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Missing Data

Paul D. Al l i son

INTRODUCTION

Missing data are ubiquitous in psychological
research. By missing data, I mean data that
are missing for some (but not all) variables
and for some (but not all) cases. If data are
missing on a variable for all cases, then that
variable is said to be latent or unobserved.
On the other hand, if data are missing on
all variables for some cases, we have what
is known as unit non-response, as opposed
to item non-response which is another name
for the subject of this chapter. I will not deal
with methods for latent variables or unit non-
response here, although some of the methods
we will consider can be adapted to those
situations.

Why are missing data a problem? Because
conventional statistical methods and software
presume that all variables in a specified
model are measured for all cases. The default
method for virtually all statistical software
is simply to delete cases with any missing
data on the variables of interest, a method
known as listwise deletion or complete case
analysis. The most obvious drawback of
listwise deletion is that it often deletes a large
fraction of the sample, leading to a severe
loss of statistical power. Researchers are
understandably reluctant to discard data that

they have spent a great deal time, money and
effort in collecting. And so, many methods for
‘salvaging’ the cases with missing data have
become popular.

For a very long time, however, missing
data could be described as the ‘dirty little
secret’ of statistics. Although nearly everyone
had missing data and needed to deal with
the problem in some way, there was almost
nothing in the textbook literature to pro-
vide either theoretical or practical guidance.
Although the reasons for this reticence are
unclear, I suspect it was because none of the
popular methods had any solid mathematical
foundation. As it turns out, all of the most
commonly used methods for handling missing
data have serious deficiencies.

Fortunately, the situation has changed
dramatically in recent years. There are now
two broad approaches to missing data that
have excellent statistical properties if the
specified assumptions are met: maximum
likelihood and multiple imputation. Both of
these methods have been around in one
form or another for at least 30 years, but
it is only in the last decade that they have
become fully developed and incorporated into
widely-available and easily-used software.
A third method, inverse probability weighting
(Robins and Rotnitzky, 1995; Robins et al.,
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1995; Scharfstein et al., 1999), also shows
much promise for handling missing data but
has not yet reached the maturity of the other
two methods. In this chapter, I review the
strengths and weaknesses of conventional
missing data methods but focus the bulk of
my attention on maximum likelihood and
multiple imputation.

MISSING COMPLETELY AT RANDOM

Before beginning an examination of specific
methods, it is essential to spend some
time discussing possible assumptions. No
method for handling missing data can be
expected to perform well unless there are
some restrictions on how the data came to
be missing. Unfortunately, the assumptions
that are necessary to justify a missing data
method are typically rather strong and often
untestable. The strongest assumption that
is commonly made is that the data are
missing completely at random (MCAR). This
assumption is most easily explained for the
situation in which there is only a single
variable with missing data, which we will
denote by Z . Suppose we have another set of
variables (represented by the vector X) which
is always observed. Let RZ be an indicator
(dummy) variable having a value of 1 if Z is
missing and 0 if Z is observed. The MCAR
assumption can then be expressed by the
statement:

Pr(RZ = 1|X,Z) = Pr(RZ = 1)

That is, the probability that Z is missing
depends neither on the observed variables X
nor on the possibly missing values of Z itself.

A common question is: what variables have
to be in X in order for the MCAR assumption
to be satisfied? All variables in the data set?
All possible variables, whether in the data set
or not? The answer is: only the variables in the
model to be estimated. If you are estimating
a multiple regression and Z is one of the
predictors, then the vector X must include
all the other variables in the model. But
missingness on Z could depend on some other

variable (whether in the data set or not), and
it would not be a violation of MCAR. On the
other hand, if you are merely estimating the
mean of Z , then all that is necessary for MCAR
is Pr(RZ = 1|Z) = Pr(RZ = 1). That is,
missingness on Z does not depend on Z itself.

When more than one variable in the model
of interest has missing data, the statement
of MCAR is a bit more technical and will
not be given here (see Rubin, 1976). But the
basic idea is the same: the probability that
any variable is missing cannot depend on any
other variable in the model of interest, or
on the potentially missing values themselves.
It is important to note, however, that the
probability that one variable is missing can
depend on whether or not another variable
is missing, without violating MCAR. In the
extreme, two or more variables may always
be missing together or observed together.
This is actually quite common. It typically
occurs when data sets are pieced together from
multiple sources, for example, administrative
records and personal interviews. If the subject
declines to be interviewed, all the responses in
that interview will be jointly missing.

For most data sets, the MCAR assumption
is unlikely to be precisely satisfied. One
situation in which the assumption is likely
to be satisfied is when data are missing by
design (Graham et al., 1996). For example,
a researcher may decide that a brain scan is
just too costly to administer to everyone in
her study. Instead, she does the scan for only
a 25% random subsample. For the remaining
75%, the brain-scan data are MCAR.

Can the MCAR assumption be tested?
Well, it is easy to test whether missingness
on Z depends on X. The simplest approach
is to test for differences in means of the
Xvariables between those who responded to
Z and those who did not, a strategy that has
been popular for years.Amore comprehensive
approach is to do a logistic regression of RZ

on X. Significant coefficients, either singly or
jointly, would indicate a violation of MCAR.
On the other hand, it is not possible to test
whether missingness on Z depends on Z
itself (conditional on X). That would require
knowledge of the missing values.
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MISSING AT RANDOM

A much weaker (but still strong) assumption
is that the data are missing at random (MAR).
Again, let us consider the special case in which
only a single variable Z has missing data,
and there is a vector of variables X that is
always observed. The MAR assumption may
be stated as:

Pr(RZ = 1|X,Z) = Pr(RZ = 1|X)

This equation says that missingness on Z may
depend on X , but it does not depend on Z itself
(after adjusting for X). For example, suppose
that missingness on a response variable
depends on whether a subject is assigned
to the treatment or the control group, with
a higher fraction missing in the treatment
group. But within each group, suppose that
missingness does not depend on the value
of the response variable. Then, the MAR
assumption is satisfied. Note that MCAR is
a special case of MAR. That is, if the data are
MCAR, they are also MAR.

As with MCAR, the extension to more
than one variable with missing data requires
more technical care in stating the assumption
(Rubin, 1976), but the basic idea is the
same: the probability that a variable is
missing may depend on anything that is
observed; it just cannot depend on any of
the unobserved values of the variables with
missing data (after adjusting for observed
values). Nevertheless, missingness on one
variable is allowed to depend on missingness
on other variables.

Unfortunately, the MAR assumption is not
testable. You may have reasons to suspect that
the probability of missingness depends on the
values that are missing, for example, people
with high incomes may be less likely to report
their incomes. But nothing in the data will tell
you whether this is the case or not. Fortunately,
there is a way to make the assumption more
plausible. The MAR assumption says that
missingness on Z does not depend on Z , after
adjusting for the variables in X. And like
MCAR, the set of variables in X depends
on the model to be estimated. If you put

many variables in X, especially those that are
highly correlated with Z , you may be able
reduce or eliminate the residual dependence
of missingness on Z itself. In the case of
income, for example, putting such variables as
age, sex, occupation and education into the X
vector can make the MAR assumption much
more reasonable. Later on, we shall discuss
strategies for doing this.

The missing-data mechanism (the process
generating the missingness) is said to be
ignorable if the data are MAR and an
additional, somewhat technical, condition
is satisfied. Specifically, the parameters
governing the missing-data mechanism must
be distinct from the parameters in the
model to be estimated. Since this condition
is unlikely to be violated in real-world
situations it is commonplace to use the
terms MAR and ignorability interchangeably.
As the name suggests, if the missing-data
mechanism is ignorable, then it is possible
to get valid, optimal estimates of parameters
without directly modeling the missing-data
mechanism.

NOT MISSING AT RANDOM

If the MAR assumption is violated, the
data are said to be not missing at random
(NMAR). In that case, the missing-data mech-
anism is not ignorable, and valid estimation
requires that the missing-data mechanism be
modeled as part of the estimation process.
A well-known method for handling one kind
of NMAR is Heckman’s (1979) method for
selection bias. In Heckman’s method, the goal
is to estimate a linear model with NMAR
missing data on the dependent variable Y . The
missing-data mechanism may be represented
by a probit model in which missingness
on Y depends on both Y and X. Using
maximum likelihood, the linear model and the
probit model are estimated simultaneously to
produce consistent and efficient estimates of
the coefficients.

As there are many situations in which the
MAR assumption is implausible it is tempting
to turn to missing-data methods that do not
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require this assumption. Unfortunately, these
methods are fraught with difficulty. Because
every NMAR situation is different, the model
for the missing-data mechanism must be
carefully tailored to each situation. Further-
more, there is no information in the data
that would help you choose an appropriate
model, and no statistic that will tell you
how well a chosen model fits the data.
Worse still, the results are often exquisitely
sensitive to the choice of the model (Little and
Rubin, 2002).

It is no accident, then, that most commercial
software for handling missing data is based on
the assumption of ignorability. If you decide
to go the NMAR route you should do so with
great caution and care. It is probably a good
idea to enlist the help and advice of someone
who has real expertise in this area. It is also
recommended that you try different models
for the missing-data mechanism to get an
idea of how sensitive the results are to model
choice. The remainder of this chapter will
assume ignorability, although it is important
to keep in mind that both maximum likelihood
and multiple imputation can produce valid
estimates in the NMAR case if you have a
correctly specified model for the missing-data
mechanism.

CONVENTIONAL METHODS

This section is a brief review of conventional
methods for handling missing data, with an
emphasis on what is good and bad about each
method. To do that, we need some criteria for
evaluating a missing-data method. There is
general agreement that a good method should
do the following:

1. Minimize bias. Although it is well-known that
missing data can introduce bias into parameter
estimates, a good method should make that bias
as small as possible.

2. Maximize the use of available information. We
want to avoid discarding any data, and we want
to use the available data to produce parameter
estimates that are efficient (i.e., have minimum-
sampling variability).

3. Yield good estimates of uncertainty. We want
accurate estimates of standard errors, confidence
intervals and p-values.

In addition, it would be nice if the missing-
data method could accomplish these goals
without making unnecessarily restrictive
assumptions about the missing-data mecha-
nism. As we shall see, maximum likelihood
and multiple imputation do very well at
satisfying these criteria. But conventional
methods are all deficient on one or more of
these goals.

Listwise deletion

How does listwise deletion fare on these
criteria? The short answer is good on 3
(above), terrible on 2 and so-so on 1. Let
us first consider bias. If the data are MCAR,
listwise deletion will not introduce any bias
into parameter estimates. We know that
because, under MCAR, the subsample of
cases with complete data is equivalent to
a simple random sample from the original
target sample. It is also well-known that
simple random sampling does not cause
bias. If the data are MAR but not MCAR,
listwise deletion may introduce bias. Here
is a simple example. Suppose the goal is to
estimate mean income for some population.
In the sample, 85% of women report their
income but only 60% of men (a viola-
tion of MCAR), but within each gender
missingness on income does not depend
on income (MAR). Assuming that men, on
average, make more than women, listwise
deletion would produce a downwardly biased
estimate of mean income for the whole
population.

Somewhat surprisingly, listwise deletion
is very robust to violations of MCAR (or
even MAR) for predictor variables in a
regression analysis. Specifically, so long as
missingness on the predictors does not depend
on the dependent variable, listwise deletion
will yield approximately unbiased estimates
of regression coefficients (Little, 1992). And
this holds for virtually any kind of regression –
linear, logistic, Poisson, Cox, etc.
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The obvious downside of listwise deletion
is that it often discards a great deal of
potentially usable data. On the one hand, this
loss of data leads to larger standard errors,
wider confidence intervals, and a loss of power
in testing hypotheses. On the other hand, the
estimated standard errors produced by listwise
deletion are usually accurate estimates of the
true standard errors. In this sense, listwise
deletion is an ‘honest’ method for handling
missing data, unlike some other conventional
methods.

Pairwise deletion

For linear models, a popular alternative to list-
wise deletion is pairwise deletion, also known
as available case analysis. For many linear
models (e.g., linear regression, factor analysis,
structural equation models), the parameters
of interest can be expressed as functions
of the population means, variances and
covariances (or, equivalently, correlations). In
pairwise deletion, each of these ‘moments’
is estimated using all available data for each
variable or each pair of variables. Then,
these sample moments are substituted into
the formulas for the population parameters.
In this way, all data are used and nothing is
discarded.

If the data are MCAR, pairwise deletion
produces consistent (and, hence, approxi-
mately unbiased) estimates of the parameters
(Glasser, 1964). Like listwise deletion, how-
ever, if the data are MAR but not MCAR,
pairwise deletion may yield biased estimates.
Intuitively, pairwise deletion ought to be more
efficient than listwise deletion because more
data are utilized in producing the estimates.
This is usually the case, although simulation
results suggest that in certain situations
pairwise deletion may actually be less efficient
than listwise.

Occasionally, pairwise deletion breaks
down completely because the estimated
correlation matrix is not a definite positive
and cannot be inverted to calculate the
parameters. The more common problem,
however, is the difficulty in getting accurate
estimates of the standard errors. That is

because each covariance (or correlation) may
be based on a different sample size, depend-
ing on the missing-data pattern. Although
methods have been proposed for getting
accurate standard error estimates (Van Praag
et al., 1985), they are complex and have
not been incorporated into any commercial
software.

Dummy-variable adjustment

In their 1985 textbook, Cohen and Cohen
popularized a method for dealing with missing
data on predictors in a regression analysis. For
each predictor with missing data, a dummy
variable is created to indicate whether or not
data are missing on that predictor. All such
dummy variables are included as predictors
in the regression. Cases with missing data
on a predictor are coded as having some
constant value (usually the mean for non-
missing cases) on that predictor.

The rationale for this method is that it
incorporates all the available information
into the regression. Unfortunately, Jones
(1996) proved that this method typically
produces biased estimates of the regression
coefficients, even if the data are MCAR.
He also proved the same result for a closely-
related method for categorical predictors
whereby an extra category is created to
hold the cases with missing data. Although
these methods probably produce reasonably
accurate standard error estimates, the bias
makes them unacceptable.

Imputation

A wide variety of methods falls under the
general heading of imputation. This class
includes any method in which some guess
or estimate is substituted for each missing
value, after which the analysis is done
using conventional software. A simple but
popular approach is to substitute means for
missing values, but this is well- known to
produce biased estimates (Haitovsky, 1968).
Imputations based on linear regression are
much better, although still problematic. One
problem, suffered by most conventional,
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deterministic methods is that they produce
biased estimates of some parameters. In par-
ticular, variances for the variables with
missing data tend to be underestimated, and
this bias is propagated to any parameters
that depend on variances (e.g., regression
coefficients).

Even more serious is the tendency for
imputation to produce underestimates of
standard errors, which leads in turn to inflated
test statistics and p-values that are too low.
That is because conventional software has
no way of distinguishing real data from
imputed data and cannot take into account
the inherent uncertainty of the imputations.
The larger the fraction of missing data, the
more severe this problem will be. In this
sense, all conventional imputation methods
are ‘dishonest’ and should be viewed with
some skepticism.

MAXIMUM LIKELIHOOD

Maximum likelihood has proven to be an
excellent method for handling missing data
in a wide variety of situations. If the
assumptions are met, maximum likelihood for
missing data produces estimates that have the
desirable properties normally associated with
maximum likelihood: consistency, asymp-
totic efficiency and asymptotic normality.
Consistency implies that estimates will be
approximately unbiased in large samples.
Asymptotic efficiency means that the esti-
mates are close to being fully efficient (i.e.,
having minimal standard errors). Asymptotic
normality is important because it means
we can use a normal approximation to
calculate confidence intervals and p-values.
Furthermore, maximum likelihood can pro-
duce accurate estimates of standard errors that
fully account for the fact that some of the data
are missing.

In sum, maximum likelihood satisfies all
three criteria stated earlier for a good missing-
data method. Even better is the fact that it
can accomplish these goals under weaker
assumptions than those required for many
conventional methods. In particular, it does

well when data are MAR but not MCAR.
It also does well when the data are not
NMAR – if one has a correct model for the
missing-data mechanism.

Of course there are some downsides.
Specialized software is typically required.
Also required is a parametric model for the
joint distribution of all the variables with
missing data. Such a model is not always
easy to devise, and results may be somewhat
sensitive to model choice. Finally, the good
properties of maximum likelihood estimates
are all ‘large sample’ approximations, and
those approximations may be poor in small
samples.

Most software for maximum likelihood
with missing data assumes ignorability (and,
hence, MAR). Under that assumption, the
method is fairly easy to describe. As usual,
to do maximum likelihood we first need
a likelihood function, which expresses the
probability of the data as a function of
the unknown parameters. Suppose we have
two discrete variables X and Z , with a
joint probability function denoted by p(x, z|θ)
where θ is a vector of parameters. That is,
p(x, z|θ) gives the probability that X = x
and Z = z. If there are no missing data and
observations are independent, the likelihood
function is given by:

L(θ) =
n∏

i=1

p(xi, zi|θ)

To get maximum likelihood estimates, we find
the value of θ that makes this function as large
a possible.

Now suppose that data are MAR on Z for
the first r cases, and MAR on X for the next s
cases. Let:

g(x|θ ) =
∑

z

p(x, z|θ)

be the marginal distribution of X (summing
over Z) and let:

h(z|θ ) =
∑

x

p(x, z|θ)
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be the marginal distribution of Z (summing
over X). The likelihood function is then:

L(θ) =
r∏

i=1

g(xi|θ)
r+s∏

i=r+1

h(zi|θ)

n∏
i=r+s+1

p(xi, zi|θ)

That is, the likelihood function is factored into
parts that corresponding to different missing-
data patterns. For each pattern, the likelihood
is found by summing the joint distribution
over all possible values of the variable(s) with
missing data. If the variables are continuous
rather than discrete, the summation signs are
replaced with integral signs. The extension to
more than two variables is straightforward.

To implement maximum likelihood for
missing data, one needs a model for the
joint distribution of all the relevant variables
and a numerical method for maximizing
the likelihood. If all the variables are
categorical, an appropriate model might
be the unrestricted multinomial model,
or a log-linear model that imposes some
restrictions on the data. The latter is
necessary when there are many variables
with many categories. Otherwise, without
restrictions (e.g., all three-way and higher
interactions are 0), there would be too many
parameters to estimate. An excellent freeware
package for maximizing the likelihood for
any log-linear model with missing data is
LEM (available at http://www.uvt.nl/faculte
iten/fsw/organisatie/departementen/mto/soft
ware2.html). LEM can also estimate logistic-
regression models (in the special case when
all predictors are discrete) and latent-class
models.

When all variables are continuous, it
is typical to assume a multivariate-normal
model. This implies that each variable is
normally distributed and can be expressed
as a linear function of the other variables
(or any subset of them), with errors that are
homoscedastic and have a mean of 0. While
this is a strong assumption, it is commonly
used as the basis for multivariate analysis and
linear-structural equation modeling.

Under the multivariate-normal model, the
likelihood can be maximized using either the
expectation-maximization (EM) algorithm or
direct maximum likelihood. Direct maximum
likelihood is strongly preferred because
it gives accurate standard error estimates
and is more appropriate for ‘overidentified’
models. However, because the EM method
is readily available in many commercial
software packages, it is worth taking a closer
look at it.

EM is a numerical algorithm that can be
used to maximize the likelihood under a wide
variety of missing-data models (Dempster
et al., 1977). It is an iterative algorithm that
repeatedly cycles through two steps. In the
expectation step, the expected value of the
log-likelihood is taken over the variables
with missing data, using the current values
of the parameter estimates to compute the
expectation. In the maximization step, the
expected log-likelihood is maximized to
get new values of the parameter estimates.
These two steps are repeated over and over
until convergence, i.e., until the parameter
estimates do not change from one iteration to
the next.

Under the multivariate-normal model, the
parameters that are estimated by the EM
algorithm are the means, variances and covari-
ances. In this case, the algorithm reduces to
something that can be described as iterated
linear regression imputation. The steps are as
follows:

1. Get starting values for the means, variances and
covariances. These can be obtained by listwise or
pairwise deletion.

2. For each missing-data pattern, construct regres-
sion equations for predicting the missing vari-
ables based on the observed variables. The
regression parameters are calculated directly
from the current estimates of the means,
variances and covariances.

3. Use these regression equations to generate
predicted values for all the variables and cases
with missing data.

4. Using all the real and imputed data, recalculate
the means, variances and covariances. For means,
the standard formula works fine. For variances
(and sometimes covariances) a correction factor
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must be applied to compensate for the downward
bias that results from using imputed values.

5. Go back to step 2 and repeat until convergence.

The principal output from this algorithm
is the set of maximum likelihood estimates
of the means, variances and covariances.
Although imputed values are generated as
part of the estimation process, it is not
recommended that these values be used in
any other analysis. They are not designed
for that purpose, and they will yield biased
estimates of many parameters. One drawback
of the EM method is that, although it produces
the correct parameter estimates, it does not
produce standard error estimates.

EXAMPLE

To illustrate the EM algorithm (as well
as other methods to be considered later),
we will use a data set that has records
for 581 children who were interviewed in
1990 as part of the National Longitudinal
Survey of Youth (NLSY). A text file con-
taining these data is available at http://
www.ssc.upenn.edu/∼allison. Here are the
variables:

ANTI antisocial behavior, measured with a
scale ranging from 0 to 6.

SELF self-esteem, measured with a scale
ranging from 6 to 24.

POV poverty status of family, coded 1 for in
poverty, otherwise 0.

BLACK 1 if child is black, otherwise 0
HISPANIC 1 if child is Hispanic, otherwise 0
DIVORCE 1 if mother was divorced in 1990,

otherwise 0
GENDER 1 if female, 0 if male
MOMWORK 1 if mother was employed in 1990,

otherwise 0

BLACK and HISPANIC are two categories
of a three-category variable, the reference
category being non-Hispanic white. The
ultimate goal is to estimate a linear-regression
model with ANTI as the dependent variable
and all the others as predictors.

The original data set had no missing
data. I deliberately produced missing data
on several of the variables, using a method
that satisfied the MAR assumption. The
variables with missing data and their per-
centage missing are: SELF (25%), POV
(26%), BLACK and HISPANIC (19%) and
MOMWORK (15%). Listwise deletion on this
set of variables leaves only 225 cases, less than
half the original sample.

Application of the multivariate normal
EM algorithm to these data produced the
maximum likelihood estimates of the means,
variances and covariances in Table 4.1.
It may be objected that method is not
appropriate for the variables POV, BLACK
and HISPANIC and MOMWORK because, as
dummy variables, they cannot possibly have
a normal distribution. Despite the apparent
validity of this objection, a good deal of
simulation evidence and practical experience
suggests that method does a reasonably good
job, even when the variables with missing
data are dichotomous (Schafer, 1997). We
will have more to say about this issue
later on.

What can be done with these estimates?
Because covariances are hard to interpret, it
is usually desirable to convert the covariance
matrix into a correlation matrix, something
that is easily accomplished in many software
packages. One of the nice things about
maximum likelihood estimates is that any
function of those estimates will also be a
maximum likelihood estimate of the corre-
sponding function in the population. Thus,
if si is the maximum likelihood estimate of
the standard deviation of xi, and sij is the
maximum likelihood estimate of the covari-
ance between xi and xj, then r = sij/(sisj)
is the maximum likelihood estimate of their
correlation. Table 4.2 displays the maximum
likelihood estimates of the correlations.

Next, we can use the EM estimates as
input to a linear regression program to
estimate the regression of ANTI on the other
variables. Many regression programs allow a
covariance or correlation matrix as input. If
maximum likelihood estimates for the means
and covariances are used as the input, the
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Table 4.1 Expectation-maximization (EM) estimates of means and covariance matrix

ANTI SELF POV BLACK HISPANIC DIVORCE GENDER MOMWORK

Means 1.56799 20.1371 0.34142 0.35957 0.24208 0.23580 0.50430 0.33546
Covariance matrix
ANTI 2.15932 −0.6402 0.15602 0.08158 −0.04847 0.01925 −0.12637 0.07415
SELF −0.64015 9.7150 −0.10947 −0.09724 −0.13188 −0.14569 −0.03381 0.00750
POV 0.15602 −0.1095 0.22456 0.06044 −0.00061 0.05259 0.00770 0.05446
BLACK 0.08158 −0.0972 0.06044 0.22992 −0.08716 0.00354 0.00859 −0.01662
HISPANIC −0.04847 −0.1319 −0.00061 −0.08716 0.18411 0.00734 −0.01500 0.01657
DIVORCE 0.01925 −0.1457 0.05259 0.00354 0.00734 0.18020 −0.00015 −0.00964
GENDER −0.12637 −0.0338 0.00770 0.00859 −0.01500 −0.00015 0.24998 0.00407
MOMWORK 0.07415 0.0075 0.05446 −0.01662 0.01657 −0.00964 0.00407 0.22311

Table 4.2 Expectation-maximization (EM) estimates of correlation matrix

ANTI SELF POV BLACK HISPANIC DIVORCE GENDER MOMWORK

ANTI 1.0000 −0.1398 0.2241 0.1158 −0.0769 0.0309 −0.1720 0.1068
SELF −0.1398 1.0000 −0.0741 −0.0651 −0.0986 −0.1101 −0.0217 0.0051
POV 0.2241 −0.0741 1.0000 0.2660 −0.0030 0.2614 0.0325 0.2433
BLACK 0.1158 −0.0651 0.2660 1.0000 −0.4236 0.0174 0.0358 −0.0734
HISPANIC −0.0769 −0.0986 −0.0030 −0.4236 1.0000 0.0403 −0.0699 0.0817
DIVORCE 0.0309 −0.1101 0.2614 0.0174 0.0403 1.0000 −0.0007 −0.0481
GENDER −0.1720 −0.0217 0.0325 0.0358 −0.0699 −0.0007 1.0000 0.0172
MOMWORK 0.1068 0.0051 0.2433 −0.0734 0.0817 −0.0481 0.0172 1.0000

Table 4.3 Regression of ANTI on other variables

No missing data Listwise deletion Maximum likelihood Multiple imputation

Variable Coeff. SE Coeff. SE Coeff. Two-step SE Direct SE Coeff. SE

SELF –0.054 0.018 −0.045 0.031 –0.066 0.022 0.022 –0.069 0.021
POV 0.565 0.137 0.727 0.234 0.635 0.161 0.162 0.625 0.168
BLACK 0.090 0.140 0.053 0.247 0.071 0.164 0.160 0.073 0.155
HISPANIC −0.346 0.153 −0.353 0.253 −0.336 0.176 0.170 −0.332 0.168
DIVORCE 0.068 0.144 0.085 0.243 −0.109 0.166 0.146 −0.107 0.147
GENDER –0.537 0.117 −0.334 0.197 –0.560 0.135 0.117 –0.556 0.118
MOMWORK 0.184 0.129 0.259 0.216 0.215 0.150 0.142 0.242 0.143

Coefficients (Coeff.) in bold are statistically significant at the .01 level.
SE, standard error.

resulting regression coefficient estimates will
also be maximum likelihood estimates. The
problem with this two-step approach is that
it is not easy to get accurate standard error
estimates.As with pairwise deletion, one must
specify a sample size to get conventional
regression software to produce standard error
estimates. But there is no single number that
will yield the right standard errors for all
the parameters. I generally get good results
using the number of non-missing cases for
the variable with the most missing data
(in this example, 431 cases on POV). But
this method may not work well under all
conditions.

Results are shown in Table 4.3. The
first set of regression estimates is based
on the original data set with no missing
data. Three variables have p-values below
.01: SELF, POV and GENDER. Higher
levels of antisocial behavior are associated
with lower levels of self-esteem, being
in poverty and being male. The negative
coefficient for Hispanic is also marginally
significant. The next set of estimates was
obtained with listwise deletion. Although the
coefficients are reasonably close to those in
the original data set, the standard errors are
much larger, reflecting the fact that more
than half the cases are lost. As a result,
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only the coefficient for POV is statistically
significant.

Maximum likelihood estimates are shown
in the third panel of Table 4.3. The coefficients
are generally closer to the original values
than those from listwise deletion. More
importantly, the estimated standard errors
(using 431 as the sample size in the two-
step method) are much lower than those from
listwise deletion, with the result that POV,
SELF and GENDER all have p-values below
.01. The standard errors are still larger than
those from the original data set, but that is to
be expected because a substantial fraction of
the data is now missing.

DIRECT MAXIMUM LIKELIHOOD

As noted, the problem with the two-step
method is that we do not get dependable
standard error estimates. This problem can be
solved by using direct maximum likelihood,
also known as ‘raw’ maximum likelihood
(because one must use the raw data as input
rather than a covariance matrix) or ‘full
information’ maximum likelihood (Arbuckle,
1996; Allison, 2003). In this approach, the
linear model of interest is specified, and
the likelihood function is directly maxi-
mized with respect to the parameters of
the model. Standard errors may be calcu-
lated by conventional maximum likelihood
methods (such as computing the negative
inverse of the information matrix). The
presumption is still that the data follow
a multivariate normal distribution, but the
means and covariance matrix are expressed
as functions of the parameters in the specified
linear model.

Direct maximum likelihood is now widely
available in most stand-alone programs for
estimating linear-structural equation models,
including LISREL, AMOS, EQS, M-PLUS
and MX. For the NLSY data, the maximum
likelihood panel in Table 4.3 shows the stan-
dard error estimates reported by AMOS. (The
coefficients are identical those obtained from
the two-step method). With one exception
(POV), the maximum likelihood standard

errors are all somewhat lower than those
obtained with the two-step method (with a
specified sample size of 431).

MULTIPLE IMPUTATION

Although maximum likelihood is an excellent
method for handling missing data, it does
have limitations. The principal limitation is
that one must specify a joint probability
distribution for all the variables, and such
models are not always easy to come by.
Consequently, although models and software
are readily available in the linear and log-
linear cases, there is no commercial software
for maximum likelihood with missing data for
logistic regression, Poisson regression or Cox
regression.

An excellent alternative is multiple impu-
tation (Rubin, 1987), which has statistical
properties that are nearly as good as maxi-
mum likelihood. Like maximum likelihood,
multiple imputation estimates are consistent
and asymptotically normal. They are close to
being asymptotically efficient. (In fact, you
can get as close as you like by having a suffi-
cient number of imputations.) Like maximum
likelihood, multiple imputation has these
desirable properties under either the MAR
assumption or a correctly specified model for
the missing-data mechanism. However, most
software assumes MAR.

Compared with maximum likelihood, mul-
tiple imputation has two big advantages. First,
it can be applied to virtually any kind of
data or model. Second, the analysis can be
done using conventional software rather than
having to use a special package like LEM
or AMOS. The major downside of multiple
imputation is that it produces different results
every time you use it. That is because the
imputed values are random draws rather than
deterministic quantities. A second downside
is that there are many different ways to
do multiple imputation, possibly leading to
uncertainty and confusion.

The most widely-used method for
multiple imputation is the Markov Chain
Monte Carlo (MCMC) algorithm based on
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linear regression. This method was first
implemented in the stand-alone package
NORM (Schafer, 1997), but is now available
in SAS and S-PLUS. The approach is
quite similar to the multivariate normal
EM algorithm which, as we saw earlier,
is equivalent to iterated linear regression
imputation. There is one major difference,
however. After generating predicted values
based on the linear regressions, random
draws are made from the (simulated) error
distribution for each regression equation.
These random ‘errors’ are added to the
predicted values for each individual to
produce the imputed values. The addition of
this random variation compensates for the
downward bias in variance estimates that
usually results from deterministic imputation
methods.

If you apply conventional analysis software
to a single data set produced by this
random imputation method, you get parameter
estimates that are approximately unbiased.
However, standard errors will still be underes-
timated because, as noted earlier, the software
can not distinguish real values from imputed
values, and the imputed values contain much
less information. The parameter estimates will
also be inefficient because random variation
in the imputed values induces additional
sampling variability.

The solution to both of these problems
is to do the imputation more than once.
Specifically, create several data sets, each
with different, randomly drawn, imputed
values. If we then apply conventional software
to each data set, we get several sets of
alternative estimates. These may be combined
into a single set of parameter estimates and
standard errors using two simple rules (Rubin,
1987). For parameter estimates, one simply
takes the mean of the estimates over the
several data sets. Combining the standard
errors is a little more complicated. First,
take the average of the squared standard
errors across the several data sets. This is
the ‘within’ variance. The ‘between’ variance
is just the sample variance of the parameter
estimates across the several data sets. Add
the within and between variances (applying

a small correction factor to the latter) and
take the square root. The formula is as
follows:√√√√ 1

M

M∑
k=1
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k +

(
1+ 1
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)(
1
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M is the number of data sets, sk is the
standard error in the kth data set, and
bk is the parameter estimated in the kth
data set.

There is one further complication to the
method. For this standard error formula to
be accurate, the regression parameters used to
generate the predicted values must themselves
be random draws from their ‘posterior’
distribution, one random draw for each data
set. Otherwise, there will be insufficient
variation across data sets. For details, see
Schafer (1997).

How many data sets are necessary for
multiple imputation? With moderate amounts
of missing data, five data sets (the default in
SAS) are usually sufficient to get parameter
estimates that are close to being fully efficient.
Somewhat more may be necessary to get
sufficiently stable p-values and confidence
intervals. More data sets may also be needed
if the fraction of missing data is large.

For the NLSY example, I used PROC MI
in SAS to generate 15 ‘completed’ data sets.
For each data set, I used PROC REG to
estimate the linear regression of ANTI on
the other variables. Finally, I used PROC
MIANALYZE to combine the results into a
single set of parameter estimates, standard
errors, confidence intervals and p-values.
While this may seem like a lot of work, the
programming is really quite simple. Here is
the SAS program that accomplished all of
these tasks:

proc mi data=nlsy out=miout
nimpute=15;

var anti self pov black hispanic
divorce gender momwork;

proc reg data=miout outest=a covout;
model anti=self pov black hispanic

divorce gender momwork;
by _imputation_;
proc mianalyze data=a;
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var intercept self pov black
hispanic divorce gender momwork;

run;

PROC MI reads the NLSY data set and
produces a new data set called MIOUT. This
data set actually consists of 15 stacked-data
sets, with a variable named _IMPUTATION_
having values 1 through 15 to distinguish
the different data sets. The VAR statement
specifies the variables that go into the imputa-
tion process. Each variable with missing data
is imputed using a linear regression of that
variable on all the other variables.

PROC REG estimates the desired regres-
sion model using the MIOUT data set. The BY
statement requests that separate regressions be
estimated for each value of _IMPUTATION_.
The OUTEST option writes the coefficient
estimates to a data set called A and the
COVOUT option includes the estimated
covariance matrix in that data set. This
data set is passed to PROC MIANALYZE,
which then applies the combining rules to
the each of the coefficients specified in the
VAR statement. Clearly, there is a major
advantage in being able to do the imputation,
the analysis and the combination within a
single software package. With a stand-alone
imputation program, moving the necessary
data sets back and forth between packages can
get very tedious.

Results are shown in the last two columns
of Table 4.3. As expected, both coefficients
and standard errors are very similar to those
produced by direct maximum likelihood.
Keep in mind that this is just one set of possible

estimates produced by multiple imputation.
The first panel of Table 4.4 contains another
set of estimates produced by the same SAS
program.

COMPLICATIONS

Space is not sufficient for a thorough treatment
of various complications that may arise in the
application of multiple imputation. However,
it is certainly worth mentioning some of the
more important issues that frequently arise.

Auxiliary variables

An auxiliary variable is one that is used in
the imputation process but does not appear
in the model to be estimated. The most
desirable auxiliary variables are those that
are moderately to highly correlated with
the variables having missing data. Such
variables can be very helpful in getting
more accurate imputations, thereby increasing
the efficiency of the parameter estimates. If
auxiliary variables are also associated with the
probability that other variables are missing,
their inclusion can also reduce bias. In fact,
including such variables can go a long way
toward making the MAR assumption more
plausible.

The dependent variable

If the goal is to estimate some kind of
regression model, two questions arise regard-
ing the dependent variable. First, should the

Table 4.4 Regression of ANTI using two multiple imputation methods

Multivariate normal MCMC Sequential generalized regression

Coeff. SE Coeff. SE

SELF –0.065 0.021 –0.067 0.021
POV 0.635 0.180 0.700 0.161
BLACK 0.082 0.160 0.042 0.160
HISPANIC −0.321 0.173 −0.334 0.173
DIVORCE −0.112 0.147 −0.129 0.148
GENDER –0.553 0.118 –0.559 0.118
MOMWORK 0.235 0.135 0.217 0.157

Coefficients (Coeff.) in bold are statistically significant at the .01 level.
MCMC, Markov Chain Monte Carlo; SE, standard error.
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dependent variable be included among the
variables used to impute missing values on the
independent variables? In conventional, deter-
ministic imputation, the answer is no. Using
the dependent variable to impute independent
variables can lead to overestimates of the
magnitudes of the coefficients. With multiple
imputation, however, the answer is definitely
yes, because the random component avoids
any bias. In fact, leaving out the dependent
variable will yield regression coefficients
that are attenuated toward zero (Landerman
et al., 1997).

Second, should the dependent variable
itself be imputed? If the data are MAR
and there are no auxiliary variables, the
answer is no. Imputation of the dependent
variable merely increases sampling variability
(Little, 1992). So the preferred procedure
is to delete cases with missing data on
the dependent variable before doing the
imputation. If there are auxiliary variables
that are strongly correlated with the dependent
variable, imputation of the dependent variable
can be helpful in increasing efficiency and, in
some cases, reducing bias. Often, one of the
best auxiliary variables is the same variable
measured at a different point in time.

Combining test statistics

With multiple imputation, any parameter
estimates can simply be averaged over the
multiple data sets. But test statistics should
never be averaged. That goes for t-statistics, z-
statistics, chi-square statistics and F-statistics.
Special procedures are required for combining
hypothesis tests from multiple data sets. These
procedures can be based on Wald tests,
likelihood ratio tests, or a simple method for
combining chi-square statistics. For details,
see Schafer (1997) or Allison (2001).

Model congeniality

Any multiple imputation method must be
based on some model for the data (the
imputation model), and that model is not
necessarily (or even usually) the same model
that one desires to estimate (the analysis

model). That raises the question of how
similar the imputation model and the analysis
model must be in order to get good results.
Although they do not have to be identical, the
two models should be ‘congenial’ in the sense
that the imputation model should be able to
reproduce the major features of the data that
are the object of the analysis model (Rubin,
1987; Meng, 1994). Trouble is most likely to
occur if the imputation model is simpler than
the analysis model. Two examples:

1. The analysis model treats a variable as categorical
but the imputation model treats it as quantitative.

2. The analysis model includes interactions and
nonlinearities, but the imputation model is strictly
linear.

If the fraction of missing data is small, this
lack of congeniality may be unproblematic.
But if the fraction of missing data is large,
results may be misleading.

One implication of the congeniality prin-
ciple is that imputation models should be
relatively ‘rich’ so that they may be congenial
with lots of different models that could
be of interest. However, there are serious
practical limitations to the complexity of
the imputation model. And if the imputer
and analyst are different people, it may be
quite difficult for the imputer to anticipate
the kinds of models that will be estimated
with the data. Consequently, it may often be
necessary (or at least desirable) to produce
different imputed data sets for different
analysis models.

Longitudinal data

Longitudinal studies are particularly prone to
missing data because subjects often drop out,
die, or cannot be located. While there are many
kinds of longitudinal data, I focus here on
the most common kind, often referred to as
panel data. In panel data, one or more variables
are measured repeatedly, and the measure-
ments are taken at the same times for all
subjects.

Missing data in panel studies can be
readily handled by the methods of maximum
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likelihood and multiple imputation that we
have already discussed. For multiple impu-
tation, the critical consideration is that the
imputation must be done in such a way that
it reproduces the correlations over time. This
is most easily accomplished if the data are
formatted so that there is only one record per
subject rather than separate records for each
observation time point. The imputation model
should be formulated so that each variable
with missing data may be imputed based on
any of the variables at any of the time points
(including the variable itself at a different
time point).

Categorical variables

The MCMC method based on the
multivariate-normal model is the most
popular approach to multiple imputation
for good reasons. It can handle virtually
any pattern of missing data, and it is extre-
mely efficient computationally. Its biggest
disadvantage, however, is that it presumes
that every variable with missing data is
normally distributed and that is clearly not
the case for categorical variables. I ignored
this problem for the NLSY example, treating
each categorical variable as a set of dummy
variables and imputing the dummies just like
any other variables.

Of course, the resulting imputed values
for the dummy variables can be any real
numbers and not infrequently, are greater
than 1 or less than 0. Many authorities
(including me in my 2001 book) recommend
rounding the imputed values to 0 and 1 before
estimating the analysis model (Schafer, 1997).
However, recent analytical and simulation
results suggest that this nearly always makes
things worse (Horton et al., 2003; Allison
2006). If the dummy variables are to be
used as predictor variables in some kind of
regression analysis, you are better off just
leaving the imputed values as they are. For
categorical variables with more than two
categories, there is no need to attempt to
impose consistency on the imputed values
for the multiple dummy variables. Unless the
fraction of cases in any one category is very

small, this approach usually produces good
results.

Alternative methods may be necessary if the
fraction of cases in a category is very small
(say, 5% or less), or if the analysis method
requires that the imputed variable be truly
categorical (e.g., the imputed variable is the
dependent variable in a logistic regression).
In the next section, we will consider some
methods more appropriate for the imputation
of categorical variables.

OTHER IMPUTATION METHODS

There are numerous alternative models and
computational methods that are available
for doing multiple imputation. One class
of methods uses the MCMC algorithm but
applies it to models other than the multi-
variate normal model. For example, Schafer
(http://www.stat.psu.edu/∼jls) has developed
a freeware package called CAT (available
only as an S-Plus library), which is designed
for data in which all the variables are
categorical. It uses the MCMC algorithm
under a multinomial model or a restricted
log-linear model.

Schafer has another package called MIX
(also available only for S-Plus) that is suitable
for data sets and models that include both
categorical and quantitative variables. The
model is a multinomial (or restricted log-
linear) model for the categorical data. Within
each cell of the contingency table formed
by the categorical variables, the quantitative
variables are assumed to follow a multivariate
normal distribution with means that may vary
across cells but a covariance matrix that is
constant across cells. While this method might
seem to be ideal for many situations, the model
is rather complex and requires considerable
thought and care in its implementation.

It is also possible to do imputation under
the multivariate normal model but with an
algorithm other than MCMC to produce the
imputed values. AMELIA, for example, is
a stand-alone package that uses the SIR
(sampling/importance resampling) algorithm.
This is a perfectly respectable approach.
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Indeed, the authors claim that it is more
computationally efficient than the MCMC
algorithm (King et al., 1999).

Perhaps the most promising alternative
method for multiple imputation is an approach
that is described as either ‘sequential gen-
eralized regression’ or ‘multiple imputation
for chained equations’ (MICE). Instead of
assuming a single multivariate model for all
the data, one specifies a separate regression
model that is used to impute each vari-
able with missing data. Typically, this is
a linear regression model for quantitative
variables, a logistic regression model (either
binomial or multinomial) for categorical
variables or a Poisson regression model for
count variables (Brand, 1999; Raghunathan
et al., 2001).

These models are estimated sequentially
using available data, starting with the variable
that has the least missing data and proceeding
to the variable with the most missing data.
After each model is estimated, it is used
to generate imputed values for the missing
data. For example, in the case of logistic
regression, the model is applied to generate
predicted probabilities of falling into each
category for each case with missing data.
These probabilities are then used as the basis
for making random draws from the possible
values of the categorical variable.

Once imputed values have been generated
for all the missing data, the sequential
imputation process is repeated, except now
the imputed values of the previous round
are used as predictors for imputing other
variables. This is one thing that distinguishes
sequential generalized regression from the
MCMC algorithm – in the latter, values
imputed for one variable are never used as
predictors to impute other variables. The
sequential process is repeated for many
rounds, with a data set selected at periodic
intervals, say, every tenth round.

As noted, the main attraction of sequential
generalized regression methods (compared
with MCMC methods) is that it is unnecessary
to specify a comprehensive model for the joint
distribution of all the variables. Potentially,
then, one can tailor the imputation model

to be optimally suited for each variable that
has missing data. A major disadvantage is
that, unlike MCMC, there is no theory that
guarantees that the sequential method will
converge to the correct distribution for the
missing values. Recent simulation studies
suggest that the method works well, but such
studies have only examined a limited range of
circumstances (Van Buuren et al., 2006). The
sequential method may also require a good
deal more computing time, simply because
estimation of logistic and Poisson models
is more intensive than estimation of linear
models.

User contributed add-ons for sequential
generalized regression are currently available
for SAS (Raghunathan et al., 2000), S-Plus
(Van Buuren and Oudshoorn, 2000), and Stata
(Royston, 2004). In the remainder of this
section, I apply the ICE command for Stata
to the NLSY data set. Here are the Stata
commands:

use "d:\nlsy.dta"
gen race=1+black+2*hispanic
ice anti self pov race divorce

gender momwork, dryrun
ice anti self pov race black

hispanic divorce gender momwork
using nlsyimp,
m(15) passive(black:race==2\
hispanic:race==3)
substitute(race:black hispanic)

use nlsyimp, clear
micombine regress anti self pov

black hispanic divorce gender
momwork

A bit of explanation is needed here. The
GEN command creates a new variable RACE
that has values of 1, 2 or 3, corresponding to
white/non-Hispanic, black and Hispanic. It is
better to impute this variable rather than the
individual dummies for black and Hispanic
because that ensures that each person with
missing race data will be assigned to one and
only one category.

The first ICE command is a ‘dryrun’.
It scans the data set, identifies the variables
with missing data, and proposes an impu-
tation model for each one. In this case,
ICE proposed a linear model for imputing
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SELF, binary-logit models for imputing POV
and MOMWORK, and a multinomial-logit
model for imputing RACE. The second ICE
command actually does the imputation, using
the default methods that were proposed,
and writes the imputed data sets into the
single Stata data set, NLSYIMP. The M(15)
option requests 15 data sets, distinguished
by the variable _j, which has values of
1 through 15. The PASSIVE option says
that the dummy variables BLACK and
HISPANIC are imputed ‘passively’ based
on the imputed values of RACE. The
SUBSTITUTE option tells ICE to use the
dummy variables BLACK and HISPANIC
as predictors when imputing other variables,
rather than the 3-category variable RACE.
Without this option, RACE would be treated
as a quantitative predictor which would
clearly be inappropriate.

The USE command switches from the
original data set to the newly-imputed data
set. The MICOMBINE command (along
with the REGRESS command) estimates the
regression model for the 15 imputed data sets
and then combines the results into a single
set of estimates and test statistics. Results
are shown in the second panel Table 4.4.
The first panel of this table is simply a
replication of the MCMC multivariate normal
method that produced the results in the last
panel of Table 4.3. It is included here for
comparison with the sequential generalized
regression results, but also to illustrate the
degree to which results may vary from one
replication of multiple imputation to another.
Although the coefficients vary slightly across
the replications and methods, they all tell
essentially the same story.And the differences
between the MCMC results and the sequential
results are no greater than the differences
between one run of MCMC and another.

SUMMARY AND CONCLUSION

Conventional methods for handling missing
data are seriously flawed. Even under the
best of conditions, they typically yield
biased parameter estimates, biased standard

error estimates, or both. Despite the often
substantial loss of power, listwise deletion is
probably the safest method because it is not
prone to Type I errors. On the other hand,
conventional imputation methods may be the
most dangerous because they often lead to
serious underestimates of standard errors and
p-values.

By contrast, maximum likelihood and mul-
tiple imputation have nearly optimal statistical
properties and they possess these properties
under assumptions that are typically weaker
than those used to justify conventional
methods. Specifically, maximum likelihood
and multiple imputation perform well under
the assumption that the data are MAR, rather
than the more severe requirement of MCAR;
and if the data are not MAR, these two
methods do well under a correctly specified
model for missingness (something that is not
so easy to come by).

Of the two methods, I prefer maximum
likelihood because it yields a unique set of
estimates, while multiple imputation produces
different results every time you use it.
Software for maximum likelihood estimation
of linear models with missing data is readily
available in most stand-alone packages for
linear-structural equation modeling, including
LISREL, AMOS, EQS and M-PLUS. For
log-linear modeling of categorical data, there
is the freeware package LEM.

Multiple imputation is an attractive alter-
native when estimating models for which
maximum likelihood is not currently avail-
able, including logistic regression and Cox
regression. It also has the advantage of not
requiring the user to master an unfamiliar
software package to do the analysis. The
downside, of course, is that it does not produce
a determinate result. And there are lots of
different ways to do multiple imputation, so
some care must go into choosing the most
suitable method for a particular application.

Both maximum likelihood and multi-
ple imputation usually require more time
and effort than conventional methods for
handling missing data. With improvements
in software, however, both methods have
become much easier to implement, and further
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improvements can be expected. And some-
times you just have to do more to get things
right. Nowadays, there is no good excuse for
avoiding these clearly superior methods.
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