

Analysis of Cost Data Henry Glick, Ph.D.

Upcoming Seminar: February 24-26, 2022, Remote Seminar

Multivariable Analysis of Patient-Level Treatment Cost

Henry A. Glick, Ph.D.

Cost Data 101

- Commonly right (positively) skewed (i.e., long, heavy, right tails)
- Tend to be skewed because:
 - Can have 0 costs, but not negative costs
 - Most severe cases may require substantially more services than less severe cases
 - Certain very expensive events occur in a relatively small number of patients
 - A minority of patients are responsible for a high proportion of health care costs
- Tends to complicate analysis

Multivariable Analysis Strategy

- Analysis of cost
 - Start with everyone's "old" favorite: OLS
 - Briefly review log OLS
 - Transform OLS into GLM and check fit of gauss family (with diagnostic)
 - Revise family if necessary
 - Start with everyone's "new" favorite: GLM gamma/log
 - Check fit of gamma family
 - Revise family if necessary
 - "Tune" link (with diagnostics)
- QALY Appendix

GLM Relax OLS and Log OLS Assumptions

- Ability to choose among different families relaxes Gauss
 family assumption of constant variance
 - Gauss: constant variance
 - Poisson: variance proportional to mean
 - Gamma: variance proportional to square of mean
 - Inverse gauss: variance proportional to cube of mean
- Ability to choose among different links relaxes assumption that:
 - -E(y/x) = (OLS)
 - E(ln(y)/x) =

(log OLS)

Rerun OLS as GLM With Identity Link and Gauss Family

glm cost i.treat dissev blc blq race, link(identity) family(gauss)

General syntax: glm [depvar] [indepvars] [if xxx],link(xxx) family(xxx)

But is Gauss Right Family

- Modified Parks test is a "constructive" test that recommends a family given a particular link function
- Implemented after GLM regression that uses particular link
- Test predicts square of residuals (res²) as a function of log of predictions (Inyhat) by use of a GLM with a log link and gamma family
 - Stata code

glm res² lnyhat,link(log) family(gamma), robust

 If weights or clustering are used in original GLM, same weights and clustering should be used for modified Park test

Modified Parks Test of Family For Different Links

-	Link Family		Coef	P-value	•	Po
-	-0.7	Gamma	1.6777	0.24		0.1
	-0.6	Gamma	1.6469	0.20		up
	-0.5	Gamma	1.6175	0.17	٠	Re
						ma
	-0.1	Gamma	1.5150	0.09		•
	0.0	P/G	1.5378	0.15		
	0.1	P/G	1.5163	0.13		
	0.2	Poisson	1.4954	0.12		
					٠	Ма
	1.4	Poisson	1.3039	0.38		me
	1.5	Poisson	1.2997	0.39		٠
	1.6	Poisson	1.1528	0.63		
	1.7					

- Power links of 0.0 and 0.1 demonstrate tossups (poisson/gamma)
- Recommended family
 may not run
 - 1.6 won't run for (recommended) poisson family, but will for gauss
 - May be no recommended family
 - 1.7 won't run for any family

eeict2011r.dta

GLM Diagnostics, Identity/Gaussian

FITTED MODEL: Link = Identity ; Family =	- Gaussian	
Results, Modified Park Test (for Family)		
Coefficient: 1.391784		
Family, Chi2, and p-value in descending	ng order of l	ikelihood
Family	Chi2	P-value
Poisson:	1.4021	0.2364
Gamma:	3.3790	0.0660
Gaussian NLLS:	17.6936	0.0000
Inverse Gaussian or Wald	23.6244	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		1.0000
Pregibon Link Test:		0.8913
Modified Hosmer and Lemeshow:		0.3487

glm cost i.treat dissev bl*race, link(identity)
 family(poisson) vce(bootstrap, reps(200)
 strata(treat) seed(1234))

Variance function: V(u) = u	[Poisson]
Link function: $g(u) = u$	[Identity]
Log likelihood = -113575.9606	AIC 454.3278 BIC 219209.5

cost	Coef	BS St Err	Z	P> z	95%	6 CI
1.treat	113.1149	103.0793	1.10	0.272	-88.91687	315.1466
dissev	4008.434	429.8734	9.32	0.000	3165.898	4850.97
blcost	.3861271	.0781542	4.94	0.000	.2329476	.5393066
blqaly	-765.3726	366.625	-2.09	0.037	-1483.944	-46.80076
race	-746.574	111.639	-6.69	0.000	-965.3823	-527.7657
_cons	1925.985	343.2156	5.61	0.000	1253.295	2598.676

Effect of Changing Families

 Residuals plotted against predicted costs for gauss and poisson families demonstrating heteroscedasticity

g	glm cost i.treat dissev blcost blqaly race, link(log) family(gamma)								
Variance function: V(u) = u^2 [Gamma] Link function: g(u) = In(u) [Log]									
Log likelihood = -4494.155729 AIC 18.00062 BIC -2988.518									
cost	Coef	Std Err	Z	P> z	95%	⁶ Cl			
1.treat	.0446782	.0356359	1.25	0.210	0251669	.1145232			
dissev	1.409376	.1739606	8.10	0.000	1.06842	1.750333			
blcost	.0001227	.0000257	4.78	0.000	.0000724	.0017300			
blqaly	2579657	.1223431	-2.11	0.035	4977537	0183796			
race	2613111	.0395492	-6.61	0.000	3388262	1837961			
_cons	7.610573	.1220851	62.34	0.000	7.371291	7.849856			

Interpretation of 0.0447 Coefficient

- As with log OLS, it is sometimes assumed that log/gamma GLM coefficients for dichotomous variables have a % difference interpretation
- Not exactly true, but unlike log OLS, whether or not variances are equal (homoscedasticity), transformation of coefficient has a percentage difference (in predicted costs) interpretation
- glm cost i.treat dissev blcost blqaly race, link(log) family(gamma)

cost	Coef.	Std. Err.	t P> t	[95% Conf.	Interv]
1.treat	 .0446782	.0356359	1.25 0.21	0251669	11.45232

Is Gamma Correct Family for Log Link?

FITTED MODEL: Link = Log ; Family = Ga	amma	
Results, Modified Park Test (for Family)		
Coefficient: 1.5912		
Family, Chi2, and p-value in descending	ng order of l	ikelihood
Family	Chi2	P-value
Gamma:	1.9560	0.1619
Poisson:	4.0897	0.0431
Inverse Gaussian or Wald	23.2272	0.0000
Gaussian NLLS:	29.6281	0.0000
Results of tests of GLM Log link		
Pearson Correlation Test:		.2460
Pregibon Link Test:		.1273
Modified Hosmer and Lemeshow:		.6199

• Certainly a reasonable family for log link

cost, eeict2011.dta

Is Log Best Link Available?

- So far evaluated identity link (with an "optimized" poisson family) and log link (with an "optimized" gamma family)
- While log link is most commonly used in literature, need not be the best fitting link
- What link should we use?

Selecting a Link Function

- Literature mixed on whether there's a single statistic that can be used to identify optimal link
 - Compare model performance of all permutations of candidate link and variance functions???
- Manning proposed selection based on at least 3 tests:
 - Pearson's correlation test evaluates systematic bias in fit on raw scale
 - Pregibon link test evaluates linearity of response on scale of estimation
 - Modified Hosmer and Lemeshow test evaluates systematic bias in fit on raw scale
- Ideally, all 3 tests yield nonsignificant p-values

Can We Improve Link?

- Iteratively evaluate power links (in 0.1 intervals) between
 -2 and 2
 - Use modified Park test to select a family
 - Rerun GLM with preferred power link / family
 - Evaluate fit statistics
 - Don't show you results here, but then fine tune power link in 0.01 intervals within candidate regions of power link

Power 0.65 Link / Poisson Family

Variance function: $V(u) = u$ [Poisson]Link function: $g(u) = u^{(.65)}$ [Power]								
Log likelihood = -113515.3 AIC = 454.0853 BIC = 219088.2								
Cost	Coef	Std Err	Z	P> z	95	% CI		
i.treat	3.493932	4.188398	0.83	0.404	-4.715177	11.70304		
dissev	161.4855	17.74034	9.10	0.000	126.715	196.2559		
blcost	.0150344	.0030678	4.90	0.000	.0009215	.0210473		
blqaly	-30.51369	14.51284	-2.04	0.042	-59.86632	-1.161064		
race	-30.27001	4.51284	-6.71	0.000	-39.11501	-21.425		
_cons	138.8326	13.95714	9.95	0.000	111.4771	166.1881		

Run GLM DIAGNOSTICS, .65/Poisson

FITTED MODEL: Link = Power .65 ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient: 1.495248

Family, Chi2, and p-value in descending order of likelihood

Modified Hosmer and Lemesh	iow:	.5870
Pregibon Link Test:		.7469
Pearson Correlation Test:		.9027
Results of tests of GLM Log link		
Inverse Gaussian or Wald:	21.4285	0.0000
Gaussian NLLS:	21.1587	0.0000
Gamma:	2.4111	0.1205
Poisson:	2.3212	0.1276
Family	Chi2	P-value

Summary Link Fit Measures P-Value Based AIC/BIC/Log Likelihood

Improbable Predictions

- In some datasets, some link/family combinations (including log/gamma) can yield improbable predictions
- Example below is from a bootstrap predicting group 1's hospital costs from a substance abuse clinical trial

Link	Family	ŷ	SE	Min ŷ	Maxŷ
Observed	NA	5103	1064	2081	10041
Identity	Gauss	4934	2185	-3880	15601
Log	Gamma	13,263	21301	1544	426,526
Fitted *	Fitted	5815	5153	-33	174,816

* Link and family for each draw determined using link and family tests

Group 1 cost: mean=5089; min=145; max=40246; skewness=2.11; kurtosis=6.68

heroin2.dta

What to Do If/When Model Has Bad Fit Statistics

- Fit statistics for links and families are data dependent
- If no link/family pair yields good fit, consider changing:
 - Variables included in model
 - Add or subtract as needed
 - How variables are specified
 - e.g., continuous vs quadratic vs log vs square root vs 2 categories vs N categories

