 
models that are exact analogs to those for continuous-time 
data. In fact, some of the discrete-time models can be derived 

by assuming an underlying continuous-time model. The 
methods can be readily extended to the analysis of repeated 
events and multiple kinds of events. 
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