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effects models. There are separate chapters devoted to linear regression, categorical response 
variables, count data, and event history models. These models represent the most widely used ones in 
the social sciences. In a brief monograph, Allison is able to present the essentials of fixed effects for 
each model and the appropriate procedures in SAS that can implement them. Empirical examples and 
SAS code are included, making it easier for the reader to implement these methods.… In sum, Paul 
Allison has produced a terrific guide to fixed effects models and their estimation using SAS. I highly 
recommend it.” 

Kenneth A. Bollen 
Immerwahr Distinguished Professor of Sociology 
Director, Odum Institute for Research in Social Science 
University of North Carolina at Chapel Hill 
 
 

“Fixed Effects Regression Methods for Longitudinal Data Using SAS represents an excellent piece of 
work.  It is clear, coherent, well-structured, useful, and has a sense of logical flow not always found in 
efforts of this sort. To say that I was impressed with this book would be an understatement. 
 
“What I especially liked about the book was how Allison is able to fluidly mix clear and accurate 
explanations of statistical concerns and procedures with specific directions for how to go about these 
procedures in SAS. It merits observing that even researchers or students not thoroughly versed in the 
statistical underpinnings or mathematical complexities will be able to analyze and interpret their data 
using the directions provided. The author even provides sample outputs and takes the reader through a 
scholarly interpretation of results.” 
 Frank Pajares 
 Professor of Educational Psychology  
 Division of Educational Studies 
 Emory University 





Fixed Effects
Regression Methods 
for Longitudinal Data

Using SAS ®

Paul D. Allison



 

 

The correct bibliographic citation for this manual is as follows: Allison, Paul D. 2005. Fixed Effects Regression 
Methods for Longitudinal Data Using SAS®. Cary, NC: SAS Institute Inc. 

Fixed Effects Regression Methods for Longitudinal Data Using SAS® 

Copyright © 2005, SAS Institute Inc., Cary, NC, USA 

ISBN 978-1-59047-568-3 

All rights reserved. Produced in the United States of America.  

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission 
of the publisher, SAS Institute Inc. 

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the 
vendor at the time you acquire this publication. 

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related 
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in 
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987). 

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. 

1st printing, March 2005 
2nd printing, December 2009 

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software 
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit 
the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228. 

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. 

Other brand and product names are registered trademarks or trademarks of their respective companies. 



Contents 
 
Acknowledgments.............................................................................v 
 
Chapter 1  Introduction to Fixed Effects Methods ............................ 1 

1.1 The Promise of Fixed Effects for Nonexperimental Research... 1 

1.2 The Paired-Comparison t-Test as a Fixed Effects Method........ 2 

1.3 Costs and Benefits of Fixed Effects Methods............................ 3 

1.4 Why Are These Methods Called “Fixed Effects”?...................... 5 

1.5 Fixed Effects Methods in SAS/STAT........................................... 6 

1.6 What You Need to Know ............................................................. 6 

1.7 Computing ................................................................................... 7 
 

Chapter 2  Fixed Effects Methods for Linear Regression.................. 9 
2.1 Introduction.................................................................................. 9 

2.2 Estimation with Two Observations Per Person ........................ 10 

2.3 Extending the Model ................................................................. 15 

2.4 Estimation with PROC GLM for More Than Two Observations      

Per Person ................................................................................. 19 

2.5 Fixed Effects versus Random Effects....................................... 25 

2.6 A Hybrid Method........................................................................ 32 

2.7 An Example with Unbalanced Data .......................................... 38 

2.8 Summary .................................................................................... 46 
 
Chapter 3  Fixed Effects Methods for Categorical  
Chapter 3  Response Variables ...................................................... 47 

3.1 Introduction................................................................................ 47 

3.2 Logistic Models for Dichotomous Data with Two Observations 

 Per Person ................................................................................. 49 

3.3 Estimation of Logistic Models for Two or More Observations       

Per Person ................................................................................. 57 

3.4 Fixed Effects versus Random Effects....................................... 62 

3.5 Subject-Specific versus Population-Averaged Coefficients.... 64 

3.6 A Hybrid Model .......................................................................... 66 

3.7 Fixed Effects Methods for Multinomial Responses ................. 70 

3.8 Summary .................................................................................... 77 



iv   Contents  

 
Chapter 4  Fixed Effects Regression Methods for Count Data ........ 79 

4.1 Introduction................................................................................ 79 

4.2 Poisson Models for Count Data with Two Observations Per 

 Individual.................................................................................... 80 

4.3 Poisson Models for Data with More Than Two Observations  

 Per Individual ............................................................................. 86 

4.4 Fixed Effects Negative Binomial Models for Count Data ........ 93 

4.5 Comparison with Random Effects Models and GEE 

            Estimation .................................................................................. 97 

4.6 A Hybrid Approach .................................................................. 101 

4.7 Summary .................................................................................. 104 
 
Chapter 5  Fixed Effects Methods for Event History Analysis ....... 107 

5.1 Introduction.............................................................................. 107 

5.2 Cox Regression........................................................................ 108 

5.3 Cox Regression with Fixed Effects ......................................... 112 

5.4 Some Caveats.......................................................................... 116 

5.5 Cox Regression Using the Hybrid Method............................. 116 

5.6 Fixed Effects Event History Methods for                         

Nonrepeated Events ................................................................ 117 

5.7 Summary .................................................................................. 123 
 
Chapter 6  Linear Fixed Effects Models with PROC CALIS............ 125 

6.1 Introduction.............................................................................. 125 

6.2 Random Effects as a Latent Variable Model .......................... 126 

6.3 Fixed Effects as a Latent Variable Model ............................... 130 

6.4 A Compromise between Fixed Effects and Random 

 Effects ...................................................................................... 132 

6.5 Reciprocal Effects with Lagged Predictors ............................ 134 

6.6 Summary and Conclusion ....................................................... 137 
 
References .................................................................................. 139 
Index............................................................................................ 143 
 

 



 

 

Acknowledgments 
 

For their detailed comments and suggestions, I would like to thank Andrew Karp, Guang 
Guo, Mike Patteta and David Schlotzhauer.  For permission to use their data in the examples, 
I am indebted to Nicholas Christakis, Paula England, Sharon Harlan, Anne Keane, and Peter 
Tice.  As usual, my editor, Judy Whatley, deserves a huge amount of credit for persistently 
but gently prodding me to finish this book.  



vi 

 

 



 

 

 
 
 

 

 

 

Introduction to Fixed 
Effects Methods 
 
 
1.1 The Promise of Fixed Effects for Nonexperimental Research ........... 1 
1.2 The Paired-Comparisons t-Test as a Fixed Effects Method .............. 2 
1.3 Costs and Benefits of Fixed Effects Methods................................... 3 
1.4 Why Are These Methods Called “Fixed Effects”? ............................. 5 
1.5 Fixed Effects Methods in SAS/STAT ................................................ 6 
1.6 What You Need to Know.................................................................. 6 
1.7 Computing...................................................................................... 7 
 

1.1  The Promise of Fixed Effects for Nonexperimental  
       Research 

Every empirical researcher knows that randomized experiments have major advantages over 
observational studies in making causal inferences.  Randomization of subjects to different 
treatment conditions ensures that the treatment groups, on average, are identical with respect 
to all possible characteristics of the subjects, regardless of whether those characteristics can 
be measured or not.  If the subjects are people, for example, the treatment groups produced by 
randomization will be approximately equal with respect to such easily measured variables as 
race, sex, and age, and also approximately equal for more problematic variables like 
intelligence, aggressiveness, and creativity.   

In nonexperimental studies, researchers often try to approximate a randomized experiment by 
statistically controlling for other variables using methods such as linear regression, logistic 
regression, or propensity scores.  While statistical control can certainly be a useful tactic, it 
has two major limitations.  First, no matter how many variables you control for, someone can 
always criticize your study by suggesting that you left out some crucial variable. (Such 
critiques are more compelling when that crucial variable is named). As is well known, the 
omission of a key covariate can lead to severe bias in estimating the effects of the variables 
that are included. Second, to statistically control for a variable, you have to measure it and 
explicitly include it in some kind of model. The problem is that some variables are 
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notoriously difficult to measure. If the measurement is imperfect (and it usually is), this can 
also lead to biased estimates.  So in practice, causal inference via statistical adjustment 
usually runs a poor second to the randomized experiment.  

It turns out, however, that with certain kinds of nonexperimental data we can get much closer 
to the virtues of a randomized experiment.  Specifically, by using the fixed effects methods 
discussed in this book, it is possible to control for all possible characteristics of the 
individuals in the study—even without measuring them—so long as those characteristics do 
not change over time.  I realize that this is a powerful claim, and it is one that I will take pains 
to justify as we go along.  What is also remarkable is that fixed effects methods have been 
lying under our noses for many years.  If the dependent variable is quantitative, then fixed 
effects methods can be easily implemented using ordinary least squares linear regression.  
When the dependent variable is categorical, somewhat more sophisticated methods are 
necessary, but even then the fixed effects approach is a lot easier than many alternative 
methods.   

There are two key data requirements for the application of a fixed effects method. First, each 
individual in the sample must have two or more measurements on the same dependent 
variable.  Second, for at least some of the individuals in the sample, the values of the 
independent variable(s) of interest must be different on at least two of the measurement 
occasions.   

1.2  The Paired-Comparisons t-Test as a Fixed Effects  
       Method 

Perhaps the simplest design that meets these two requirements is a before-after study.  
Suppose, for example, that 100 people volunteer to participate in a weight loss program.  
They all get weighed when they enter the study, producing the variable W1.  All 100 people 
are then given a new medication believed to facilitate weight loss.  After two months on this 
medication, they are weighed again, producing the variable W2.  So we have measurements of 
weight on two occasions for each participant.  The participants are off the medication for the 
first measurement and are on the medication for the second. 

How should such data be analyzed?  Before answering that question, let’s first concede that 
this is not an ideal study design, most importantly because there is no control group of people 
who don’t receive the medication at either time.  Nevertheless, the application of fixed effects 
methods has all the virtues that I claimed above.  The objective here is to test the null 
hypothesis that mean weight at time 1 is the same as mean weight at time 2, against the 
alternative that mean weight is lower at time 2. In this case, an easily applied fixed effects 
method is one that is taught in most introductory statistics courses under the name of paired-
comparisons t-test or paired-differences t-test.  The steps are:  

1. Form D = W2 – W1. 

2. Calculate D , the mean of D. 

3. Test whether D is significantly less than 0.   

The third step is accomplished by dividing D  by its estimated standard error ns / , where s 
is the sample standard deviation of D, and n is the sample size.  The resulting test statistic has 
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a t distribution with n – 1 degrees of freedom under the null  hypothesis (assuming that D is 
normally distributed).   

If D is significantly less than 0, what can we conclude?  Well, we can’t be sure that the 
medication caused the weight loss, because it’s possible that something else happened to 
these people between time 1 and time 2.  However, we can be sure that the difference in 
average weight between the two time points is not explainable by stable characteristics of the 
people in the study.  In other words, we can be quite confident that the weight loss was not 
produced by changes in race, gender, parental wealth, or intelligence.   

While this conclusion may seem obvious, it’s helpful to consider a mathematical formulation 
as a way of introducing some of the ideas that underlie the more complicated models 
considered later.  Let  
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where Wi1 is the weight of person i at time 1, and similarly Wi2 is the weight at time 2. In this 
model, μ is the baseline average weight, and G denotes the change in the average from time 1 
to time 2.  The disturbance terms Hi1 and Hi2 represent random variation that is specific to a 
particular individual at a particular point in time.  As in other linear models, one might 
assume that Hi1 and Hi2 each have an expected value of 0.  The term Di represents all the 
person-specific variation that is stable over time.  Thus Di can be thought to include the 
effects of such variables as race, gender, parental wealth, and intelligence.   

When we form the difference score, we get 

( )12 iiiD HHG �+=  

which shows that both the baseline mean μ and the stable individual variation Di disappear 
when we compute difference scores.  Therefore, the stable individual differences can have no 
effect on our conclusions, even if Di is correlated with Hi1 or Hi2.  

The essence of a fixed effects method is captured by saying that each individual serves as his 
or her own control.  That is accomplished by making comparisons within individuals (hence 
the need for at least two measurements), and then averaging those differences across all the 
individuals in the sample.  How this is accomplished depends greatly on the characteristics of 
the data and the design of the study.   

1.3  Costs and Benefits of Fixed Effects Methods 
As already noted, the major attraction of fixed effects methods in nonexperimental research is 
the ability to control for all stable characteristics of the individuals in the study, thereby 
eliminating potentially large sources of bias.  Within-subject comparisons have also been 
popular in certain kinds of designed experiments known as changeover or crossover designs 
(Senn 1993).  In these designs, subjects receive different treatments at different times, and a 
response variable is measured for each treatment.  Ideally, the order in which the treatments 
are received is randomized.  The objective of the crossover design is not primarily to reduce 
bias, but to reduce sampling variability and hence produce more powerful tests of hypotheses. 
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The rationale is that by differencing out the individual variability across subjects, one can 
eliminate much of the error variance that is present with conventional experimental designs in 
which each subject receives only one treatment.   

By contrast, when fixed effects methods are applied to nonexperimental data, there is often an 
increase in sampling variability relative to alternative methods of analysis.   The reason is 
that in the typical observational study, the independent variables of interest vary both within 
and between subjects.  Suppose, for example, that one of the independent variables is 
personal income, measured annually for five successive years.  While there might be 
considerable within-person variation in income over time, the bulk of the variation is likely to 
be between persons. 

Fixed effects methods completely ignore the between-person variation and focus only on the 
within-person variation.  Unfortunately, discarding the between-person variation can yield 
standard errors that are considerably higher than those produced by methods that utilize both 
within- and between-person variation.  So why do it?  The answer is that the between-person 
variation is very likely to be contaminated by unmeasured personal characteristics that are 
correlated with income.  By restricting ourselves to the within-person variation, we eliminate 
that contamination and are much more likely to get unbiased estimates.   

So what we’re dealing with is a trade-off between bias and sampling variability.  For 
nonexperimental data, fixed effects methods tend to reduce bias at the expense of greater 
sampling variability.  Given the many reasons for expecting bias in observational studies, I 
think this is usually an attractive bargain.  Nevertheless, one crucial limitation to fixed effects 
methods arises when the ratio of within- to between-person variance declines to 0:  fixed 
effects methods cannot estimate coefficients for variables that have no within-subject 
variation.  Hence, a fixed effects method will not give you coefficients for race, sex, or 
region of birth. Among adults, it won’t be very helpful in estimating effects of height or years 
of schooling (although there may be a little within-person variation on the latter).   Keep in 
mind, however, that all these stable variables are controlled in a fixed effects regression, even 
if there are no measurements of them.  In fact, the control is likely to be much more effective 
than in conventional regression.  And as we’ll see later, you can include interactions between 
stable variables such as sex and variables that vary over time.  But for most observational 
studies, fixed effects methods are primarily useful for investigating the effects of variables 
that vary within subject.   

For experimental data, the situation with respect to bias and sampling variability is exactly 
reversed.  Bias is eliminated by giving the same set of treatments to all subjects and by 
randomizing the order in which the treatments are presented.  The result is approximately 
zero correlation between treatment and stable characteristics of the subjects, which means 
that there is no need for fixed effects to reduce bias.  On the other hand, by design, all the 
variation on the independent variables (the treatments) is within subjects.  So no information 
is lost by restricting attention to the within-subject variation.  Indeed, standard errors can be 
greatly reduced by fixed effects methods because the error term has smaller variance. 
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1.4  Why Are These Methods Called “Fixed Effects”? 
The name “fixed effects” is a source of considerable confusion. As we shall see, the basic 
idea is very simple.  Consider the linear model 

ijiijij xY HDEE +++= 10  

where the i subscript refers to different persons and j refers to different measurements within 
persons i.e., the same variable measured at different points in time.  In conventional linear 
model terminology, E1 xij is described as a fixed effect because the xij terms are all measured 
values and E1 is a fixed parameter.  On the other hand, Hij is regarded as a random variable 
with a probability distribution, and we make certain assumptions about this distribution.  For 
example, we might assume that Hij has a normal distribution with mean 0 and variance V2.  So 
the typical linear model has both fixed components and random components.   

What about the term Di, which we use to represent all stable characteristics of persons?  Here 
we have an important choice between treating Di as either fixed or random.  Some methods, 
such as the so-called mixed models estimated by PROC MIXED, treat Di as a random 
variable with a specified probability distribution (usually normal, homoscedastic, and 
independent of all measured variables).  In the econometric literature, these are called random 
effects models. In fixed effects models, however, the Di term is treated as a set of fixed 
parameters, which may either be estimated directly or conditioned out of the estimation 
process.  Hence the name, “fixed effects.”  

Which is better, fixed effects or random effects?  That depends on your objectives. In the 
preceding section, I already described the advantages and disadvantages of fixed effects 
methods.  The advantages and disadvantages of random effects methods are the mirror image.  
Random effects methods do not control for unmeasured, stable characteristics of the 
individuals.  That’s because the Di terms are virtually always assumed to be uncorrelated with 
the measured variables that are included in the model.  On the other hand, with random 
effects you can estimate the effects of stable covariates such as race and gender.  And because 
they use variation both within and between individuals, random effects methods typically 
have less sampling variability than fixed effects methods.  Although the primary focus of this 
book is on fixed effects methods, I will often contrast those methods with alternative random 
effects approaches. 

In my view, then, the decision to treat the between-person variation as fixed or random 
should depend largely on 

• whether it’s important to control for unmeasured characteristics of individuals 
• whether it’s important to estimate the effects of stable covariates 
• whether one can tolerate the substantial loss of information that comes from discarding the 

between-individual variation 
 

In the literature on ANOVA and experimental design, however, the decision between fixed 
and random effects is often described in quite different terms.  Consider the following 
characterization: 
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Common practice is to regard the treatment effects as fixed if those treatment 
levels used are the only ones about which inferences are sought . . . . If 
inferences are sought about a broader collection of treatment effects than 
those used in the experiment, or if the treatment levels are not selected 
purposefully . . . , it is common practice to regard the treatment effects as 
random  (LaMotte 1983, pp. 138–139).  

According to this view, it would nearly always make more sense to treat the between-person 
variation represented by Di as random, because then one can make inferences to broader 
populations than the sample in hand.  But for the kinds of applications considered in this 
book, I believe that argument is mistaken, for two reasons.  First, the purpose of including Di 
in the equation is usually not because we want to estimate or test hypotheses about the 
between-person effects.  Instead, the goal is to estimate the coefficients of other variables 
while controlling for unmeasured covariates and adjusting for lack of independence among 
the multiple observations for each person.  For these purposes, it’s irrelevant whether 
inferences about Di can or cannot be generalized to larger populations.  Second, fixed effects 
models are generally much less restrictive than random effects models, and thus these models 
are more likely to represent the data in a realistic way.  In fact, for linear models it has been 
shown that random effects estimators are a special case of fixed effects estimators (Mundlak 
1978).   

1.5  Fixed Effects Methods in SAS/STAT 
Different kinds of dependent variables require different kinds of fixed effects methods.  SAS  
has a variety of procedures that can be used to implement fixed effects methods, although the 
original  programmers may not have had such applications in mind.  For linear models, 
PROC GLM is probably the most convenient procedure for performing a fixed effects 
analysis, although PROC REG and PROC MIXED can also be used with a little effort.  For 
fixed effects logistic regression, PROC LOGISTIC is the most convenient procedure, but 
PROC GENMOD can be used in applications where there are only two observations per 
individual.  For fixed effects Poisson regression, PROC GENMOD appears to be the only 
choice.  For fixed effects survival analysis, PROC PHREG is the procedure of choice, 
although PROC LOGISTIC can be used in some circumstances. Finally, PROC CALIS can 
be useful for fitting fixed effects linear models with lagged endogenous variables.  

1.6  What You Need to Know 
To understand this book, how much you should already know depends on how far you want 
to go. To read chapter 2 on linear models, you need to be familiar with multiple linear 
regression.  That means that you should know something about the assumptions of the linear 
regression model and about estimation of the model via ordinary least squares.  Ideally, you 
should have a substantial amount of practical experience using multiple regression on real 
data and should feel comfortable interpreting the output from a regression analysis.  As part 
of this knowledge, you must certainly know the basic principles of statistical inference: 
standard errors, confidence intervals, hypothesis tests, p-values, bias, efficiency, and so on.   

To read chapter 3, you should have, in addition to the requirements for chapter 2, a 
knowledge of logistic regression at about the level of the first three chapters of my 1999 book 
Logistic Regression Using the SAS System: Theory and Application.  That is, you should 
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understand the basic model for binary logistic regression, how to estimate that model via 
maximum likelihood, and how to interpret the results in terms of odds ratios.  Some 
familiarity with PROC LOGISTIC is helpful, but not essential.   

For chapter 4 on fixed effects Poisson regression, you should have a basic familiarity with the 
Poisson regression model, discussed in chapter 9 of Logistic Regression Using the SAS 
System: Theory and Application.  I’ll use PROC GENMOD to estimate the model, so 
previous experience with this procedure will be helpful. 

For chapter 5 on survival analysis, some basic knowledge of the Cox proportional hazards 
model and partial likelihood estimation is essential.  These methods are described in my 1995 
book Survival Analysis Using SAS: A Practical Guide, along with instruction on how to use 
the PHREG procedure. 

Finally, to read chapter 6 you should have some knowledge of linear structural equation 
models (SEMs) that include both observed and latent variables.  A good introduction to this 
topic for SAS users is A Step-by-Step Approach to Using the SAS System for Factor Analysis 
and Structural Equation Modeling (Hatcher 1994). 

I have tried to keep the mathematics to a minimal level throughout the book.  In particular, 
there is no calculus and little use of matrix notation.  Nevertheless, to simplify the 
presentation of regression models, I frequently use the vector notation  
                                            . While it would be helpful to have some knowledge of maximum 
likelihood estimation, it’s hardly essential.  With regard to SAS, the more experience you 
have with SAS/STAT and the SAS DATA step, the easier it will be to follow the 
presentation of SAS programs.  On the other hand, most of the programs presented in this 
book are fairly simple and short, so don’t be intimidated if you’re just beginning to learn 
SAS. 

1.7  Computing 
All the computer input and output displayed in this book was produced by and for SAS 9.1 
for Windows.  Occasionally I point out differences between the syntax of SAS 9.1 and earlier 
releases.  I use the following convention for presenting SAS programs:  All words that are 
part of the SAS language are shown in upper case.  All user-specified variable names and 
data set names are in lower case.  In the main text itself, both SAS keywords and user-
specified variables are in upper case. 

The output displays were produced with the SAS Output Delivery System.  To avoid 
unnecessary distraction, I do not include the ODS statements in the programs shown in the 
book.  However, the reader who would like to duplicate those displays can do so with the 
following code before and after the procedure statements:  

OPTIONS LS=75 PS=3000 NODATE NOCENTER NONUMBER; 
ODS LISTING CLOSE; 
ODS RTF FILE='c:\book.rtf' STYLE=JOURNAL BODYTITLE; 
 
---PROC STATEMENTS HERE--- 
 
ODS RTF CLOSE; 
ODS LISTING; 
 

kk xxx EEEE +++= ...110
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All the examples were run on a Dell Optiplex GX270 desktop computer running Windows 
XP at 3 gigahertz with 1 gibabyte of physical memory.  
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2.1  Introduction 
In chapter 1, I showed how the conventional paired-comparisons t-test could be interpreted as 
a fixed effects method that controlled for all stable characteristics of the individual.  The 
model discussed there was actually a special case of a more general linear model for 
quantitative response variables.  That model is the subject of this chapter.  

First some notation.  Let yit be the value of the response variable for individual i on occasion 
t.  To keep things concrete, I’ll refer to the individuals as persons and the occasions as 
different times at which the person is measured.  However, in some applications i could index 
groups and t could index different individuals within those groups.   

We also have some predictor variables:  zi  is a column vector of variables that describe 
persons but do not vary over time; xit is a column vector of variables that vary both over 
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individuals and over time for each individual.  (If you’re not comfortable with vectors, you 
can read these as single variables).  The basic model that we will use is 

          itiiittit zxy HDJEμ ++++=                 i = 1,…, n; t = 1,…, T                          (2.1) 
 
In this equation μt is an intercept that is allowed to vary with time, E and J are row vectors of 
coefficients, and Hit is a random disturbance term. As in chapter 1, Di represents all 
differences between persons that are stable over time and not otherwise accounted for by Jzi.  
In a fixed effects model, we regard these as fixed parameters, one per person.  That implies 
that xit may be correlated with Di.   

As in the conventional linear model, we assume that Hit has a mean of 0, that it has constant 
variance, and that cov(Hit, Hjt) = 0 for i  j.  Unlike conventional linear regression, we do not 
require that Hit be uncorrelated with zi or Di.  On the other hand, the assumptions about the 
relationship between Hit and xit are somewhat stronger than usual.  Specifically, for the 
methods used in this chapter, we assume that xit is strictly exogenous, which means that xit at 
any time t is statistically independent of the random disturbances at all points in time, not just 
at time t.  The most important aspect of this assumption is that xit cannot depend on y at 
earlier points in time.  In chapter 6, however, we shall relax this assumption to allow for 
reciprocal relationships between the two variables.  

Under these assumptions, equation (2.1) can be optimally estimated by ordinary least squares 
(OLS).  However, depending in part on the structure of the data, there are a variety of ways to 
implement OLS for the fixed effects model and a number of special considerations that need 
to be addressed.  Let’s first see how to do it in the relatively simple situation in which each 
individual has exactly two measurements on both the response variable and the time-varying 
predictor variables.  

2.2  Estimation with Two Observations Per Person   
When there are exactly two observations per person (t = 1, 2), estimation of the fixed effects 
model can be easily accomplished by OLS regression using difference scores for all the time-
varying variables.  The equations for the two time points are 
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            (2.2) 

Subtracting the first equation from the second, we get 

)()()( 12121212 iiiiii xxyy HHEμμ �+�+�=�             (2.3) 

Notice that both Jzi and Di have been “differenced out” of the equation.  Consequently, we 
cannot estimate J, the coefficients for the time-invariant predictors.  Nevertheless, this 
method completely controls for the effects of these variables.  Furthermore, if Hi1 and Hi2 both 
satisfy the assumptions of the standard linear model, then their difference will also satisfy 
those assumptions (even if Hi1 and Hi2 are correlated).  So OLS applied to the difference scores 
should give unbiased and efficient estimates of E, the coefficients for the time-varying 
predictors. 



Chapter 2  Fixed Effects Methods for Linear Regression   11 

Let’s try this on some real data.  The sample consists of 581 children who were interviewed 
in 1990, 1992, and 1994 as part of the National Longitudinal Survey of Youth (Center for 
Human Resource Research 2002).  We’ll look at three variables that were measured in each 
of the three interviews: 

ANTI antisocial behavior, measured with a scale ranging from 0 to 6 

SELF self-esteem, measured with a scale ranging from 6 to 24 

POV poverty status of family, coded 1 for in poverty, otherwise 0 

 
In this section, we will use only the data from 1990 and 1994. Our goal is to estimate a 
regression model of the form: 

ANTI(t) = μ(t) + E1SELF(t) + E2POV(t) + H(t) 

for t = 1, 2.  That is, we shall assume that poverty and self-esteem at time t affect antisocial 
behavior at the same time.  I recognize that there may be uncertainties about causal ordering 
for these variables, but such difficulties will be ignored in this chapter.  A related issue is 
whether the independent variables should be lagged, but with only two time points, it’s 
impossible to estimate a model with both lags and fixed effects. Another implicit assumption 
is that the regression coefficients are the same at each time point, but that assumption can be 
tested or relaxed, as we’ll see later. 

As a point of departure, I begin by estimating the regression equation for each year separately 
using PROC REG.  The SAS data set MY.NLSY has one observation per person, with 
separate variables for the measurements in the different years.  The following SAS code is 
used for estimating the model: 

PROC REG DATA=my.nlsy; 
   MODEL anti90=self90 pov90; 
   MODEL anti94=self94 pov94; 
RUN; 
 

Please note that this and all other data sets used in this book are available for download at 
support.sas.com/companionsites. 

Selected portions of the output are displayed in Output 2.1.   We see that both of the 
independent variables are statistically significant at beyond the .05 level in both years.  As 
one might expect, higher self esteem is associated with lower levels of antisocial behavior, 
whereas poverty is associated with higher levels of antisocial behavior.  The effect of SELF is 
slightly larger in 1994 than in 1990, while the reverse is true for POV. 
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Output 2.1  Regressions of ANTI on POV and SELF in 1990 and 1994 
Dependent Variable: anti90 child antisocial behavior in 1990 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.37482 0.38447 6.18 <.0001

self90 1 -0.05014 0.01870 -2.68 0.0075

pov90 1 0.59473 0.12629 4.71 <.0001

 
Dependent Variable: anti94 child antisocial behavior in 1994 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.88797 0.44688 6.46 <.0001

self94 1 -0.06388 0.02113 -3.02 0.0026

pov94 1 0.54712 0.14765 3.71 0.0002

 
The problem with these regressions is that they do not control for any time-invariant 
variables. Rather than putting such variables into the model, we’ll proceed directly to the 
difference equation, which controls for all time-invariant variables.  To do this, we first need 
a DATA step to create the difference scores: 

 
DATA diff; 
   SET my.nlsy; 
   antidiff=anti94-anti90; 
   povdiff=pov94-pov90; 
   selfdiff=self94-self90; 
PROC REG DATA=diff; 
   MODEL antidiff=selfdiff povdiff; 
RUN; 
 

Results are shown in Output 2.2.  The coefficient for SELFDIFF is about midway between 
the two coefficients for SELF in Output 2.1, but the coefficient for POVDIFF is markedly 
lower than the two coefficients in Output 2.1 and is far from statistically significant.  It thus 
appears that although there might be an association between poverty status and antisocial 
behavior, that association is largely cross-sectional and is perhaps explainable by their mutual 
dependence on other variables.  But changes in poverty status do not seem to be associated 
with changes in antisocial behavior.  
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Output 2.2  Regression with Difference Scores 
Dependent Variable: antidiff 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.20923 0.06305 3.32 0.0010

selfdiff 1 -0.05615 0.01531 -3.67 0.0003

povdiff 1 -0.03631 0.12827 -0.28 0.7772
 

One concern is that there might be too few changes in poverty status to reliably estimate the 
effect of this variable. Output 2.3 shows that although the majority of children did not change 
in status, about 24% did change in one direction or another. This change should be sufficient 
to get a reliable estimate. In fact, the standard error for the poverty coefficient in the 
difference equation is about the same as the smaller of the two standard errors for the cross-
sectional coefficients in Output 2.1.  

Output 2.3  Cross-Tabulation of Poverty Status in 1990 and 1994 

                     pov90         pov94 

Frequency 0 1 Total

0 321 65 386

1 73 122 195

Total 394 187 581

 
Regression with difference scores is not the only way to produce OLS estimates of the fixed 
effects model for these data.  The following alternative method is computationally 
cumbersome, but instructive.  The first step is to reorganize the data so that, instead of one 
observation per person, there is one observation per person-year.  The same variable name is 
used for the measurements of each conceptual variable in the two years.  The new data set 
also contains an ID variable that has the same value for both years for the same person, and a 
TIME variable with a value of 0 for 1990 and 1 for 1994.  Here is the SAS code to produce 
this new data set: 

 
DATA persyr2; 
   SET my.nlsy; 
   id=_N_; 
   time=0; 
   anti=anti90; 
   self=self90; 
   pov=pov90; 
   OUTPUT; 
   time=1; 
   anti=anti94; 
   self=self94; 
   pov=pov94; 
   OUTPUT; 
RUN; 
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The new data set has 1162 observations, two for each of the 581 children.  Equation (2.1) is 
now estimated in its original form 

itiittit xy HDEμ +++=  

except that Jzi is removed because it is perfectly collinear with Di. To allow for different 
intercepts in the two years, the regression includes the TIME variable.  To estimate the Di 
terms, the regression model includes 580 dummy variables, one for each child except the last.  
This would be awkward in PROC REG because all the dummies would have to be created in 
a DATA step.  It’s easy in PROC GLM, however, because the CLASS statement can create 
the dummies automatically: 

 
PROC GLM DATA=persyr2; 
   CLASS id; 
   MODEL anti=self pov time id / SOLUTION; 
RUN; 
 

The SOLUTION option tells GLM to print out the coefficient estimates and their associated 
statistics.  (This is unnecessary when there are no CLASS variables). Selected results are 
shown in Output 2.4.  Only the first 10 coefficients for the dummy variables are shown.   

The most important fact about this output is that the coefficients for SELF and POV (along 
with their standard errors, t-statistics, and p-values) are identical to those in Output 2.2, which 
was based on the difference equation.  Furthermore, the coefficient for TIME is identical to 
the intercept in Output 2.2.  So it seems that we get equivalent results using these two 
computational methods.  But the dummy variable method is much slower than the difference 
score method because it requires the inversion of a very large matrix.  On my PC, PROC 
REG took .01 seconds to estimate the difference-score model, whereas PROC GLM took 3.3 
seconds to estimate the dummy variable model. 

 
Output 2.4  PROC GLM Results for Person-Year Data Set 

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 1.508435913 0.81214706 1.86 0.0638

self -0.056148639 0.01530506 -3.67 0.0003

pov -0.036308618 0.12827438 -0.28 0.7772

time 0.209233732 0.06305436 3.32 0.0010

id        1 0.658525908 1.06750664 0.62 0.5376

id        2 -0.377782710 1.06740470 -0.35 0.7235

id        3 4.650291609 1.06769622 4.36 <.0001

continued 
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Output 2.4  (continued) 

Parameter Estimate Standard Error t Value Pr > |t|

id        4 1.122217290 1.06740470 1.05 0.2935

id        5 0.178365929 1.06804248 0.17 0.8674

id        6 0.594142970 1.06716799 0.56 0.5779

id        7 2.925697051 1.06689988 2.74 0.0063

id        8 1.869548412 1.06724956 1.75 0.0803

id        9 0.037994330 1.06685908 0.04 0.9716

id        10 4.313399772 1.06781851 4.04 <.0001

 
Using the same person-year data configuration, it’s possible to greatly reduce the 
computation time by not explicitly estimating the dummy variable coefficients.  I’ll explain 
this method in more detail in section 2.4, but let’s first look at how it is implemented.  In 
PROC GLM, we take the variable ID out of the MODEL and CLASS statements, and we put 
it in an ABSORB statement instead.  Here is the new program: 

PROC GLM DATA=persyr2; 
   ABSORB id; 
   MODEL anti=self pov time; 
RUN; 
 

This program took about the same computing time as using PROC REG with the difference 
scores.  It’s apparent that the results in Output 2.5 are identical to those found in Outputs 2.4 
and 2.2.  As we’ll see in section 2.4, this last method for OLS estimation of the fixed effects 
model is generally preferred when there are more than two observations per person.   

Output 2.5  GLM Results Using the ABSORB Statement 

Parameter Estimate Standard Error t Value Pr > |t| 

self -.0561486395 0.01530506 -3.67 0.0003 

pov -.0363086183 0.12827438 -0.28 0.7772 

time 0.2092337322 0.06305436 3.32 0.0010 

2.3  Extending the Model 
The model of equation (2.2) is somewhat restrictive because it assumes that the regression 
slopes are invariant across time.  This assumption can be tested and relaxed.  Consider the 
model  

22222

11111

iiiii

iiiii

zxy
zxy

HDJEμ
HDJEμ

++++=
++++=

             (2.4) 
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which is identical to equation (2.2) except that the E coefficient is allowed to differ for times 
1 and 2. The difference score equation then becomes 

)()( 1211221212 iiiiii xxyy HHEEμμ �+�+�=�  

which, with a little algebra, can also be written as 

)()()()( 121121221212 iiiiiii xxxyy HHEEEμμ �+�+�+�=�  

This equation says that both (x2 – x1) and x1 should appear as independent variables in the 
difference equation.  If the coefficient for x1 is significantly different from 0, that’s evidence 
that E1 and E2 are not equal.  

Let’s try it for the NLSY data.  Here is the program:  

PROC REG DATA=diff; 
   MODEL antidiff=selfdiff povdiff self90 pov90; 
RUN; 
 

Results in Output 2.6 provide no evidence that the effects of poverty and self-esteem on 
antisocial behavior are different in 1990 and 1994.  Both coefficients for the time 1 variables 
are far from statistically significant.  

Output 2.6  Difference Regression with Time 1 Variables 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.64837 0.52113 1.24 0.2139

selfdiff 1 -0.06685 0.01960 -3.41 0.0007

povdiff 1 -0.01410 0.15110 -0.09 0.9257

self90 1 -0.02226 0.02511 -0.89 0.3757

pov90 1 0.04126 0.15626 0.26 0.7919

  

 
Another way to extend the model is to allow the coefficients for the time-invariant variables 
to change with time, as in 

 
22222

11111

iiiii

iiiii

zxy
zxy

HDJEμ
HDJEμ

++++=
++++=

 

 
Here, the J coefficient is allowed to differ at the two time points, leading to the difference 
equation 

)()()()( 12121221212 iiiiiii zxxyy HHJJEμμ �+�+�+�=�  

In this case z does not drop out of the equation and must be included in the regression model.  
This result teaches us that fixed effects regression only controls for those time-invariant  
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variables whose effects on the dependent variable are also time invariant.  If a variable does 
not have time-invariant effects, it must be explicitly included in the model.   

The NLSY data set has several time-invariant variables that are worth examining as possible 
predictors: 

BLACK 1 if child is black, otherwise 0 

HISPANIC 1 if child is Hispanic, otherwise 0 

CHILDAGE child’s age in 1990 

MARRIED 1 if mother was currently married in 1990, otherwise 0 

GENDER 1 if female, 0 if male 

MOMAGE mother’s age at birth of child 

MOMWORK 1 if mother was employed in 1990, otherwise 0 

 
These variables are now included in the difference score regression: 

PROC REG DATA=diff; 
   MODEL antidiff=selfdiff povdiff black hispanic childage  
         married gender momage momwork; 
RUN; 
 

Results in Output 2.7 show that only one of the time-invariant variables, CHILDAGE, has a 
coefficient that even approaches statistical significance.  And the inclusion of the time-
invariant variables has very little impact on the coefficient estimates for SELFDIFF and 
POVDIFF.  We conclude that there is some evidence that the effect of CHILDAGE is 
different in 1990 and 1994, but there is little or no evidence for a change over time in the 
effects of the other time-invariant variables. 

Output 2.7  Difference Regression with Time Invariant Variables 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept 1 -0.82002 1.27227 -0.64 0.5195 

selfdiff 1 -0.05275 0.01554 -3.39 0.0007 

povdiff 1 -0.02670 0.12996 -0.21 0.8373 

black 1 -0.06179 0.14583 -0.42 0.6720 

hispanic 1 0.10518 0.16257 0.65 0.5179 

childage 1 0.21953 0.10735 2.05 0.0413 

married 1 -0.17487 0.14921 -1.17 0.2417 

gender 1 0.11065 0.12584 0.88 0.3796 

momage 1 -0.04415 0.02972 -1.49 0.1379 

momwork 1 -0.12445 0.13270 -0.94 0.3487 
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Results using the difference score method can also be replicated on the person-year data set, using 
PROC GLM with the ABSORB statement.  To test for changes in the coefficients for SELF and 
POV, we include interactions between these variables and TIME: 

PROC GLM DATA=persyr2; 
   ABSORB id; 
   MODEL anti=self pov time self*time pov*time; 
RUN; 
 

Results in Output 2.8 are equivalent to those in Output 2.6. 

Output 2.8  GLM with Interactions between TIME and Time-Varying Covariates 

Parameter Estimate Standard Error t Value Pr > |t| 

self -.0445833075 0.02002789 -2.23 0.0264 

pov -.0553562291 0.14951835 -0.37 0.7113 

time 0.6483709742 0.52113018 1.24 0.2139 

self*time -.0222626258 0.02511098 -0.89 0.3757 

pov*time 0.0412572182 0.15625947 0.26 0.7919 

 
To replicate the results in Output 2.7, we can use PROC GLM with interactions between 
TIME and the time-invariant predictors: 

PROC GLM DATA=persyr2; 
   ABSORB id; 
   MODEL anti=self pov time black*time hispanic*time  
         childage*time married*time gender*time  
         momage*time momwork*time; 
RUN; 
 

Results in Output 2.9 are, in fact, equivalent to those in Output 2.7.  Note that although the 
model includes interactions between TIME and the time-invariant predictors, it does not 
include the “main effects” of those covariates.  While this may seem contrary to conventional 
practice, it is not a problem for this kind of analysis.  In fact, if you tried to include the main 
effects, GLM would report coefficients of 0 with 0 degrees of freedom.  That’s because the 
time-invariant variables are perfectly collinear with the Di parameters that have been 
“conditioned” out of the regression equation. 
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Output 2.9  GLM with Interactions between TIME and Time-Invariant Covariates 

Parameter Estimate Standard Error t Value Pr > |t| 

self -.0527540181 0.01554026 -3.39 0.0007 

pov -.0267038294 0.12995869 -0.21 0.8373 

time -.8200195671 1.27227104 -0.64 0.5195 

time*black -.0617870014 0.14583481 -0.42 0.6720 

time*hispanic 0.1051814604 0.16256679 0.65 0.5179 

time*childage 0.2195306957 0.10734673 2.05 0.0413 

time*married -.1748734507 0.14921056 -1.17 0.2417 

time*gender 0.1106505035 0.12583960 0.88 0.3796 

time*momage -.0441493754 0.02971813 -1.49 0.1379 

time*momwork -.1244505238 0.13269724 -0.94 0.3487 

 
It’s also worth noting that, like interactions in general, the interactions between time and the 
time-invariant covariates have a dual interpretation:   

• The effect of the covariate varies with time. 
• The effect of time varies with the level of the covariate. 
 
Often the latter interpretation will be more compelling.  For example, the coefficient of .219 
for the CHILDAGE*TIME interaction says that with each one-year increase in age at time 1, 
the rate of change in antisocial behavior from time 1 to time 2 goes up by .219.  That is, older 
children have a more rapid rate of increase.   

2.4  Estimation with PROC GLM for More Than Two  
       Observations Per Person  

When each person has three or more measurements on the time-varying variables, it’s not 
obvious how to extend the method of difference scores.  One approach is to compute first-
difference scores for each pair of adjacent observations, yielding T – 1 observations for each 
individual.  Then the problem is to estimate a single model for the entire set while allowing 
for correlated errors.1  Another approach is the dummy variable method, which gives the 
correct results in this new situation but is computationally intensive.  In general, the easiest 
method is the one that was implemented in the last section using the ABSORB statement in 
PROC GLM.  We now consider that method in greater detail. 

                                                 
1 One reasonable method is to do generalized least squares on the difference equations, allowing for 
unrestricted correlations between the error terms from the same individual. In SAS, this can be done 
with PROC GENMOD using the REPEATED statement.   
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As before, our basic model is given by the equation 

itiittit xy HDEμ +++=                                   i = 1,…, n; t = 1,…, T 

where Di is a set of fixed parameters, Hit satisfies the assumptions of a standard linear model 
and xit is assumed to be strictly exogenous. OLS produces optimal estimates of the 
parameters, but direct application of OLS with dummy variables for the Di terms is 
computationally tedious.  It turns out, however, that we can get identical results by 
“conditioning out” the Di terms  and performing OLS on deviation scores.  That is, for each 
person and for each time-varying variable (both response variables and predictors), we 
compute the means over time for that person: 
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where ni is the number of measurements for person i.   Then we subtract the person-specific 
means from the observed values of each variable: 
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Finally, we regress y* on x*, plus variables to represent the effect of time.  This is what 
PROC GLM does when you use the ABSORB command.   

If you construct the deviation scores yourself (using, say, PROC MEANS and a DATA step) 
and then use PROC REG to estimate the regression, you will get the correct OLS regression 
coefficients for the time-varying predictors.  But the standard errors and p-values will be 
incorrect.  That’s because PROC REG calculates the degrees of freedom based on the number 
of variables on the MODEL statement, but it should actually include the number of dummy 
variables implicitly used to represent different persons in the sample (580 for the NLSY 
data).   Formulas are available to correct these statistics (Judge et al. 1985), but it’s much 
easier to let PROC GLM do it automatically.  When the ABSORB statement is used, GLM 
converts all variables to deviation scores, estimates the regression, and uses the correct 
degrees of freedom to compute standard errors and p-values. 

Let’s try this with the NLSY data, except now we also include data from the middle year, 
1992.  Again, the first step is to construct a data set with one observation for each person at 
each time point:  

DATA persyr3; 
   SET my.nlsy; 
   id=_N_; 
   time=1; 
   anti=anti90; 
   self=self90; 
   pov=pov90; 
   OUTPUT; 
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   time=2; 
   anti=anti92; 
   self=self92; 
   pov=pov92; 
   OUTPUT; 
   time=3; 
   anti=anti94; 
   self=self94; 
   pov=pov94; 
   OUTPUT; 
RUN; 
 

If there were more than three time points, it might be worthwhile to shorten this program by 
using arrays and a DO loop.  Note that TIME has been assigned values of 1, 2 and 3, which 
facilitates the use of a CLASS statement in PROC GLM.  This DATA step produced 1,743 
observations, three for each of the 581 children.   

The PROC GLM statements for estimating the basic model are virtually identical to those for 
the two-period case, except that we now use a CLASS statement to handle the three-valued 
TIME variable: 

PROC GLM DATA=persyr3; 
   ABSORB id; 
   CLASS time; 
   MODEL anti=self pov time / SOLUTION; 
RUN; 
 

Note that for this to work, the data set must be sorted by the variable specified on the 
ABSORB statement.  Of course, the DATA step that produced PERSYR3 did this 
automatically. 

Results in Output 2.10 are similar to what we found in Output 2.2 for two time points:  a 
highly significant effect of self-esteem with a coefficient of about –.055, and a nonsignificant 
effect of poverty.  TIME also has a significant effect, with antisocial behavior increasing over 
the three periods. 

Output 2.10  GLM Estimates of a Fixed Effects Model for Three Periods 

Dependent Variable: anti 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 584 3181.883112 5.448430 5.48 <.0001 

Error 1158 1151.232207 0.994156  

Corrected Total 1742 4333.115318  
 
 

R-Square Coeff Var Root MSE anti Mean

0.734318 60.91480 0.997074 1.636833

continued 
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Output 2.10  (continued) 

Source DF Type I SS Mean Square F Value Pr > F 

id 580 3142.448652 5.418015 5.45 <.0001 

self 1 23.966255 23.966255 24.11 <.0001 

pov 1 1.254392 1.254392 1.26 0.2615 

time 2 14.213813 7.106907 7.15 0.0008 
 
 

Source DF Type III SS Mean Square F Value Pr > F 

self 1 27.29362397 27.29362397 27.45 <.0001 

pov 1 1.44138475 1.44138475 1.45 0.2288 

time 2 14.21381348 7.10690674 7.15 0.0008 

 
 

Parameter Estimate Standard Error t Value Pr > |t| 

self -.0551514027 0.01052575 -5.24 <.0001 

pov 0.1124748908 0.09340988 1.20 0.2288 

time      1 -.2107365666 0.05879781 -3.58 0.0004 

time      2 -.1663431979 0.05856544 -2.84 0.0046 

time      3 0.0000000000 . . . 

 
We also learn from the output that 73% of the variation in antisocial behavior is between 
children, whereas the remaining 27% is within children (across time).  I got these numbers by 
dividing the Type I sum of squares for ID (3142.44) by the corrected total sum of squares 
(4333.12), which yields .73.  The square root of this number (.85) is an estimate of the 
intraclass correlation for these data.   Since the total R2 from the model is also .73, we 
conclude that the time-dependent predictors are not accounting for much additional variation. 

It’s also instructive to compare the results in Output 2.10 to what you get when the ABSORB 
command is omitted that is, OLS regression with no control for between-person variation.  
These results are shown in Output 2.11.  Notice first that the mean squared error in Output 
2.10 is less than half of what we see in Output 2.11.  That’s because the control for between-
person variation greatly reduces the error sum of squares (the R2 increases from .048 to .734).  
It also reduces the degrees of freedom (which would make the mean squared error larger), but 
in this case, the reduction is not nearly as rapid.  In data sets where the between-person 
proportion of variation in the dependent variable is small, the mean squared error could go up 
rather than down in a fixed effects model.   
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Output 2.11  Conventional OLS without Control for Between-Person Variation 

Dependent Variable: anti 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 4 208.312848 52.078212 21.94 <.0001 

Error 1738 4124.802470 2.373304  

Corrected Total 1742 4333.115318  
 
 

R-Square Coeff Var Root MSE anti Mean

0.048075 94.11792 1.540553 1.636833
 
 

Source DF Type III SS Mean Square F Value Pr > F 

self 1 86.3022527 86.3022527 36.36 <.0001 

pov 1 102.8341414 102.8341414 43.33 <.0001 

time 2 15.7786990 7.8893495 3.32 0.0362 

 
 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 2.959617390 0.23985318 12.34 <.0001 

self -0.066894066 0.01109311 -6.03 <.0001 

pov 0.517573842 0.07862856 6.58 <.0001 

time      1 -0.222741659 0.09059359 -2.46 0.0140 

time      2 -0.172135548 0.09043193 -1.90 0.0571 

time      3 0.000000000 . . . 

 
The root mean squared error directly affects the standard errors of the coefficients, so we 
might expect the standard errors to be smaller for the fixed effects regression than for the 
conventional regression. That’s true for SELF, where the fixed effects standard error is .0105 
while the conventional OLS standard error is .0111.  But for POV, the fixed effects standard 
error is .0934 and the conventional OLS standard error is .0786.  Why the difference?  The 
answer is that the standard errors depend not only on the root mean square error, but also on 
the relative proportion of within- and between-person variation on the predictor variables.  
Other things being equal, the greater the proportion of variation that is between persons on a 
given predictor variable, the larger the standard error of its fixed effects coefficient.  Other 
analysis shows that for SELF, 53% of the variation is between persons.  For POV, on the 
other hand, the between-person variation is 70%.  That’s why the standard error for POV 
went up rather than down under the fixed effects analysis. The ideal situation for a fixed 
effects analysis is when all of the variation on the time-varying predictors is within persons, 
but there’s still lots of between-person variation on the response variable. 
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As in the two-period case, we can also test whether the time-varying predictors have 
coefficients that vary with time by including interactions between them and TIME: 

PROC GLM DATA=persyr3; 
   ABSORB id; 
   CLASS time; 
   MODEL anti=self pov time self*time pov*time / SOLUTION; 
RUN; 
 

With high p-values for the two interactions, Output 2.12 shows no evidence for variation over 
time of the coefficients for SELF and POV. 

Output 2.12  Tests for Interaction between TIME and Time-Varying Predictors 

Source DF Type III SS Mean Square F Value Pr > F 

self 1 26.61340572 26.61340572 26.74 <.0001 

pov 1 1.34058714 1.34058714 1.35 0.2460 

time 2 3.72428319 1.86214160 1.87 0.1544 

self*time 2 2.62684393 1.31342197 1.32 0.2676 

pov*time 2 0.04291216 0.02145608 0.02 0.9787 

 
In a similar way, we can test for constancy of the effects of time-invariant predictors: 

PROC GLM DATA=persyr3; 
   ABSORB id; 
   CLASS time; 
   MODEL anti=self pov time black*time hispanic*time  
         childage*time married*time gender*time  
         momage*time momwork*time / SOLUTION; 
RUN; 
 

As shown in Output 2.13, there is no evidence that any of the time-invariant predictors has an 
effect that varies with time. 

Output 2.13  Tests for Interaction between TIME and Time-Invariant Predictors 

Source DF Type III SS Mean Square F Value Pr > F 

self 1 24.13352368 24.13352368 24.41 <.0001 

pov 1 1.28045845 1.28045845 1.30 0.2553 

time 2 0.48255089 0.24127545 0.24 0.7835 

black*time 2 4.99285922 2.49642961 2.53 0.0805 

hispanic*time 2 1.63509176 0.81754588 0.83 0.4376 

childage*time 2 5.06884670 2.53442335 2.56 0.0774 

married*time 2 1.21443928 0.60721964 0.61 0.5412 

continued 
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Output 2.13  (continued) 

Source DF Type III SS Mean Square F Value Pr > F 

gender*time 2 0.94702064 0.47351032 0.48 0.6195 

momage*time 2 2.77934289 1.38967145 1.41 0.2456 

momwork*time 2 3.47491248 1.73745624 1.76 0.1729 

 
In addition to PROC GLM, another SAS procedure, PROC TSCSREG (for time series cross 
section regression), also does OLS estimation of the fixed effects model.  PROC TSCSREG, 
which is a component of the ETS product, has one nice feature that I will discuss in the next 
section, a Hausman test of fixed effects versus random effects.  However, the downside of 
PROC TSCSREG is that it explicitly estimates coefficients for the dummy variables for the 
fixed effects and thus may use excessive computer time for large samples. 

2.5  Fixed Effects versus Random Effects 
It should come as no surprise to learn that fixed effects methods are not the only way to 
estimate regression models for longitudinal data.  There are several popular alternatives, 
many of which are readily available in SAS.  To fully appreciate both the strengths and 
weaknesses of the fixed effects method, we need to compare it with some of these 
alternatives.   

The closest cousin to the fixed effects model is the random effects or mixed model.  We start 
with the same basic equation: 

itiiittit zxy HDJEμ ++++=                i = 1,…, n; t = 1,…, T                                 (2.5) 

Now, however, instead of assuming that Di represents a set of fixed parameters, we suppose 
that each Di is a random variable with a specified probability distribution.  Typically, it is 
assumed that Di has a normal distribution with a mean of 0 and constant variance, and that it’s 
independent of zi, xit, and Hit.   

This random effects model can be readily estimated with PROC MIXED: 

PROC MIXED DATA=persyr3 COVTEST NOCLPRINT; 
   CLASS id time; 
   MODEL anti=pov self time / SOLUTION; 
   RANDOM INTERCEPT / SUBJECT=id; 
RUN; 
 

The COVTEST option requests a test statistic for the null hypothesis that the variance of Di = 
0. NOCLPRINT suppresses printing of the values of the CLASS variables (581 values for 
ID). The RANDOM statement is what introduces the person-level random component into 
the regression model.2  Here it says that the intercept is a random variable that differs for  

                                                 
2 The same results can be obtained with the following statement: 

   RANDOM id; 
However, with this statement, the computing time increases by a factor of about 20.  
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each value of the ID variable. Without the RANDOM statement, PROC MIXED would 
produce the same OLS estimates as in Output 2.11.  

Results are shown in Output 2.14.  The first panel—labeled “Covariance Parameter 
Estimates”—gives estimates of the variances of Di (labeled “Intercept”) and HL (labeled 
“Residual”).  Both variances are significantly greater than 0.  The regression coefficients in 
the lower panel are closer to the conventional OLS estimates in Output 2.11 than they are to 
the fixed effects estimates in Output 2.10.  Most importantly, the coefficient for POV is 
highly significant in the random effects model, but didn’t even approach significance in the 
fixed effects model.   

Output 2.14  Random Effects Model with Time-Varying Predictors 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept id 1.3875 0.1025 13.54 <.0001

Residual  0.9971 0.04152 24.01 <.0001

 
Solution for Fixed Effects 

Effect time Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept  2.8832 0.2085 580 13.83 <.0001 

pov  0.2947 0.07745 1158 3.81 0.0001 

self  -0.05971 0.009533 1158 -6.26 <.0001 

time 1 -0.2157 0.05883 1158 -3.67 0.0003 

time 2 -0.1688 0.05864 1158 -2.88 0.0041 

time 3 0 . . . . 

 
Why the difference between fixed and random effects estimates?  The main reason is that, 
unlike the fixed effects model, the random effects model does not really control for between-
person variation.  That’s because a key assumption of the method is that Di is uncorrelated 
with xit.  The fixed effects model, on the other hand, imposes no restrictions on the 
relationship between Di and xit. 

So what good is the random effects model?  Well, it’s better than conventional OLS because 
the standard error estimates adjust for the within-person correlation in the repeated 
measurements of the dependent variable.  By contrast, conventional OLS standard errors are 
biased downward by the dependence in the multiple observations for each person.  But that 
advantage is also shared with the fixed effects estimator. 

One thing that the random effects method can do that the fixed effects method cannot is 
produce coefficient estimates for time-invariant variables.  For example, Output 2.15 shows 
the results of adding seven time-invariant predictors to the random effects model we just 
fitted.  Only two of them, GENDER and MOMWORK, are statistically significant at the .05 
level.  The coefficients for POV and SELF don’t change much by the addition of these 
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variables.  Neither does the estimate of the variance of Di, which would be expected to 
decline with the addition of strong, person-specific predictors to the model.  Keep in mind 
that the fixed effects model also controls for these time-invariant predictors; it just doesn’t 
produce coefficient estimates for them.  Furthermore, unlike the random effects method, it 
controls for all time-invariant predictors, not just those that have been measured and included 
in the regression model.    

Output 2.15  Random Effects Model with Time-Varying and Time-Invariant Predictors 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept id 1.3056 0.09810 13.31 <.0001

Residual  0.9959 0.04144 24.03 <.0001
 

Solution for Fixed Effects 

Effect time Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept  2.7471 1.0985 573 2.50 0.0127 

pov  0.2460 0.08038 1158 3.06 0.0023 

self  -0.06201 0.009512 1158 -6.52 <.0001 

time 1 -0.2163 0.05879 1158 -3.68 0.0002 

time 2 -0.1690 0.05860 1158 -2.88 0.0040 

time 3 0 . . . . 

black  0.2271 0.1259 1158 1.80 0.0715 

hispanic  -0.2180 0.1385 1158 -1.57 0.1156 

childage  0.08846 0.09125 1158 0.97 0.3325 

married  -0.04933 0.1266 1158 -0.39 0.6970 

gender  -0.4834 0.1067 1158 -4.53 <.0001 

momage  -0.02195 0.02533 1158 -0.87 0.3864 

momwork  0.2614 0.1149 1158 2.28 0.0231 

 
Another attractive feature of the random effects model is the ability to introduce random 
coefficients for the time-varying predictors.  For example, we can rewrite the model as  

itiiititit zxy HDJEμ ++++=  

which simply puts an i subscript on the E coefficient.  We then assume that Ei is a set of 
normally distributed random variables with a common mean and variance, both of which can 
be estimated. We also assume that Ei is independent of xit, Hit and zi  (but could possibly 
covary with Di).  
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For the NLSY data, let’s consider a model that allows the effect of POV to vary randomly 
across children.  Here is the SAS code:3 

PROC MIXED DATA=persyr3 COVTEST NOCLPRINT; 
   CLASS id time; 
   MODEL anti=pov self time / SOLUTION; 
   RANDOM INTERCEPT pov / SUBJECT=id; 
RUN; 
 

Results are shown in Output 2.16.  As shown in the first panel, the estimate of the variance of 
the POV coefficient is .2317.  The z-test for the null hypothesis that this variance is 0 has a p-
value of .0509.  So there is only marginal evidence for non-zero variation in the coefficient 
across persons.4  In the “Solution for Fixed Effects” panel, the estimate for POV of .3053 can 
be regarded as an estimate of the average effect of this variable.   

Output 2.16  Random Effects Model with Random Coefficient 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept id 1.3261 0.1064 12.47 <.0001

pov id 0.2317 0.1416 1.64 0.0509

Residual  0.9767 0.04236 23.05 <.0001
 
 

Solution for Fixed Effects 

Effect time Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept  2.8698 0.2083 580 13.77 <.0001 

pov  0.3053 0.08204 170 3.72 0.0003 

self  -0.05939 0.009536 988 -6.23 <.0001 

time 1 -0.2154 0.05892 988 -3.66 0.0003 

time 2 -0.1660 0.05859 988 -2.83 0.0047 

time 3 0 . . . . 

 

                                                 
3 The same results can be obtained with the following statement  

  RANDOM id pov*id; 
But this results in an enormous increase in computing time.  Also, some might prefer to use the 
TYPE=UN option on the RANDOM statement.  This allows for a covariance between the random 
intercept and the random slope.  

 
4 A more accurate test is computed by taking differences in –2 × log-likelihood for this model and the 
earlier model that forces the variance to be 0.  However, correct calculation of this statistic also 
requires that the option METHOD=ML be used in the PROC statement for both models.  (The default 
method is REML, i.e., restricted maximum likelihood). When I did this calculation, the resulting chi-
square statistic was 3.0 with 1 d.f., giving a p-value of .08.  
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There are many other possible variations on random effects models.  For example, besides 
having a random effect for persons, one could also have random effects for higher levels of 
aggregation such as families or schools (assuming that the data contain multiple persons for 
each family or school).  PROC MIXED also allows for autoregressive and other covariance 
structures on the Hit component. 

None of these elaborations allows the random effects model to control for all possible time-
invariant predictors, as the fixed effects model does.  On the other hand, if there is really no 
correlation between Di and xit that is, between the person-specific effect and the time-
varying predictors then random effects estimates might have far less sampling variability 
than the fixed effects estimates.  That translates into more powerful hypothesis tests and 
narrower confidence intervals.  The reason is that the random effects method uses variation 
both within persons and between persons, whereas the fixed effects method uses only 
variation within persons. 

Mundlak (1978) has argued that the random effects method should be seen as a special case 
of the fixed effects method.  In a nutshell, the argument goes like this.  We start with a 
conventional random effects model such as equation (2.5), and then relax its restrictions by 
allowing for all possible correlations between the random component and the time-varying 
predictors.  When this is done, ML estimates of the random effects model become identical to 
the OLS estimates for the fixed effects model.  In general, whenever one has a choice 
between two nested models, one being a restricted version of the other, there is a tradeoff 
between bias and efficiency.  The more parsimonious model (the random effects model in this 
case) will lead to more efficient estimates, but those estimates might be biased if the 
restrictions of the model are incorrect.  The less parsimonious model (the fixed effects model) 
is less prone to bias, but at the expense of greater sampling variability. 

It would be nice to have a statistical test of the random effects model against the fixed effects 
model as an alternative.  That way we would have some basis for deciding whether we can 
tolerate the biases inherent in the random effects method, or whether we need to go with the 
less restrictive fixed effects model.   One such test is available in PROC TSCSREG.  When 
you ask this procedure to estimate a random effects model, it automatically reports a 
Hausman test (Greene 2000, p. 576), which compares the fixed effects and random effects 
models.5 

The PROC TSCSREG code for the NLSY data follows immediately.  Note that TSCSREG 
does not have a CLASS statement, so it’s necessary to create dummy variables for TIME in a 
DATA step.  TSCSREG expects the data to be sorted by person, and within person by time. 
The ID statement tells TSCSREG what variables index these two dimensions.  In the 
MODEL statement, the RANONE option is what specifies a random effects model.  
Changing this to FIXONE would produce a fixed effects model.  As noted earlier, however, 
the downside of this PROC is that the coefficients for the dummy variables in the fixed 

                                                 
5 The Hausman test is computed as follows.  Let b be the vector of fixed effects coefficients (excluding 
the constant) and let E be the vector of random effects coefficients.  Let 6 = var(b) – var(E) where 
var(b) is the estimated covariance matrix for b and similarly for E.  The statistic is then 

1( ) ( )m −= − −′b bβ βΣ , which has a chi-square distribution under the null hypothesis.   
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effects model are explicitly estimated and reported, requiring lots of computer time and 
excessive output.  Another disadvantage is that TSCSREG requires that the data be 
balanced—each person must have the same number of observations.  PROC GLM and PROC 
MIXED, on the other hand, can handle unbalanced data sets without difficulty. 

Here’s the code: 

DATA tscset; 
   SET persyr3; 
   time1=(time=1); 
   time2=(time=2); 
PROC TSCSREG DATA=tscset; 
   ID id time; 
   MODEL anti=self pov time1 time2 / RANONE; 
RUN; 
 

Results in Output 2.17 are virtually identical to what we got with PROC MIXED in Output 2.14.   
But we also get the “Hausman Test for Random Effects,” which tests the null hypothesis of the 
random effects model against the alternative fixed effects model.  In this case, the low p-value 
indicates that the random effects model should be rejected.  While the Hausman test can be very 
useful, it is also somewhat ad hoc and can break down entirely in certain circumstances (the 6 
matrix in note 5 may not be positive definite).  In chapter 6 we shall see how to construct a 
likelihood ratio statistic for the same null hypothesis.   

Output 2.17  TSCSREG Output for Random Effects Model with Hausman Test 

Variance Component Estimates 

Variance Component for Cross Sections 1.380509

Variance Component for Error 0.994156
 

Hausman Test for 
Random Effects 

DF m Value Pr > m 

2 12.82 0.0016 
 

Parameter Estimates 

Variable DF Estimate
Standard 

Error t Value Pr > |t|

Intercept 1 2.883232 0.2085 13.83 <.0001

self 1 -0.05971 0.00953 -6.26 <.0001

pov 1 0.294928 0.0775 3.81 0.0001

time1 1 -0.21575 0.0588 -3.67 0.0003

time2 1 -0.16877 0.0587 -2.88 0.0041
 
Another approach that is closely related to the random effects method is generalized 
estimating equations (GEE), which can be implemented with PROC GENMOD.  In the case 
of linear models, GEE is equivalent to generalized least squares, which also happens to be the 
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default method used in PROC TSCSREG.  GEE makes no explicit assumptions about person-
specific random components in the regression model.  It simply allows for correlations in the 
dependent variable across observations (over time in this case). 

For the NLSY data, the GEE method can be used to estimate the random effects model by 
specifying the following in PROC GENMOD: 

PROC GENMOD DATA=persyr3; 
   CLASS id time; 
   MODEL anti= self pov time; 
   REPEATED SUBJECT=id / TYPE=EXCH MODELSE; 
RUN; 
 

The REPEATED statement invokes GEE estimation.  The TYPE=EXCH option specifies that 
correlations between measurements of ANTI in different years are all equal.  This is the 
correlation structure that is implied by a simple random effects model such as equation (2.5).  
MODELSE specifies that standard errors are calculated based on the assumed model rather 
than using the default method of robust standard errors.   

In Output 2.18, we see that the “Exchangeable Working Correlation” is .58.  This is an 
estimate of the correlation between error terms in different years; because we specified the 
EXCH option, these are identical for all pairs of years.  Parameter estimates and associated 
statistics in Output 2.18 are virtually identical to those in Outputs 2.17 and 2.14.  It’s worth 
noting that GENMOD is by far the most computationally efficient procedure for getting these 
random effects parameter estimates.  On my PC, PROC MIXED took .23 seconds, PROC 
TSCSREG took .75 seconds, and PROC GENMOD took 0.15 seconds.  (In fairness to 
MIXED, if the model is specified using the REPEATED statement rather than the RANDOM 
statement, the time can be reduced to 0.09 seconds).  

Output 2.18  GEE Estimates of Random Effects Model 

Exchangeable Working 
Correlation 

Correlation 0.5819870399
 
 

Analysis Of GEE Parameter Estimates 

Model-Based Standard Error Estimates 

Parameter  Estimate
Standard 

Error
95% Confidence 

Limits Z Pr > |Z|

Intercept  2.8832 0.2085 2.4745 3.2918 13.83 <.0001

self  -0.0597 0.0095 -0.0784 -0.0410 -6.26 <.0001

pov  0.2947 0.0775 0.1429 0.4465 3.80 0.0001

time 1 -0.2157 0.0588 -0.3310 -0.1004 -3.67 0.0002

time 2 -0.1688 0.0586 -0.2837 -0.0538 -2.88 0.0040

time 3 0.0000 0.0000 0.0000 0.0000 . .

Scale  1.5444 . . . . .
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Somewhat different results are obtained in Output 2.19 when the REPEATED statement is 
altered to read as follows: 

REPEATED SUBJECT=id / TYPE=UN CORRW; 
 

TYPE=UN specifies an unstructured correlation matrix, which is reflected in the different 
correlations seen in the working correlation matrix (requested with the CORRW option).  I’ve 
also omitted the MODELSE option, thereby asking GENMOD to compute robust standard 
errors using White’s (1980) method.  Both of these changes should make the results 
somewhat less sensitive to misspecification of the error structure.  The parameter estimates 
and associated statistics are all a bit different from those estimated under the random effects 
model, but still quite similar.   

Output 2.19  GEE Estimates for a Less Restricted Model 

Working Correlation Matrix 

 Col1 Col2 Col3

Row1 1.0000 0.5785 0.5359

Row2 0.5785 1.0000 0.6396

Row3 0.5359 0.6396 1.0000

 
 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate
Standard 

Error
95% Confidence 

Limits Z Pr > |Z|

Intercept  2.8935 0.2322 2.4384 3.3485 12.46 <.0001

self  -0.0605 0.0102 -0.0805 -0.0405 -5.93 <.0001

pov  0.3140 0.0812 0.1549 0.4730 3.87 0.0001

time 1 -0.2164 0.0636 -0.3410 -0.0918 -3.40 0.0007

time 2 -0.1691 0.0594 -0.2855 -0.0527 -2.85 0.0044

time 3 0.0000 0.0000 0.0000 0.0000 . .

2.6  A Hybrid Method 
As we’ve seen, both the GEE method and the random effects method may produce estimates 
that are markedly different from the fixed effects estimates.  That’s because neither of those 
methods controls for stable, unmeasured characteristics of the individuals.  There’s another 
approach, however, that combines some of the virtues of fixed effects and random effects 
methods.  This method produces coefficient estimates that are identical to those from the 
fixed effects method, but the standard errors and test statistics might be somewhat different, 
depending on the details of the estimation method. 
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The basic idea is to decompose the time-varying predictors into two parts, one representing 
within-person variation, the other representing between-person variation (Neuhaus and 
Kalbfleisch 1998).  Both of these components are used as predictors in the regression model.  
The coefficients for the within-person components will be identical to those for the classic 
fixed effects estimates. 

There are several potential advantages of doing it this way.  One is that you also get estimates 
for the between-person effects, as well as coefficients for any measured time-invariant 
predictors.  Second, by testing whether the between-person coefficients are the same as the 
corresponding within-person coefficients, you get a test that has the same function as the 
Hausman test that we looked at earlier.  That is, it can tell you whether a fixed effects 
approach offers any gains over a random effects regression.  Third, using the options 
available in PROC MIXED, you can extend the conventional fixed effects models in several 
important ways.  

Here’s how to do it for the NLSY data.  First, we use PROC MEANS to calculate the means 
for SELF and POV across the three observations for each child, and output them to a data set.  
The NWAY and NOPRINT options suppress unwanted output.  The CLASS statement says 
to compute the means separately for each value of the ID variable.  The data set of means is 
then merged with the original data, and deviations of each variable from its within-person 
mean are calculated:   

PROC MEANS DATA=persyr3 NWAY NOPRINT; 
   CLASS id; 
   VAR self pov; 
   OUTPUT OUT=a MEAN=mself mpov; 
PROC SORT DATA=persyr3; 
   BY id; 
PROC SORT DATA=a; 
   BY id; 
DATA combine; 
   MERGE persyr3 a; 
   BY id; 
   dself=self-mself; 
   dpov=pov-mpov; 
   dtime=time-2; 
   time1=(time=1); 
   time2=(time=2); 
RUN; 
 

Note that I’ve calculated deviation scores for TIME, although I won’t use those in the first 
few models.  (The mean of TIME is necessarily 2 for every child).  I’ve also created two 
dummy variables, TIME1 and TIME2, so that I can represent time in PROC REG, which 
doesn’t have a CLASS statement.   

In the literature on multilevel models (Bryk and Raudenbusch 1992; Goldstein 1987; Kreft et 
al. 1995), the practice of subtracting person-specific means from each time-varying variable 
is referred to as group-mean centering.  Although it is well-known that using group-mean 
centered variables can produce substantially different results, this literature has not generally 
made the connection to fixed effects models nor has it been recognized that group-mean 
centering controls for all time-invariant covariates.   

The calculation of centered predictors is similar to the computational method for getting fixed 
effects estimates that I described in the previous section.  What’s new here is that we don’t 
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calculate centered scores for the dependent variable.  Once the new data set is constructed, we 
can run an OLS regression with both the centered variables and the mean variables, along 
with any other time-invariant predictors that we want to include: 

PROC REG DATA=combine; 
   MODEL anti=dpov dself mpov mself time1 time2 black hispanic  
         childage married gender momage momwork; 
RUN; 
 

Results are in Output 2.20. The coefficients for the centered variables, DPOV and DSELF, 
are the same as the fixed effects coefficients for POV and SELF in Output 2.10.  But we also 
get coefficients for several time-invariant predictors, something that was not available with 
the earlier method. 

Output 2.20  OLS Regression Using Centered Predictors 

Root MSE 1.50725 R-Square 0.0935

Dependent Mean 1.63683 Adj R-Sq 0.0867

Coeff Var 92.08316  
 
 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept 1 3.11882 0.79422 3.93 <.0001 

dpov 1 0.11247 0.14121 0.80 0.4258 

dself 1 -0.05515 0.01591 -3.47 0.0005 

mpov 1 0.61643 0.10710 5.76 <.0001 

mself 1 -0.09003 0.01506 -5.98 <.0001 

time1 1 -0.21074 0.08888 -2.37 0.0179 

time2 1 -0.16634 0.08853 -1.88 0.0604 

black 1 0.11093 0.09019 1.23 0.2189 

hispanic 1 -0.27990 0.09513 -2.94 0.0033 

childage 1 0.08575 0.06206 1.38 0.1672 

married 1 -0.12841 0.08788 -1.46 0.1441 

gender 1 -0.50816 0.07289 -6.97 <.0001 

momage 1 -0.01134 0.01738 -0.65 0.5142 

momwork 1 0.16412 0.08141 2.02 0.0440 

 
Despite the fact that the coefficients for DPOV and DSELF replicate our earlier results, the 
reported standard errors for those coefficients are about 50% larger in Output 2.20 than they 
were in Output 2.10.  This means, of course, that the t-statistics are about 1/3 smaller.  That’s 
because the error term in the earlier regression consisted entirely of within-person variation  
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on the  dependent variable.  Here there is both within-person and between-person variation.  
We can correct the problem by estimating a random effects model in PROC MIXED: 

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS id time; 
   MODEL anti=dpov dself mpov mself time black hispanic  
         childage married gender momage momwork / SOLUTION; 
   RANDOM INTERCEPT / SUBJECT=id; 
RUN; 
 

Results in Output 2.21 have standard errors for DPOV and DSELF that are identical to those 
in Output 2.10.   Note, however, that for the time-invariant predictors, the random effects 
standard errors are larger than the OLS standard errors rather than smaller (which is just what 
is expected from clustering adjustments). 

Output 2.21  PROC MIXED Estimates for Centered Predictors 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept id 1.2896 0.09692 13.31 <.0001

Residual  0.9942 0.04132 24.06 <.0001
 

Solution for Fixed Effects 

Effect time Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept  3.1188 1.1601 571 2.69 0.0074 

dpov  0.1125 0.09341 1158 1.20 0.2288 

dself  -0.05515 0.01053 1158 -5.24 <.0001 

mpov  0.6164 0.1567 1158 3.93 <.0001 

mself  -0.09003 0.02203 1158 -4.09 <.0001 

time 1 -0.2107 0.05880 1158 -3.58 0.0004 

time 2 -0.1663 0.05857 1158 -2.84 0.0046 

time 3 0 . . . . 

black  0.1109 0.1320 1158 0.84 0.4007 

hispanic  -0.2799 0.1392 1158 -2.01 0.0446 

childage  0.08575 0.09080 1158 0.94 0.3452 

married  -0.1284 0.1286 1158 -1.00 0.3181 

gender  -0.5082 0.1066 1158 -4.77 <.0001 

momage  -0.01134 0.02543 1158 -0.45 0.6558 

momwork  0.1641 0.1191 1158 1.38 0.1685 

 
What we’ve gained by the centering method is the ability to estimate coefficients for time-
invariant predictors.  It’s essential to keep in mind, however, that the coefficients of the time 
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invariant predictors (unlike those for the within-person time-varying predictors) will be 
biased if those variables are correlated with the unobserved fixed effects.  There’s another 
attraction to this approach.  If the random effects model is correct (that is, if the time-varying 
predictors are uncorrelated with person-specific fixed effects), the coefficients for the 
centered variables should be the same as the coefficients for the mean variables.  Since both 
are estimated in the same model, it’s easy to test that assumption in PROC MIXED by 
including CONTRAST statements after the MODEL statement: 

CONTRAST 'pov' dpov 1 mpov -1; 
CONTRAST 'self' dself 1 mself -1; 
CONTRAST 'overall' dpov 1 mpov -1, dself 1 mself -1; 
 

For each CONTRAST statement, the text in quotes is a required label, used for distinguishing 
one test from another in the output.  The first CONTRAST statement tests whether the 
coefficients for DPOV and MPOV are the same.  In detail, the coefficient for DPOV is 
multiplied by 1, the coefficient for MPOV is multiplied by –1, the results are added together, 
and the sum is tested for a difference with 0.  The next CONTRAST statement does the same 
for the two self-esteem variables, and the final CONTRAST statement tests both hypotheses 
simultaneously.  In Output 2.22, we see strong evidence that the assumption is not satisfied 
for POV, but might be for SELF.  The overall test yields results very similar to the Hausman 
test in Output 2.17.  

Output 2.22  Tests for Fixed Effects vs. Random Effects Using Centered Scores 

Contrasts 

Label 
Num 

DF Den DF F Value Pr > F

pov 1 1158 7.63 0.0058

self 1 1158 2.04 0.1535

overall 2 1158 4.93 0.0073

 
If we conclude that the coefficients for the mean and deviation scores are different for a 
particular variable, a natural question is whether the coefficient for the mean has any useful 
interpretation.  In most cases, I don’t think so, because that coefficient is typically 
confounded with the effects of other unobserved variables.  Nevertheless, it’s important to 
have the mean variables in the model in order to get good estimates of the effects of other 
time-invariant variables.  Omitting them would mean that the variable in question was not 
fully controlled.  

Another advantage of the centering method for getting fixed effects estimates is that we can 
allow for random variation in the slope parameters for the time-varying predictors.  For 
example, instead of estimating separate coefficients for time 1 and time 2, let’s assume that 
the antisocial behavior changes linearly with time.  Then we allow the coefficient of TIME 
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(actually DTIME, which is TIME minus the mean of 2) to vary randomly from child to 
child—a random, linear growth model.  Here’s how to set it up: 

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS id; 
   MODEL anti=dpov dself dtime mpov mself / SOLUTION; 
   RANDOM INTERCEPT dtime / SUBJECT=id; 
RUN; 
 

Output 2.23 gives the results.  We see that the fixed coefficient for DTIME (.1055) is highly 
significant, but the variance around that coefficient (.1409) is also highly significant.  So we 
conclude that antisocial behavior tends to increase over time during the adolescent years, but 
there is substantial variation among children in the rate of increase. 

Output 2.23  Estimates for a Random Growth Curve Model with Fixed Effects 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept id 1.4139 0.1013 13.96 <.0001

dtime id 0.1409 0.04184 3.37 0.0004

Residual  0.8539 0.05021 17.01 <.0001

 
 

Solution for Fixed Effects 

Effect Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept 2.9336 0.4616 579 6.36 <.0001 

dpov 0.1387 0.09391 578 1.48 0.1402 

dself -0.05515 0.01048 578 -5.26 <.0001 

dtime 0.1055 0.03140 580 3.36 0.0008 

mpov 0.6842 0.1376 578 4.97 <.0001 

mself -0.07477 0.02225 578 -3.36 0.0008 
 
In the same way, I tried fitting models for random variation in the effect of POV and SELF, 
but there is no evidence for such variation (results not shown).  This approach of combining 
models with fixed and random effects is quite similar to the conditional linear mixed models 
of Verbeke et al. (2001), although they used a somewhat different computational method for 
obtaining the estimates.6   

One final attraction of estimating the fixed effects model with PROC MIXED is the ability to 
specify models for the error structure that are less constrained than the conventional fixed 
effects method, which implies a covariance structure for the dependent variable known as 

                                                 
6 Verbeke et al. (2001) provide a SAS macro that transforms the data set as a precursor to using PROC 
MIXED. 
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compound symmetry.  Compound symmetry means that variance of the error term is constant 
over time and the covariance between any two time points is the same.  PROC MIXED 
allows for a wide variety of alternative structures that can be specified with the REPEATED 
statement.  Although there isn’t space for a detailed discussion of the many options,  let’s 
consider the most general option, which has no constraints whatever on the error structure.  
While this option would not work well if there were many time points (there would be too 
many different covariances), it’s quite reasonable when there are only three.  A model with an  
unstructured covariance matrix is specified as follows: 

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS id time; 
   MODEL anti=dpov dself mpov mself time black hispanic  
         childage married gender momage momwork / SOLUTION; 
   REPEATED time / SUBJECT=id TYPE=UN; 
RUN; 
 

On the REPEATED statement, the TIME variable is optional as long as everyone has the 
same number of time points and they are in the same order.  UN stands for unstructured.  The 
output from this program (not shown) has both coefficients and standard errors that differ 
slightly from those in Output 2.23, but with no appreciable change in the p-values.7 

2.7  An Example with Unbalanced Data 
In the NLSY example, the data set was balanced with exactly three observations for every 
child.  But the fixed effects method is by no means limited to balanced data; it can be applied 
without modification to data in which some persons have many observations and others have 
few.  Persons with only one observation, however, are effectively eliminated from the 
analysis because such individuals have no within-person variation.   

In this section I apply the fixed effects method to a highly unbalanced data set in which the 
“individuals” are schools and the “occasions” are students within each school.  The National 
Education Longitudinal Study (NELS) began in 1988 and included 1,003 schools with a total 
21,580 students.  Schools varied widely in the number of their students who were 
interviewed, ranging from 1 to 67.  The version of the data set I use here is described in Kreft 
and De Leeuw (1998) and is available on the Internet 
(http://www.stat.ucla.edu/~deleeuw/sagebook/).  Only data from the 1988 interview are used 
here.   

The dependent variable MATHSCOR is the number of items correct on a mathematics 
achievement test.  Our goal is to estimate a regression model with the following predictor 
variables: 

SEX  1 = female, 0 = male 

ASIAN  1 = Asian, otherwise 0 

HISPANIC 1 = Hispanic, regardless of race, otherwise 0 

                                                 
7 Another, similar approach is to modify the program that produced Output 2.23 by specifying the 
EMPIRICAL option on the PROC statement.  This produces robust standard errors and test statistics 
using the method of White (1980), which allows for heterogeneous variances and unstructured 
correlations. 
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BLACK 1 = Black and not Hispanic, otherwise 0 

HOMEWORK Hours per week spent on homework 

SES  Socioeconomic status (ranges from –2.5 to 2.3) 

PARED Parent’s education, measured on a scale ranging from 1 to 6 

 
The omitted category for the set of race and ethnicity dummy variables is White (not of 
Hispanic origin).  

I first estimate a conventional linear regression model using PROC GLM: 

PROC GLM DATA=my.nels88; 
   MODEL mathscor=sex black hispanic asian amerind 
         homework ses pared; 
RUN; 
 

This code produces the results shown in Output 2.24.  Given the large sample size, it’s not 
surprising to find that all the coefficients are statistically significant at any conventional level.  
But there are two potential problems here.  First, the standard errors might be underestimated 
because there is no correction for dependence within schools.  Second, there is no control for 
school-level variables that might be correlated with the individual characteristics, and thus 
coefficient estimates might be biased. 

Output 2.24  Conventional Regression Estimates with PROC GLM 

R-Square Coeff Var Root MSE mathscor Mean

0.302480 16.67138 8.504799 51.01436
 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 46.52654032 0.30199113 154.07 <.0001 

sex 0.49744862 0.11600764 4.29 <.0001 

black -5.23792860 0.19008579 -27.56 <.0001 

hispanic -2.86035498 0.18657937 -15.33 <.0001 

asian 1.76632831 0.24881195 7.10 <.0001 

amerind -4.64928956 0.53671967 -8.66 <.0001 

homework 1.29760317 0.04026601 32.23 <.0001 

ses 3.72086392 0.14611981 25.46 <.0001 

pared 0.86267418 0.08794691 9.81 <.0001 

 
Both of these difficulties are addressed by the use of the fixed effects method, implemented 
here by using PROC GLM with the ABSORB statement:  

PROC GLM DATA=my.nels88; 
   ABSORB schoolid; 
   MODEL mathscor=sex black hispanic asian amerind 
         homework ses pared; 
RUN; 
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Results are shown in Output 2.25.  

Output 2.25  Fixed Effects Analysis with PROC GLM 

R-Square Coeff Var Root MSE mathscor Mean

0.396666 15.87818 8.100153 51.01436
 
 

Parameter Estimate Standard Error t Value Pr > |t| 

sex 0.513893601 0.11495955 4.47 <.0001 

black -3.757158700 0.24154883 -15.55 <.0001 

hispanic -1.768794279 0.22738925 -7.78 <.0001 

asian 1.903077171 0.26397493 7.21 <.0001 

amerind -2.973568213 0.56610286 -5.25 <.0001 

homework 1.181563760 0.04080071 28.96 <.0001 

ses 2.818123661 0.15095592 18.67 <.0001 

pared 0.589485288 0.08719577 6.76 <.0001 

 
Although all the coefficients are still statistically significant under the fixed effects method, 
there are some notable differences between Output 2.24 and Output 2.25.  The coefficients 
for BLACK, HISPANIC and AMERIND (all of which are comparisons with White) have 
declined substantially in magnitude.  Furthermore, the standard errors for BLACK and 
HISPANIC have increased, with the result that the t-statistics for these variables are much 
lower than they were in Output 2.23.   The coefficients for SES and PARED (but not their 
standard errors) have also declined substantially. 

The degree to which the coefficients change under fixed effects estimation as compared with 
conventional OLS appears to be related to the degree of between- versus within-school 
variation on the predictor variables.  For each variable, here is the proportion of variation that 
is between schools: 

SEX  .08 

BLACK  .44 

HISPANIC .39 

ASIAN  .17 

AMERIND  .17 

HOMEWORK .14 

SES  .42 

PARED    .34 

 
It is apparent that those predictor variables with little between-school variation showed little 
change in coefficients or standard errors under the fixed effects method.   
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These proportions were obtained by fitting a separate fixed effects model for each of the 
variables.  Each variable was treated as the dependent variable, but no predictor variables 
were specified.  For example, 

PROC GLM DATA=my.nels88; 
   ABSORB schoolid; 
   MODEL pared=; 
RUN; 
 

The proportion of variation that is between schools is just the R2 from this regression.  

Another change is that the R2 has noticeably increased, from .30 in Output 2.24 to .40 in 
Output 2.25.  We can test for the significance of this increase by computing 

  
 

Under the null hypothesis of no school effects (net of other variables), this statistic has an F 
distribution with 1002 numerator degrees of freedom (the number of schools minus one) and 
20569 denominator degrees of freedom (the number of students minus the number of 
coefficients in the model, including the implicit coefficients for the school indicators).  The p-
value is well below any conventional standard, so we may conclude that there are school 
differences that are not fully explained by the measured predictors in the model. 

School differences are also apparent in a random effects model, which I fit with PROC 
MIXED: 

PROC MIXED DATA=my.nels88 COVTEST NOCLPRINT; 
   CLASS schoolid; 
   MODEL mathscor=sex   black hispanic asian amerind 
         homework ses pared / SOLUTION; 
   RANDOM INTERCEPT / SUBJECT=schoolid; 
RUN; 
 

In Output 2.26, the coefficients and standard errors generally fall between the fixed effects 
estimates and the conventional OLS estimates.  The random intercept parameter has an 
estimated variance of 7.112, which is significantly different from 0 at below the .0001 level.  
This is a test of the same null hypothesis that we just tested with the F-test for the increment 
to R2 in the fixed effects model, namely, that there are no school differences net of the 
measured predictors.  But this test imposes the further restriction that the random school 
effect is uncorrelated with the measured predictor variables.  Because of that restriction, the 
test has only one degree of freedom.  

Output 2.26  Random Effects Analysis with PROC MIXED 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept schoolid 7.1120 0.4884 14.56 <.0001

Residual  65.8000 0.6502 101.20 <.0001

continued 
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Output 2.26  (continued) 

Solution for Fixed Effects 

Effect Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept 46.9621 0.3091 1002 151.93 <.0001 

sex 0.5089 0.1137 21E3 4.48 <.0001 

black -4.5306 0.2161 21E3 -20.96 <.0001 

hispanic -2.3109 0.2091 21E3 -11.05 <.0001 

asian 1.7981 0.2555 21E3 7.04 <.0001 

amerind -3.7232 0.5469 21E3 -6.81 <.0001 

homework 1.2244 0.04005 21E3 30.57 <.0001 

ses 3.2029 0.1468 21E3 21.82 <.0001 

pared 0.6919 0.08620 21E3 8.03 <.0001 

 
In the previous section, we used PROC TSCSREG to produce a Hausman test to determine 
whether fixed effects coefficients were significantly different from random effects 
coefficients, which is equivalent to testing whether the random effect is uncorrelated with the 
measured predictors.  Unfortunately, TSCSREG is designed for longitudinal data and can’t 
satisfactorily accommodate the kind of structure found in the NELS data.  But we can still 
test this hypothesis by using the group-mean centering method described in the last section.  
Here’s the SAS code for generating the school means and deviations from the means for each 
variable: 

PROC MEANS DATA=my.nels88 NWAY NOPRINT; 
   CLASS schoolid; 
   VAR sex black hispanic asian amerind homework ses pared; 
   OUTPUT OUT=a MEAN=msex mblack mhispanic masian mamerind  
          mhomework mses mpared; 
RUN; 
PROC SORT DATA=my.nels88;  
   BY schoolid;  
PROC SORT DATA=a;  
   BY schoolid;  
DATA combine; 
   MERGE my.nels88 a; 
   BY schoolid; 
   dsex=sex-msex; 
   dblack=black-mblack; 
   dhispanic=hispanic-mhispanic; 
   dasian=asian-masian; 
   damerind=amerind-mamerind; 
   dhomework=homework-mhomework; 
   dses=ses-mses; 
   dpared=pared-mpared; 
RUN; 
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A random effects model is then fitted with PROC MIXED using both the means and the 
deviations from the means as predictors.  CONTRAST statements are used to test for 
differences between coefficients for means and deviations, for all variables together and for 
each variable separately:   

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS schoolid; 
   MODEL mathscor=dsex dblack dhispanic dasian damerind dhomework  
         dses dpared msex mblack mhispanic masian mamerind  
         mhomework mses mpared / SOLUTION; 
   RANDOM INTERCEPT / SUBJECT=schoolid; 
   CONTRAST 'all' dsex 1 msex -1, dblack 1 mblack -1,  
             dhispanic 1 mhispanic -1, dasian 1 masian -1,  
             damerind 1 mamerind -1, dhomework 1 mhomework -1, 
             dses 1 mses -1, dpared 1 mpared -1; 
   CONTRAST 'sex' dsex 1 msex -1; 
   CONTRAST 'black' dblack 1 mblack -1; 
   CONTRAST 'hispanic' dhispanic 1 mhispanic -1; 
   CONTRAST 'asian' dasian 1 masian -1; 
   CONTRAST 'amerind' damerind 1 mamerind -1; 
   CONTRAST 'homework' dhomework 1 mhomework -1; 
   CONTRAST 'ses' dses 1 mses -1; 
   CONTRAST 'pared' dpared 1 mpared -1;  
RUN; 
 

As shown in Output 2.27, the coefficients and standard errors for the centered scores are 
identical to those in Output 2.24 using the fixed effects method.   

Output 2.27  PROC MIXED Estimates Using Centered Scores 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept schoolid 4.6362 0.3541 13.09 <.0001

Residual  65.6379 0.6471 101.44 <.0001

 
Solution for Fixed Effects 

Effect Estimate
Standard 

Error DF t Value Pr > |t| 

Intercept 40.3390 1.6123 994 25.02 <.0001 

dsex 0.5139 0.1150 21E3 4.47 <.0001 

dblack -3.7572 0.2416 21E3 -15.55 <.0001 

dhispanic -1.7688 0.2274 21E3 -7.78 <.0001 

dasian 1.9031 0.2640 21E3 7.21 <.0001 

damerind -2.9736 0.5662 21E3 -5.25 <.0001 

dhomework 1.1816 0.04081 21E3 28.95 <.0001 

dses 2.8181 0.1510 21E3 18.66 <.0001 

continued 
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Output 2.27  (continued) 

Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t| 

dpared 0.5895 0.08721 21E3 6.76 <.0001 

msex 0.2632 0.6274 21E3 0.42 0.6748 

mblack -6.3276 0.4506 21E3 -14.04 <.0001 

mhispanic -3.1727 0.4928 21E3 -6.44 <.0001 

masian 2.2859 0.9564 21E3 2.39 0.0169 

mamerind -9.1458 1.8784 21E3 -4.87 <.0001 

mhomework 1.4761 0.1836 21E3 8.04 <.0001 

mses 2.5289 0.7538 21E3 3.36 0.0008 

mpared 2.7987 0.4942 21E3 5.66 <.0001 

 
Contrasts 

Label 
Num 

DF 
Den 
DF F Value Pr > F

all 8 21E3 46.07 <.0001

sex 1 21E3 0.15 0.6943

black 1 21E3 25.27 <.0001

hispanic 1 21E3 6.69 0.0097

asian 1 21E3 0.15 0.6996

amerind 1 21E3 9.90 0.0017

homework 1 21E3 2.45 0.1174

ses 1 21E3 0.14 0.7068

pared 1 21E3 19.38 <.0001

 
Results from the CONTRAST statements show that, overall, we must reject the null 
hypothesis that the deviation coefficients are the same as the mean coefficients.  Equivalently, 
we must reject the hypothesis that the random school effect is uncorrelated with the measured 
predictor variables.  But although tests for specific variables show highly significant 
differences for BLACK, HISPANIC, AMERIND, and PARED, the differences for SEX, 
ASIAN, HOMEWORK, and SES are not statistically significant, despite the large sample 
size.  For these latter variables, it might be sensible to re-estimate the model with the 
constraints that the mean coefficients and deviation coefficients must be equal.  This is easily 
accomplished by using the original rather than the centered variables: 

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS schoolid; 
   MODEL mathscor=sex dblack dhispanic asian damerind homework  
         ses dpared mblack mhispanic mamerind mpared / SOLUTION; 
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   RANDOM INTERCEPT / SUBJECT=schoolid; 
RUN; 
 

The advantage of imposing these constraints is that, if they are true, we should get more 
efficient estimates for the coefficients.  In this case, however, the differences in coefficients 
and their standard errors were trivial—not worth displaying.  

As with the NLSY data, we can also use the centered score method to estimate hybrid models 
that have random slopes.  For example, we can specify a model that allows the effect of 
parental education to vary randomly across schools by including DPARED as a variable in 
the RANDOM statement: 

PROC MIXED DATA=combine COVTEST NOCLPRINT; 
   CLASS schoolid; 
   MODEL mathscor=dsex dblack dhispanic dasian damerind dhomework  
         dses dpared msex mblack mhispanic masian mamerind  
         mhomework mses mpared / SOLUTION; 
   RANDOM INTERCEPT dpared / SUBJECT=schoolid; 
RUN; 
 

As shown in Output 2.28, parental education has a significant “average” effect on math 
scores (.6042), but that effect also varies randomly in magnitude across schools (as indicated 
by the p-value of .0002 for the covariance parameter for DPARED).    

Output 2.28  Centered Score Model with Random Coefficient for PARED 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error
Z 

Value Pr Z

Intercept schoolid 4.6323 0.3532 13.12 <.0001

Residual  65.6361 0.6470 101.44 <.0001

 
Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 40.9981 0.5540 998 74.00 <.0001

sex 0.5061 0.1131 21E3 4.48 <.0001

dblack -3.7543 0.2413 21E3 -15.56 <.0001

dhispanic -1.7631 0.2271 21E3 -7.77 <.0001

asian 1.9307 0.2545 21E3 7.59 <.0001

damerind -2.9672 0.5661 21E3 -5.24 <.0001

homework 1.1954 0.03984 21E3 30.01 <.0001

ses 2.8065 0.1480 21E3 18.96 <.0001

dpared 0.5929 0.08614 21E3 6.88 <.0001

continued 
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Output 2.28  (continued) 

Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

mblack -6.2970 0.4199 21E3 -15.00 <.0001

mhispanic -3.1302 0.4811 21E3 -6.51 <.0001

mamerind -9.1411 1.8625 21E3 -4.91 <.0001

mpared 2.7345 0.1621 21E3 16.87 <.0001

2.8  Summary 
Fixed effects linear models for quantitative response variables can be estimated in several 
different but equivalent ways: 

1. If there are exactly two observations per individual, compute difference scores for all 
variables and then apply OLS regression to the difference scores. 

2. Organize the data so that there is one record for each occasion for each individual.  Do OLS 
with dummy variables for all individuals (less one).

3. For the data structure in method 2, express all variables as deviations from individual-level 
means.  Then do OLS on the deviation scores, with corrections for standard errors, test 

             statistics, and p-values.  This is conveniently done in PROC GLM using the ABSORB
statement.

4. For the data structure in method 2, express only the predictor variables as deviations from 
individual-level means.  Then estimate a random effects model using PROC MIXED, with
predictor variables including both the means and deviations from the means. 

 
Of these methods, the fourth is the most flexible.  It offers the following capabilities not 
shared with one or more of the other methods: 

• the inclusion of predictor variables that do not vary within individuals 
• a test of the fixed effects vs. random effects assumption 
• random coefficients for those predictors that vary within individuals 
• less restrictive error structures 

 
Regardless of which computational method is used, the fixed effects method effectively 
controls for all individual-level covariates, both measured and unmeasured.  This is its 
principal attraction as compared with random effects methods or GEE estimation.  A key 
assumption of the fixed effects method, however, is that the individual-level covariates must 
have the same effects at all occasions.  Variables whose effects are not constant across 
occasions must be explicitly included in the model. 
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3.1 Introduction 
In this chapter we consider fixed effects regression models for response variables that are 
categorical:  dichotomous, unordered polytomous, and ordered polytomous.  In chapter 2 we 
saw that linear fixed effects models for quantitative response variables could be estimated in 
several different ways, all producing the same results.  Analogous methods are also available 
for categorical response variables, but these methods typically do not produce exactly the 
same results.  So an important task of this chapter is to clarify the differences among the 
different methods and to develop appropriate interpretations of their coefficients. 

In chapter 1 we saw that the paired-comparisons t-test could be interpreted as a fixed effects 
method.  Let’s begin this chapter with an analogous method for dichotomous variables 
observed at two points in time. Table 3.1, taken from Hu et al. (1998), is a cross-classification 
of responses by sixth and seventh graders to a question about whether they had smoked 
cigarettes in the preceding month.  They were interviewed at baseline in 1984 and again one 
year later.  

 

3
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Table 3.1  Smoking in the Preceding Month among Sixth and Seventh Graders 

One Year Later 
  Yes No 

Yes 27 26 Baseline 
No 63 566 

 

 At baseline, 8% of the respondents said they had smoked.  One year later, the percentage had 
increased to 13.  Is this change statistically significant?  We can’t use a conventional test for a 
difference between two proportions because we don’t have two independent samples.  
McNemar’s (1955) test is a simple solution to this problem.  We ignore the 593 children who 
didn’t change from baseline to one year and use only the two off-diagonal cell counts.  A chi-
square statistic is calculated as 

( )263 26
15.38

63 26
−

=
+

 

With 1 degree of freedom, this has a p-value less than .0001.  We conclude that the 
probability of smoking increased over the one-year period.  

While the hand calculation is simple enough, we can also let PROC FREQ do the work.  
Here’s how to read in the data and get the McNemar statistic (requested with the AGREE 
option): 

DATA smoking; 
   INPUT baseline $ oneyear $ count; 
DATALINES; 
yes yes 27 
yes no 26 
no yes 63 
no no 566 
; 
PROC FREQ DATA=smoking; 
   WEIGHT count; 
   TABLE baseline*oneyear / AGREE NOROW NOCOL NOPCT; 
RUN; 
 

The NOROW, NOCOL, and NOPCT options suppress the percentage calculations so that 
only the raw frequency counts appear in the table.  

Output 3.1  PROC FREQ Output with McNemar Statistic 

Table of baseline by oneyear 

baseline oneyear 

Frequency no yes Total

no 566 63 629

yes 26 27 53

Total 592 90 682

continued 
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Output 3.1  (continued) 

Statistics for Table of baseline by oneyear 

McNemar's Test 

Statistic (S) 15.3820 

DF 1 

Pr > S <.0001 
 

The results in Output 3.1 confirm our hand calculations.  Keep in mind that this test says 
nothing about the degree of association between the two responses.  It merely tests the null 
hypothesis that the probability of a “yes” response is the same at the two time points, while 
allowing for any level of association. 

Suppose we also want to answer the question “How do the odds of smoking change over the 
one-year period?”  A natural way to answer this question is to compute the estimated odds of 
smoking at each interview, and then take the ratio of those odds. 

90 / 592
1.80

53 / 629
=  

But a fixed effects approach leads to a different estimate, the ratio of the two off-diagonal 
counts:  63/26 = 2.42.  Thus a fixed effects approach leads to a much higher estimate of the 
change over time.  The conventional method is called a population-averaged estimate, 
whereas the fixed effects estimate is called a subject-specific estimate.  I’ll have more to say 
about the difference between these two kinds of estimates later in this chapter.  Note that this 
distinction was not relevant for the paired-comparisons t-test in the last chapter, where the 
difference in the means across the two time periods was the same as the mean of the 
differences. 

While McNemar’s test is well suited to its goal, it doesn’t allow covariates to affect the 
response.  In the next section we develop a logistic regression method that does just that.  As 
we’ll see, McNemar’s approach can be seen as a special case of this more general method. 

3.2 Logistic Models for Dichotomous Data with Two 
Observations Per Person 

 
We begin with the relatively simple situation in which the response variable is a dichotomy 
and there are exactly two observations for each individual.  As in chapter 2, we let yit be the 
value of the response variable for individual i on occasion t, but now y is constrained to have 
a value of either 0 or 1.  In this section, t = 1 or 2.  Let pit be the probability that yit = 1.  It is 
convenient to assume that the dependence of pit on possible predictor variables is described 
by a logistic regression model 
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where  zi  is a column vector of variables that describe the individuals but do not vary over 
time, and xit is a column vector of variables that vary both over individuals and over time for 
each individual.  In this equation, μt is an intercept that is allowed to vary with time, and E 
and J are row vectors of coefficients.  As in chapter 2, Di represents all differences between 
persons that are stable over time and not otherwise accounted for by zi.  Again, we regard 
these as fixed parameters, one per person.   Additionally, we assume that for a given 
individual i (and hence a given value of Di), yi1 and yi2 are independent.  That is,  
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Our goal is to estimate μt and E while controlling for all time-invariant covariates (both 
measured and unmeasured).  To accomplish that, we use only variation within individuals to 
estimate these parameters.  When there are two occasions per individual, we can use a 
method that is very similar to the difference score method used for quantitative response 
variables.  Let’s first consider those individuals who do not change from time 1 to time 
2 that is, yi1 = 0 and yi2 = 0, or yi1 = 1 and yi2 = 1.  Because there is no within-individual 
variation on the response variable, such observations contain no information about the 
parameters μ and E and thus can be discarded from the analysis.  That leaves individuals who 
change from 0 to 1 and those who change from 1 to 0.   According to equations (3.2), the 
probability of those two outcomes is 
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We then take the logarithm of the ratio of these probabilities to get 
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Substituting from equation (3.1) and rearranging terms gives 
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As we found for the linear model, both zi and Di have been “differenced out” of the equation. 
This result suggests the following method for estimating the parameters: 

• Eliminate all individuals who do not change on the response variable. 
• Create difference scores for all the time-varying predictors. 
• Use maximum likelihood to estimate the logistic regression predicting yi2, with the 

difference scores as predictor variables. 
 

This procedure is called conditional logistic regression.  I’ll have more to say about its 
properties and justification in the next section.  

If there are no covariates, we have the sort of data that we saw in Table 3.1.  Here’s how to 
estimate the logistic regression model for those tabular data: 

PROC LOGISTIC DATA=smoking DESC; 
   WHERE baseline NE oneyear; 
   FREQ count; 
   MODEL oneyear= / EXPB; 
RUN; 
 

The WHERE statement eliminates those observations that did not change from time 1 to time 
2.  The DESC option (short for “descending”) forces PROC LOGISTIC to model the 
probability that the dependent variable is equal to “yes” rather than equal to “no.”   Although 
the formulas used in this chapter assume that the dependent variable y is either 1 or 0, PROC 
LOGISTIC can actually handle any two values, whether numeric or character.  The default is 
to model the probability of the lower value, in this case lower in the alphabet.  The DESC 
option reverses that to model the higher value. The EXPB option computes the exponentiated 
value of the coefficients, which can be interpreted as odds ratios.   

Results in Output 3.2 are consistent with what we saw in the previous section.  The odds ratio 
of 2.423 is just the simple ratio of the off-diagonal counts.  The chi-square of 14.14 is close 
but not identical to the McNemar statistic of 15.38.  While both statistics are testing the same 
null hypothesis, McNemar’s test is a traditional Pearson chi-square calculated under the 
assumption that the two expected frequencies are the same.  PROC LOGISTIC reports a 
Wald chi-square, which is the squared ratio of the coefficient to its estimated standard error.   

Output 3.2  PROC LOGISTIC Estimates for Smoking Data 

Response Profile 

Ordered 
Value oneyear 

Total
Frequency

1 yes 63

2 no 26

continued 
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Output 3.2  (continued) 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq Exp(Est) 

Intercept 1 0.8850 0.2331 14.4161 0.0001 2.423 

 
Now let’s consider an example with predictor variables.  The sample consists of 1151 girls 
from the National Longitudinal Survey of Youth (www.bls.gov/nls) who were interviewed 
annually for nine years, beginning in 1979.  For this example, we’ll use data only from year 1 
and year 5.  The response variable POV has a value of 1 if the girl’s household was in 
poverty (as defined by U.S. federal standards) in a given year, and otherwise has a value of 0.  
The predictor variables are: 

 AGE  Age in years at the first interview 
 BLACK 1 if respondent is black, otherwise 0 
 MOTHER 1 if respondent currently had a least one child, otherwise 0 
 SPOUSE 1 if respondent is currently living with a spouse, otherwise 0 
 INSCHOOL 1 if respondent is currently enrolled in school, otherwise 0 
 HOURS Hours worked during the week of the survey 
 

The first two variables are time-invariant, whereas the last four may differ at each interview.  

The data set MY.TEENPOV has one record for each of the 1151 respondents, with different 
variable names for the same variable measured in different years.  For simplicity, the data set 
contains only respondents who have no missing data on any of the variables.  Let’s first check 
the joint distribution of the dependent variables: 

PROC FREQ DATA=my.teenpov; 
   TABLES pov1*pov5 / NOROW NOCOL NOPCT AGREE; 
RUN; 
 

We see from Output 3.3 that although 445 girls changed status during the five-year period, 
there was only a slight increase in the proportion in poverty. This increase is not statistically 
significant, according to the McNemar statistic.  

Output 3.3  Contingency Table for Poverty in Years 1 and 5 

Table of pov1 by pov5 

pov1 pov5 

Frequency 0 1 Total

0 516 234 750

1 211 190 401

Total 727 424 1151

continued 
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Output 3.3  (continued) 

McNemar's Test 

Statistic (S) 1.1888

DF 1

Pr > S 0.2756
 

To do the logistic regression analysis, the first step is to create a new data set that excludes 
those girls whose poverty status was the same in years 1 and 5, and defines new variables that 
are differences between the values for year 5 and for year 1: 

DATA teendif; 
   SET my.teenpov; 
   IF pov1=pov5 THEN DELETE; 
   mother=mother5-mother1; 
   spouse=spouse5-spouse1; 
   inschool=inschool5-inschool1; 
   hours=hours5-hours1; 
RUN; 
 

Next, we estimate a logistic regression with POV5 as the dependent variable, and difference 
scores and time-invariant predictors as independent variables:   

PROC LOGISTIC DATA=teendif DESC; 
   MODEL pov5=mother spouse inschool hours black age; 
RUN; 
 

Output 3.4 gives the results.  Although the time-varying predictors are expressed as 
difference scores, their coefficients should be interpreted as they appear in equation 
(3.1) that is, as the effect of the value of the variable in a given year on the probability of 
poverty in that same year.  Thus, the odds ratio for MOTHER tells us that the odds of being 
in poverty were twice as high in years when girls had children as compared with years in 
which they did not have children (controlling for other variables).  On the other hand, when 
girls lived with husbands, their odds of poverty were only 35% as large as when they did not 
live with husbands.  Each additional hour of work per week reduced the odds of poverty by 
100(1 – .967) = 3.3%.   

Output 3.4  PROC LOGISTIC Output for Regression on Difference Scores 

Response Profile 

Ordered 
Value pov5 

Total
Frequency

1 1 234

2 0 211

continued 
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Output 3.4  (continued) 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 4.8993 1.6438 8.8829 0.0029 

mother 1 0.7436 0.2538 8.5862 0.0034 

spouse 1 -1.0317 0.2918 12.5014 0.0004 

inschool 1 0.3394 0.2178 2.4287 0.1191 

hours 1 -0.0339 0.00623 29.7027 <.0001 

black 1 -0.5263 0.2164 5.9154 0.0150 

age 1 -0.2577 0.1029 6.2739 0.0123 

 

Odds Ratio Estimates 

Effect 
Point 

Estimate 
          95% Wald 

           Confidence Limits 

mother 2.103 1.279 3.459

spouse 0.356 0.201 0.631

inschool 1.404 0.916 2.152

hours 0.967 0.955 0.978

black 0.591 0.387 0.903

age 0.773 0.632 0.945

 

The coefficients (and odds ratios) for BLACK and AGE must be interpreted somewhat 
differently.  According to equation (3.3), as time-invariant predictors these variables 
shouldn’t even be in the model.  In fact, they represent interactions between time-invariant 
predictor variables and time itself, so that the rate of change in the odds of poverty depends 
on the value of these variables.  More specifically, for a girl whose predictor variables did not 
change from year 1 to year 5, the change in the log-odds of poverty over the five-year period 
can be expressed as 

 4.8993 – .5263*BLACK – .2577*AGE. 

Thus, for a 14-year-old girl who was not black and who did not change on any of the other 
predictors, the predicted change in the log-odds is  +1.29.  Equivalently, her odds of being in 
poverty increase by a factor of exp(1.29) = 3.63.  We conclude that blacks and girls who were 
older at year 1 had a lower rate of increase in poverty.   

As in the linear difference score model of chapter 1, we can also test for constancy in the 
effect of the time-varying predictors by including their values for year 1 in the model.  The 
coefficients for the variable for year 1 represent the difference between the effects of each 
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variable in year 1 and year 5.  We see in Output 3.5 that the only time-varying predictor 
whose effects change significantly from year 1 to year 5 is INSCHOOL.  The implied 
coefficient for year 5 is .6389.  The implied coefficient for year 1 is .6389 – 1.1838 = –. 54449.  
It therefore appears that school enrollment is associated with an increased risk of poverty in 
the later year and a reduced risk in the earlier year.  Incidentally, the proportion of girls 
attending school is about 89% in year 1 and 80% in year 5. 

Output 3.5  Difference Regression with Variables for Year 1 Added  

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 3.0518 1.8261 2.7928 0.0947 

mother 1 0.9093 0.2696 11.3770 0.0007 

mother1 1 0.4565 0.4596 0.9868 0.3205 

spouse 1 -1.0220 0.3009 11.5391 0.0007 

spouse1 1 0.4422 0.7260 0.3710 0.5425 

inschool 1 0.6389 0.2511 6.4722 0.0110 

inschool1 1 1.1838 0.4707 6.3254 0.0119 

hours 1 -0.0339 0.00677 25.0932 <.0001 

hours1 1 -0.00238 0.0128 0.0343 0.8531 

black 1 -0.6617 0.2264 8.5442 0.0035 

age 1 -0.1961 0.1106 3.1440 0.0762 

 

In chapter 2, we saw that the results from a difference score regression could be replicated by 
creating a separate record for each person at each point in time, and then estimating a 
regression model that includes a dummy variable for every person (except one).  Let’s try that 
for the logistic regression.  The first step is to restructure the data set so there’s a separate 
record for each person in each year: 

DATA teenyrs2; 
   SET my.teenpov; 
     year=1; 
     pov=pov1; 
     mother=mother1; 
     spouse=spouse1; 
     inschool=inschool1; 
     hours=hours1; 
     OUTPUT; 
     year=2; 
     pov=pov5; 
     mother=mother5; 
     spouse=spouse5; 
     inschool=inschool5; 
     hours=hours5; 
     OUTPUT; 
   KEEP id year black age pov mother spouse inschool hours; 
RUN; 
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The TEENYRS2 data set has 2,302 records, two for each of the 1151 girls.  The time-varying 
covariates are given the same names for each of the two records.    

Now we’re ready to estimate the logistic regression model: 

PROC LOGISTIC DATA=teenyrs2 DESC; 
   CLASS id / PARAM=REF; 
   MODEL pov=year mother spouse inschool hours year*black  
         year*age id; 
RUN; 
 

The CLASS statement tells PROC LOGISTIC to create a set of dummy variables, one for 
each value of ID except for the highest.  The PARAM=REF option says to make one of the 
ID numbers the reference category, by default the highest ID number. Note that in the 
MODEL statement, BLACK and AGE are entered as interactions with YEAR, but with no 
corresponding main effects.   

This model took about 1.5 minutes to estimate on my PC.  The printed output was extremely 
voluminous because LOGISTIC reported (a) a 1050 x 1050 matrix describing the coding of 
the dummy variables, (b) coefficients for the 1050 dummy variables, and (c) odds ratios 
contrasting each person with the reference person.  In Output 3.6, I’ve excluded everything 
but the coefficient information from the other predictor variables.   

Not only is this method cumbersome, but it also gives the wrong results.  In Output 3.6, we 
find that every coefficient is exactly twice as large as the corresponding coefficient in Output 
3.4, obtained with conditional logistic regression.  This is a quite general result (Abrevaya 
1997).  Whenever you do logistic regression with dummy variables for individuals and 
exactly two observations for each individual, the coefficients will be twice as large as the 
coefficients from conditional logistic regression.  The chi-squares and standard errors in 
Output 3.6 are also incorrect.  The chi-squares are exactly twice as large as those in Output 
3.4, and the standard errors are      times those in Output 3.4.   

Output 3.6  Logistic Regression Estimates with Dummy Variables for Persons 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept  1 -21.3931 2293.3 0.0001 0.9926 

year  1 9.7990 2.3248 17.7667 <.0001 

mother  1 1.4872 0.3589 17.1744 <.0001 

spouse  1 -2.0635 0.4126 25.0059 <.0001 

inschool  1 0.6789 0.3080 4.8577 0.0275 

hours  1 -0.0679 0.00881 59.4107 <.0001 

year*black  1 -1.0526 0.3060 11.8321 0.0006 

year*age  1 -0.5154 0.1455 12.5485 0.0004 

 
When there are more than two observations per person and/or varying numbers of 
observations per person, there won’t be such a neat scaling of the coefficients and  

2
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chi-squares.  In any case, logistic regression with dummy variables for individuals will 
generally give biased coefficient estimates.  I’ll have more to say about the reasons for this in 
the next section.   

3.3 Estimation of Logistic Models for Two or More 
Observations Per Person 

 
When individuals in the sample have three or more observations, we can’t use the simple 
method of doing a logistic regression on the persons who change (with difference scores as 
predictors).  In chapter 2, we faced the same problem with linear models, and we solved it by 
expressing all variables as deviations from the person-specific means.  In the case of 
dichotomous outcomes, an analogous method can be implemented with PROC LOGISTIC (in 
SAS 9.0 and later).1  Before proceeding to the practical details, I first need to clear up two 
theoretical issues: (1) the reason why we can’t use dummy variables for individuals in logistic 
regression, and (2) the rationale for conditional logistic regression.   

In chapter 2, we saw that one way to estimate a fixed effects linear model in the multiple 
observation case was to structure the data with one observation per individual per occasion 
and then compute an OLS regression with dummy variables for all individuals (except one).  
Although computationally cumbersome, that method produced the correct results.  We just 
saw, however, that the device of using dummy variables does not work for logistic regression 
in the two-occasion case, and the problem extends to data with more than two occasions.  The 
coefficients are generally biased upward, and the test statistics will also be incorrect.  Why is 
this? 

This is an example of a general problem called the incidental parameters problem 
(Kalbfleisch and Sprott 1970) that arises in certain applications of maximum likelihood 
estimation.  The justification for maximum likelihood estimators is usually asymptotic, which 
means that it’s based on how the estimators behave as the sample gets large.  However, the 
validity of that justification depends on the presumption that the number of parameters 
remains constant as the sample gets larger.  For longitudinal data, that works just fine if the 
number of individuals remains constant while the number of observations per individual gets 
larger.  But if the number of individuals is getting larger while the number of time points 
remains constant, then the number of parameters in a fixed effects model (including 
coefficients of the dummy variables) is increasing at the same rate as the sample size.  This is 
not a problem for linear models and (somewhat surprisingly) for the Poisson models 
discussed in chapter 4.  But it is a serious problem with logistic regression and many other 
nonlinear regression models.  The biases are greatest when, as in the previous section, the 
number of time points per individual is small.   

The solution to the incidental parameters problem is to do conditional maximum likelihood 
(Chamberlain 1980), which we already employed in the two-occasion case.  Now we need to 
generalize that method to more than two occasions.  The basic idea is to reformulate the 
likelihood function so that it no longer contains the individual-specific Di parameters in 
equation (3.1).  It turns out that for the logistic model of equation (3.1), there are reduced 

                                                 
1 Conditional logistic regression requires the STRATA statement, which was first implemented in SAS 
9.0.  For earlier releases, conditional logistic regression can be accomplished with PROC PHREG 
using the methods described in Allison (1999).  
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sufficient statistics for the Di parameters.  That means that there are summaries of the data 
that contain all the information about the Di terms.  Specifically, the reduced sufficient 
statistics are the counts si of the number of observations for each person in which yit = 1: 
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We can remove the Di terms from the likelihood function by conditioning on these sufficient 
statistics.  For a single individual, the likelihood function for conventional logistic regression 
is 
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We then condition on si by dividing this likelihood by the probability of observing si.  
Without going through the algebraic details, this produces   
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In the denominator,                 all have the same form as \1 except that, instead of the 
observed values of 1 and 0 for yit , the 1’s and 0’s are permuted in all possible ways.  Thus Q 
is the number of different ways of re-arranging the 1’s and 0’s, given that we’ve observed a 
certain number of each.  Notice that J, the coefficient vector for the time-invariant predictors, 
and the Di terms no longer appear in this likelihood.  

To put this more concretely, suppose that each person is observed on five occasions (as in our 
upcoming example).  Suppose, further, that one particular individual was in poverty at times 
1 and 3, but not at times 2, 4 or 5.   We then ask the question “Given that the event occurred 
on two occasions, what is the probability that it happened at times 1 and 3, but not at two 
other times (say, 2 and 5, or 3 and 4)?”  In fact, there are 10 different possible ways of 
choosing two occasions from among five possibilities.  The resulting likelihood for this 
person has the following form: 
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The conditional likelihood for the whole sample is just the product of all such likelihoods for 
each person.  

There are three things worth noting about conditional logistic regression.  First, as we saw in 
the two-occasion case, persons who don’t change on yit over the period of observation are 
effectively eliminated from the analysis.  In the likelihood (3.4), for a person who has all 1’s 
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or all 0’s, the numerator and denominator will be identical and hence will cancel.  With 
respect to the conditioning argument, if we know that someone has events on five out of five 
occasions, then there’s no more room for variability in when those events occurred.   

A second point, related to the first, is that conditional maximum likelihood estimators have 
two out of the three properties usually associated with maximum likelihood estimation.  They 
are consistent (i.e., they converge in probability to the true values) and they are 
asymptotically normal (i.e., the sampling distribution is approximately normal for large 
samples).  But they might not be fully efficient.  There is a potential loss of information that 
comes from (a) excluding persons who don’t change, and (b) only using within-person 
variation.  But that’s the price one always pays for choosing a fixed effects model.   

A third point is that, for dichotomous dependent variables, conditional likelihood only works 
for the logistic regression model, not for other link functions like probit or complementary 
log-log.  That’s because those models do not have reduced sufficient statistics for the Di 
parameters and thus have no way to condition them out of the likelihood function.  However, 
for alternative link functions, it’s possible to do approximate conditional likelihood using the 
projected score method proposed by Waterman and Lindsay (1996).   

So much for the theory.  How can we implement conditional logistic regression in PROC 
LOGISTIC?  In section 3.2, we estimated a conditional logistic regression model for poverty 
in years 1 and 5 of a five-year series.  Now let’s look at all five years together.   Again, the 
first thing we must do is restructure the data so that there is one record per person-year 
instead of one record per person: 

DATA teenyrs5; 
   SET my.teenpov; 
   ARRAY pv(*) pov1-pov5; 
   ARRAY mot(*) mother1-mother5; 
   ARRAY spo(*) spouse1-spouse5; 
   ARRAY ins(*) inschool1-inschool5; 
   ARRAY hou(*) hours1-hours5; 
   DO year=1 TO 5; 
      pov=pv(year); 
      mother=mot(year); 
      spouse=spo(year); 
      inschool=ins(year); 
      hours=hou(year); 
      OUTPUT; 
   END; 
   KEEP id year black age pov mother spouse inschool hours; 
RUN; 
 

This DATA step produces 5755 observations, five for each of the 1151 girls.  Now we’re 
ready to run PROC LOGISTIC to estimate the first model:  

PROC LOGISTIC DATA=teenyrs5 DESC; 
   CLASS year / PARAM=REF; 
   MODEL pov = year mother spouse inschool hours; 
   STRATA id; 
RUN; 
 

The CLASS statement declares YEAR to be a categorical variable, with the highest year 
(year 5) being the reference category.  The STRATA statement says that each girl is a 
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separate stratum, which groups together the five observations for each girl in the process of 
constructing the likelihood function.   

Results in Output 3.7 are rather similar to those in Output 3.4, which was based on only two 
observations per person.  The first panel, “Strata Summary,” gives the number of girls (strata) 
who have specific frequencies of years in poverty.  Note that there were 232 girls who were 
not in poverty in any of the five years and 92 girls who were in poverty all five years.  Both 
of these groups get eliminated from the likelihood function. The second panel, “Testing 
Global Null Hypothesis,” gives three alternative chi-square tests for the null hypothesis that 
all the regression coefficients are 0.  Clearly that hypothesis must be rejected.  Turning to the 
“Analysis of Maximum of Likelihood Estimates,” we see that motherhood and school 
enrollment increase the risk of poverty, whereas living with a husband and working more 
hours reduce the risk.  The last panel gives the odds ratios.  Motherhood increases the odds of 
poverty by an estimated 79%.  Living with a husband cuts the odds approximately in half.  
Each additional hour of employment per week reduces the odds by about 2%.  Keep in mind 
that these estimates control for all stable characteristics of the girls, including such things as 
race, intelligence, place of birth, and parent’s education.  

Output 3.7  Conditional Logistic Regression Estimates Produced by PROC LOGISTIC 

Strata Summary 

pov 
Response 

Pattern 1 0 
Number of

Strata Frequency

1 0 5 232 1160

2 1 4 355 1775

3 2 3 191 955

4 3 2 152 760

5 4 1 129 645

6 5 0 92 460

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 97.2814 8 <.0001

Score 94.5804 8 <.0001

Wald 90.5640 8 <.0001

continued 
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Output 3.7  (continued) 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

year 1 1 -0.4025 0.1275 9.9615 0.0016 

year 2 1 -0.0707 0.1185 0.3562 0.5506 

year 3 1 -0.0675 0.1096 0.3793 0.5380 

year 4 1 0.0303 0.1047 0.0836 0.7725 

mother  1 0.5824 0.1596 13.3204 0.0003 

spouse  1 -0.7478 0.1753 18.1856 <.0001 

inschool  1 0.2719 0.1127 5.8157 0.0159 

hours  1 -0.0196 0.00315 38.8887 <.0001 

 

Odds Ratio Estimates 

Effect 
Point 

Estimate 
95% Wald 

Confidence Limits 

year     1 vs 5 0.669 0.521 0.859

year     2 vs 5 0.932 0.739 1.175

year     3 vs 5 0.935 0.754 1.159

year     4 vs 5 1.031 0.840 1.265

mother 1.790 1.310 2.448

spouse 0.473 0.336 0.668

inschool 1.312 1.052 1.637

hours 0.981 0.975 0.987

 

Although models like this cannot include the main effects of time-invariant variables, they do 
allow for interactions between time-invariant variables and time-varying variables, including 
time itself.  The next model, for example, includes the interaction between MOTHER and 
BLACK.    

PROC LOGISTIC DATA=teenyrs5 DESC; 
   CLASS year / PARAM=REF; 
   MODEL pov = year mother spouse inschool hours mother*black; 
   STRATA id; 
RUN; 
 

In Output 3.8, we see that the interaction is statistically significant at the .05 level.  For 
nonblack girls, the effect of motherhood is to increase the odds2 of poverty by a factor of  

                                                 
2 By default, PROC LOGISTIC does not report odds ratios for variables involved in an interaction.  
However, these can be requested with the EXPB option on the MODEL statement.   
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exp(.9821) = 2.67.  For black girls, on the other hand, the effect of motherhood is to increase 
the odds of poverty by a factor of exp(.9821 – .5989) = 1.47.  Thus, motherhood has a larger 
effect on poverty status among nonblack girls than among black girls. 

Output 3.8  Conditional Logistic Regression with Interaction 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

year 1 1 -0.3996 0.1276 9.8046 0.0017 

year 2 1 -0.0677 0.1186 0.3260 0.5680 

year 3 1 -0.0654 0.1097 0.3552 0.5512 

year 4 1 0.0304 0.1047 0.0843 0.7716 

mother  1 0.9821 0.2529 15.0787 0.0001 

spouse  1 -0.7830 0.1777 19.4224 <.0001 

inschool  1 0.2671 0.1128 5.6084 0.0179 

hours  1 -0.0192 0.00316 36.9396 <.0001 

mother*black  1 -0.5989 0.2897 4.2748 0.0387 

 

3.4 Fixed Effects versus Random Effects 
As with the linear models in chapter 2, the most popular alternative to the fixed effects model 
is a random effects model.  That model begins with an identical equation: 
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Now, instead of assuming that Di is a fixed constant, we assume that it is a random variable 
with the following properties: 

• E(Di) = 0. 
• Var(Di) = W 2. 
• Di is independent of xit and zi. 
• Di is normally distributed.  
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Models of this sort can be handled with PROC NLMIXED, which estimates a variety of 
nonlinear mixed models.3  Let’s apply it to our poverty example: 

PROC NLMIXED DATA=teenyrs5; 
   eta=b0 + byr1*(year=1)+ byr2*(year=2) + byr3*(year=3) + 
      byr4*(year=4) + bmother*mother + bspouse*spouse +  
      bschool*inschool + bhours*hours + alpha; 
   p=1/(1+ EXP(-eta)); 
MODEL pov~BINARY(p); 
RANDOM alpha ~ NORMAL(0,s2)  SUBJECT=id; 
PARMS b0=-.29 byr1=-.06 byr2=.16 byr3=.09 byr4=.09 
      bmother=.99 bspouse=-1.26 bschool=-.24 bhours=-.03 s2=1; 
RUN; 
 

The program begins by defining a linear function ETA of the explanatory variables, including 
a random component denoted by ALPHA.  Note that each coefficient must be given a name.  
I’ve chosen names that incorporate the name of the variable so that the output is more easily 
interpreted.  Also notice the treatment of YEAR.  Since NLMIXED doesn’t have a CLASS 
statement, I’ve used logical expressions like YEAR=1 to define dummy variables for the first 
four out of five years.   

 The next statement defines the probability P of an event as a logistic function of ETA, as in 
equation (3.6).  The MODEL statement says that the response variable POV has a Bernoulli 
distribution with parameter P (equivalent to a binomial distribution with N=1).  The 
RANDOM statement says that there is a different random variable ALPHA for each value of 
the ID variable.  These random variables all have normal distributions with a mean of 0 and a 
common variance S2.  Finally, the PARMS statement sets starting values for all the 
parameters in the model.  For the coefficients, these starting values were obtained from a 
simple logistic regression model estimated in PROC LOGISTIC.   

Estimation of this random effects model required about 40 seconds of computer time on my 
PC, much longer than the fixed effects model, which ran in slightly under six seconds.  
Results in Output 3.9 show both similarities and differences with the fixed effects estimates 
in Output 3.7.  The effects of motherhood and spouse are substantially larger in magnitude 
here than they were in Output 3.7. On the other hand, the estimate for school enrollment is 
much smaller and no longer statistically significant.   

                                                 
3 As of this writing, SAS also offers an experimental procedure called GLIMMIX that might be an attractive 

alternative to NLMIXED.  For the models discussed in this chapter, GLIMMIX has a much simpler syntax and 
is less computationally intensive.  On the other hand, the algorithms used by GLIMMIX might be less accurate 
than those used by NLMIXED, especially when the number of observations per person is small.  
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Output 3.9  Random Effects Estimates from PROC NLMIXED 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

b0 -0.5082 0.1121 1150 -4.53 <.0001 0.05 -0.7281 -0.2883 0.000809

byr1 -0.1722 0.1152 1150 -1.49 0.1353 0.05 -0.3982 0.05385 0.000011

byr2 0.1146 0.1103 1150 1.04 0.2989 0.05 -0.1018 0.3310 -0.00045

byr3 0.05395 0.1058 1150 0.51 0.6102 0.05 -0.1536 0.2616 -0.00009

byr4 0.08755 0.1034 1150 0.85 0.3971 0.05 -0.1152 0.2903 -0.00006

bmother 1.0769 0.1185 1150 9.09 <.0001 0.05 0.8445 1.3093 -0.00006

bspouse -1.2386 0.1521 1150 -8.14 <.0001 0.05 -1.5370 -0.9402 -0.00006

bschool -0.06457 0.09802 1150 -0.66 0.5102 0.05 -0.2569 0.1278 0.000652

bhours -0.02672 0.002872 1150 -9.30 <.0001 0.05 -0.03236 -0.02109 0.007776

s2 1.4490 0.1420 1150 10.20 <.0001 0.05 1.1704 1.7277 0.000012

 

Why the differences?  Well, the important thing to keep in mind is that the random effects 
estimates in Output 3.9 do not control for any time-invariant variables, whereas the fixed 
effects estimates in Output 3.7 control for all time-invariant variables.  Although time-
invariant variables could be added to the random effects model, only those variables that are 
actually present in the data set can be statistically controlled.  

3.5 Subject-Specific versus Population-Averaged 
Coefficients 
In chapter 2, we saw that estimates for the linear random effects model could also be obtained 
by using GEE estimation in PROC GENMOD.  Although GEE estimation also works well for 
logistic regression models, the results are not equivalent to the random effects estimates 
produced by PROC NLMIXED.  Let’s first examine the differences for our NLSY example, 
and then we’ll discuss the nature of those differences.  Here’s a GENMOD program for a 
model that’s similar to the one we just estimated in NLMIXED: 

PROC GENMOD DATA=teenyrs5; 
   CLASS year id; 
   MODEL pov = year mother spouse inschool hours 
         / DIST=BINOMIAL; 
   REPEATED SUBJECT=id / TYPE=EXCH MODELSE; 
RUN; 
 

The DIST=BINOMIAL option specifies a binomial distribution for the response variable 
POV.  For this distribution, the default link function is the logistic model.  The REPEATED 
statement invokes GEE estimation (in addition to conventional maximum likelihood) for the 
logistic regression model.  The TYPE=EXCH option says that all the within-person 
correlations are equal, which is similar to the random effects model.  The MODELSE option 
requests standard errors based on the model rather than using a robust estimation method.   
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These two options on the REPEATED statement are not necessarily optimal but have been 
chosen to maximize the similarity with the random effects model.  One thing that’s not at all 
similar, however, is the computation time.  While PROC NLMIXED took 40 seconds to 
estimate the random effects model, PROC GENMOD took only about half a second to 
estimate the analogous model.   

Results in Output 3.10 are similar to those in Output 3.9 for the random effects model 
estimated by NLMIXED.   The p-values for the coefficients are very close using the two 
methods.  Although the coefficients are identical in sign and similar in magnitude, the GEE 
coefficients are all smaller than the random effects coefficients (except for year 3).  This 
particular pattern is no accident.  Both methods make similar assumptions about the data, but 
the random effects maximum likelihood method produces subject-specific coefficients 
whereas the GEE method produces population-averaged coefficients (Hu et al. 1998; Diggle 
et al. 1994, Ch. 7).  

Output 3.10  GEE Estimates from PROC GENMOD 

Analysis Of GEE Parameter Estimates 

Model-Based Standard Error Estimates 

Parameter  Estimate
Standard 

Error
95% Confidence 

Limits Z Pr > |Z| 

Intercept  0.4019 0.0868 0.2317 0.5721 4.63 <.0001 

year 1 0.1331 0.0892 -0.0418 0.3080 1.49 0.1358 

year 2 -0.0915 0.0854 -0.2589 0.0759 -1.07 0.2840 

year 3 -0.0435 0.0820 -0.2041 0.1172 -0.53 0.5958 

year 4 -0.0713 0.0800 -0.2281 0.0855 -0.89 0.3728 

year 5 0.0000 0.0000 0.0000 0.0000 . . 

mother  -0.8450 0.0919 -1.0251 -0.6650 -9.20 <.0001 

spouse  0.9847 0.1206 0.7484 1.2211 8.16 <.0001 

inschool  0.0471 0.0763 -0.1024 0.1966 0.62 0.5373 

hours  0.0216 0.0023 0.0171 0.0260 9.41 <.0001 

Scale  1.0000 . . . . . 

 
What’s the difference?  A subject-specific coefficient is an estimate of what would happen to 
a particular individual if the predictor variable were increased by one unit.  A population-
averaged coefficient, on the other hand, is an estimate of what would happen to the whole 
population if everyone’s predictor variable were raised by one unit.  For linear models, there 
is no difference.  But for logistic regression models, and for many other nonlinear models, 
subject-specific coefficients will typically be larger than population-averaged coefficients.   

Which is preferable?  Well, that depends.  Suppose you’re a doctor and you want to know 
how much a flu vaccine will lower your patient’s risk of getting infected.  Then the subject-
specific coefficient is what you want.  On the other hand, if you’re a public-health 
administrator and you want to know how the proportion of people who contract some disease 
will change if everyone is vaccinated, then the population-averaged coefficient might be more 
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useful.  But even in the latter case, there’s a sense in which the subject-specific coefficient is 
more fundamental.   

Suppose that the true model is the basic random effects logistic model of equation (3.5).  The 
coefficient vectors E and J are both subject specific.  But if we estimate the model with GEE 
using PROC GENMOD, we will get population-averaged coefficients E* and J*.  The degree 
to which these coefficients differ depends on the variance of Di.  Specifically, if Var(Di) = 0, 
then E = E* and J  = J*.  As Var(Di) increases, the values of E* and J* decline toward 0.  
When Di has a normal distribution, the approximate relationship is 
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So the population-averaged coefficients depend on the degree of unobserved heterogeneity in 
the logistic regression model.  Comparing Outputs 3.9 and 3.10, we find that this relationship 
does, in fact, hold approximately.   

If your main concern is with the statistical significance and relative importance of the 
variables in the model, the population-averaged results obtained with GEE estimation may be 
quite adequate.  Given the computational economy of GENMOD, that may be the way to go. 
But if you really want to get the best estimate of the magnitudes of the subject-specific 
effects, the coefficients produced by NLMIXED are preferable. Note, also, that coefficients 
for the fixed effects logistic regression model, as estimated by conditional logistic regression 
using LOGISTIC, are also subject-specific and thus are not deflated by unobserved 
heterogeneity.    

3.6 A Hybrid Model 
In chapter 2, we saw how linear models with fixed and random effects could be combined 
into a single model by decomposing the time-varying predictors into within-person and 
between-person components, and by including both components in a random effects model.  
We can do the same for the logistic regression model, but, unfortunately, things don’t work 
out quite so neatly.  

As before, the first step is to calculate person-specific means and deviations from those 
means for the time-varying predictors:   

PROC SORT DATA=teenyrs5; 
   BY id; 
PROC MEANS DATA=teenyrs5 NWAY NOPRINT; 
   CLASS id; 
   VAR  mother spouse inschool hours; 
   OUTPUT OUT=means MEAN=mmother mspouse mschool mhours; 
RUN; 
 

The CLASS statement tells PROC MEANS to calculate the means separately for each value 
of the ID variable. The OUTPUT statement says to write the means onto a new data set 
MEANS, with one record for each person. Next, we merge the means with the original data 
set and calculate deviation scores: 
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DATA teencomb; 
   MERGE teenyrs5 means; 
   BY id; 
   dmother=mother-mmother; 
   dspouse=spouse-mspouse; 
   dschool=inschool-mschool; 
   dhours=hours-mhours; 
RUN; 
 

Using PROC NLMIXED, the next step is to run a random effects model with both the person-
specific means and the deviations from those means, along with year effects and effects of 
time-invariant variables (BLACK and AGE in this analysis): 

PROC NLMIXED DATA=teencomb; 
   eta=b0 + byr1*(year=1)+ byr2*(year=2) + byr3*(year=3) +   
      byr4*(year=4) + bdmother*dmother + bdspouse*dspouse +  
      bdschool*dschool + bdhours*dhours + bmmother*mmother +    
      bmspouse*mspouse + bmschool*mschool + bmhours*mhours +  
      bblack*black +bage*age + alpha; 
   p=1/(1+ EXP(-eta)); 
MODEL pov~BINARY(p); 
RANDOM alpha ~ NORMAL(0,s2)  SUBJECT=id; 
PARMS b0=1.9 byr1=-.3 byr2=-.04 byr3=-.05 byr4=.03 bdmother=.5  
      bdspouse=-.7 bdschool=.2 bdhours=-.02 bmmother=.9  
      bmspouse=-1.7 bmschool=-1 bmhours=-.04 bblack=.5 bage=-.1  
      s2=1; 
CONTRAST 'Test of fixed vs. random' bdmother-bmmother, bdspouse- 
          bmspouse, bdschool-bmschool, bdhours-bmhours; 
RUN; 
 

A CONTRAST statement is included to test whether the coefficients for the deviation 
variables are the same as the coefficients for the corresponding mean variables.  The text in 
quotes is just a user-chosen label for the output.  The null hypothesis being tested is that all 
the parameter differences, separated by commas, are equal to 0.  In effect, this is a test of the 
random effects versus fixed effects approach.  

Results are shown in Output 3.11.  We see that the coefficients, standard errors, and p-values 
for the deviation variables are very close to those we got with conditional logistic regression 
in Output 3.7.  They are not identical, however, in contrast to what we found for linear 
models in chapter 2.  For example, the conditional logistic regression estimate for the effect 
of SPOUSE was – .748 with a standard error .175.  Here, the estimate is – .817 with a 
standard error of .179.  So it seems that that the hybrid method does not exactly reproduce the 
fixed effects estimates obtained with conditional logistic regression.   
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Output 3.11  Hybrid Model Estimates Produced by PROC NLMIXED 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

b0 1.9350 0.8170 1150 2.37 0.0180 0.05 0.3320 3.5381 -0.54682

byr1 -0.3899 0.1251 1150 -3.12 0.0019 0.05 -0.6353 -0.1444 -0.17353

byr2 -0.05712 0.1167 1150 -0.49 0.6247 0.05 -0.2862 0.1719 -0.08998

byr3 -0.06143 0.1084 1150 -0.57 0.5710 0.05 -0.2741 0.1512 -0.27951

byr4 0.04193 0.1036 1150 0.40 0.6858 0.05 -0.1614 0.2452 0.248893

bdmother 0.5960 0.1582 1150 3.77 0.0002 0.05 0.2855 0.9064 0.066562

bdspouse -0.8168 0.1795 1150 -4.55 <.0001 0.05 -1.1689 -0.4647 -0.31346

bdschool 0.2726 0.1128 1150 2.42 0.0158 0.05 0.05126 0.4940 -0.14887

bdhours -0.02102 0.003207 1150 -6.56 <.0001 0.05 -0.02731 -0.01473 -1.79542

bmmother 1.0801 0.1801 1150 6.00 <.0001 0.05 0.7267 1.4336 -0.04581

bmspouse -2.1409 0.2546 1150 -8.41 <.0001 0.05 -2.6405 -1.6413 0.045393

bmschool -1.3305 0.2013 1150 -6.61 <.0001 0.05 -1.7254 -0.9356 -0.23929

bmhours -0.04705 0.005817 1150 -8.09 <.0001 0.05 -0.05846 -0.03564 1.025076

bblack 0.5653 0.09673 1150 5.84 <.0001 0.05 0.3755 0.7551 -0.73213

bage -0.1020 0.04971 1150 -2.05 0.0404 0.05 -0.1995 -0.00446 0.045949

s2 1.2366 0.1268 1150 9.75 <.0001 0.05 0.9879 1.4854 -0.3998

 
Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

Test of fixed vs. random 4 1150 19.34 <.0001

 
There are two important advantages to the hybrid method.  First, it allows one to get 
coefficient estimates for the time-invariant covariates.  We see here, for example, that blacks 
have significantly higher rates of poverty, while girls who were older at the first interview 
have significantly lower rates of poverty.  Keep in mind that these estimates do not control 
for unobserved, stable covariates.  Second, the hybrid method allows for a test of the random 
effects model (the null hypothesis) versus the less restrictive fixed effects model.   From the 
results of the CONTRAST statement in Output 3.11, we see that the random effects model 
must be rejected in favor of the fixed effects model.   

These advantages come with a substantial computational cost.  While PROC LOGISTIC took 
about five seconds to estimate the conditional logistic regression, PROC NLMIXED took 
four minutes to estimate the hybrid model.  Clearly, this could be prohibitive with a very 
large sample (or a slow computer).  There is an alternative, however.  Instead of doing 
maximum likelihood estimation of the random effects model with NLMIXED, we can do 
GEE estimation of an equivalent model using PROC GENMOD.  Here’s how to set it up:  
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PROC GENMOD DATA=teencomb DESC; 
   CLASS id year; 
   MODEL pov = year dmother dspouse dschool dhours mmother  
         mspouse mschool mhours black age / DIST=BINOMIAL; 
   CONTRAST 'Test of fixed vs. random' dmother 1 mmother -1,  
             dspouse 1 mspouse -1,dschool 1 mschool -1,  
             dhours 1 / mhours -1; 
   REPEATED SUBJECT=id / TYPE=EXCH MODELSE; 
RUN; 
 

The CONTRAST statement in PROC GENMOD has a very different syntax than what we 
just saw for PROC NLMIXED.  It’s essentially the same syntax that we used for PROC 
MIXED in chapter 2.   The TYPE=EXCH and MODELSE options are used here to maximize 
the similarity with PROC NLMIXED.  In practice, the estimates might be more robust with 
TYPE=UN (for unstructured correlation matrix) and the empirical standard errors (which are 
the default).  In contrast to NLMIXED, estimation with GENMOD required less than three 
seconds of computing time.   

Results are shown in Output 3.12.  Comparing the GENMOD p-values with the NLMIXED 
p-values in Output 3.11, we find that they are very close in every case.  While the GENMOD 
coefficients are identical in sign to the NLMIXED coefficients, they are always a bit smaller 
in magnitude.  That’s consistent with the earlier point that GEE estimation produces 
population-averaged coefficients, which are usually closer to zero than the subject-specific 
coefficients produced by maximum likelihood estimation of a random effects model.  In any 
case, it does appear that GENMOD is a good alternative for estimating the hybrid model in 
those cases where NLMIXED would be computationally impractical.   

Output 3.12  Hybrid Estimates Produced by PROC GENMOD 

Analysis Of GEE Parameter Estimates 

Model-Based Standard Error Estimates 

Parameter  Estimate
Standard 

Error
95% Confidence 

Limits Z Pr > |Z| 

Intercept  -1.9204 0.6680 -3.2296 -0.6112 -2.87 0.0040 

year 1 0.3144 0.1014 0.1156 0.5132 3.10 0.0019 

year 2 0.0449 0.0947 -0.1407 0.2305 0.47 0.6356 

year 3 0.0483 0.0880 -0.1241 0.2207 0.55 0.5830 

year 4 -0.0338 0.0842 -0.1989 0.1313 -0.40 0.6881 

year 5 0.0000 0.0000 0.0000 0.0000 . . 

dmother  -0.4838 0.1284 -0.7355 -0.2322 -3.77 0.0002 

dspouse  0.6733 0.1483 0.3826 0.9640 4.54 <.0001 

dschool  -0.2248 0.0922 -0.4055 -0.0442 -2.44 0.0147 

dhours  0.0175 0.0026 0.0123 0.0226 6.61 <.0001 

mmother  -0.8759 0.1452 -1.1604 -0.5914 -6.03 <.0001 

mspouse  1.7709 0.2106 1.3582 2.1836 8.41 <.0001 

continued 
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Output 3.12  (continued) 

Analysis Of GEE Parameter Estimates 

Model-Based Standard Error Estimates 

Parameter  Estimate 
Standard 

Error 
95% Confidence 

Limits Z Pr > |Z| 

mschool  1.1220 0.1644 0.7998 1.4443 6.82 <.0001 

mhours  0.0402 0.0048 0.0307 0.0497 8.30 <.0001 

black  -0.4757 0.0785 -0.6295 -0.3218 -6.06 <.0001 

AGE  0.1032 0.0406 0.0237 0.1828 2.54 0.0110 

Scale  1.0000 . . . . . 

 

Contrast Results for GEE Analysis 

Contrast DF Chi-Square Pr > ChiSq Type 

test of fixed vs. random 4 79.99 <.0001 Score

 

3.7 Fixed Effects Methods for Multinomial Responses 
So far, this chapter has dealt only with binary response variables.  We now consider a 
categorical response variable yit that can take on more than two values.  Without loss of 
generality, let’s suppose that those values are the integers ranging from 1 to J.  Let  
pijt = Prob(yit = j).  We now want a model for the dependence of this probability on predictors 
xit and zi. 

We begin with the simpler case in which we assume an ordering of the J categories.  The  
most popular model for ordered categorical data is the cumulative logit model which, in its 
conventional form, is available in both PROC LOGISTIC and PROC GENMOD.  A fixed 
effects version of the model can be written as 
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Unfortunately, this model does not have reduced sufficient statistics for the Di parameters.  
Thus, conditional maximum likelihood is not an option for estimation.  One approach to 
estimation would be the approximate conditional method proposed by Waterman and Lindsay 
(1996), but that’s not available in any commercial software.  However, we can apply the 
hybrid method discussed in the previous section using robust standard errors to adjust for the 
lack of independence in the repeated observations for each individual. 
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As an example, we’ll analyze data on a sample of 396 people who survived residential fires in 
the Philadelphia area (Keane et al. 1996).  They were interviewed at 3 months, 6 months, and 
12 months after the fire.  The outcome variable FORGIVE is a response to the question 
“Have you had feelings that it is difficult to forgive yourself for anything that happened 
during the fire?”  The possible responses were coded as follows: 

1 Not at all 

2 A little 

3 Somewhat 

4 Very much 

 
The working data set contains 1,188 records, three for each person, corresponding to the three 
interviews.  The predictor variables, measured at each interview, are 

DEPRESS A depression scale with values ranging from 1 to 4 

RELSER A measure of attendance at religious services:1=never, 2=occasional, 
3=regular 

SEVENT Number of stressful events that have occurred since the fire or since the last 
interview, ranging from 0 to 5 

 
There is also a variable SUBJID which is the id number for each person and is common to all 
three records for each person.  

To implement the hybrid method, we must calculate person-specific means for each of the 
variables, merge those into the original data set, and then calculate deviations from those 
means: 

PROC MEANS DATA=my.forgive NWAY NOPRINT; 
   CLASS subjid; 
   VAR relser control depress  sevent ; 
   OUTPUT OUT=means MEAN= mrelser mcontrol mdepress  msevent; 
RUN; 
DATA forgive; 
   MERGE my.forgive means; 
   BY subjid; 
   dcontrol=control-mcontrol; 
   ddepress=depress-mdepress; 
   drelser=relser-mrelser; 
   dsevent=sevent-msevent; 
RUN; 
 

Now we’re ready to estimate the cumulative logit model with PROC GENMOD: 

PROC GENMOD DATA=forgive; 
   CLASS time subjid; 
   MODEL forgive=  ddepress drelser dsevent 
         mdepress mrelser msevent time / D=MULTINOMIAL; 
   REPEATED SUBJECT=subjid / TYPE=IND; 
   CONTRAST 'Fixed vs. Random Effects' ddepress 1 mdepress -1,  
             drelser 1 mrelser -1, dsevent 1 msevent -1; 
RUN; 
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The D=MULTINOMIAL option specifies that the dependent variable FORGIVE has a 
multinomial distribution with a cumulative link to the predictor variables.  The default is a 
cumulative logit link (as opposed to probit or complementary log-log).  Note that because I 
did not put the DESC option on the PROC statement, this model predicts the probability of 
the response variable having a lower value (less likelihood of difficulty forgiving oneself).  

The REPEATED statement invokes GEE estimation, with standard errors and associated 
statistics calculated using the robust method of White (1980).  Note that TYPE=IND is the 
only correlation structure allowed whenever D=MULTINOMIAL is specified. This means 
that GEE estimation presumes that there is no correlation among the repeated measures, and 
implies that GEE coefficient estimates are identical to those produced by conventional 
maximum likelihood.  Nevertheless, the standard errors and test statistics are adjusted for 
dependence among the observations.  Finally, the CONTRAST statement tests whether the 
coefficients for the deviation variables are the same as the coefficients for the corresponding 
mean variables. As we’ve seen before, this is equivalent to testing for fixed effects versus 
random effects.   

Output 3.13  Hybrid Estimates for Cumulative Logit Model with PROC GENMOD 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 
Standard 

Error
95% Confidence 

Limits Z Pr > |Z| 

Intercept1  -3.7853 0.3653 -4.5012 -3.0693 -10.36 <.0001 

Intercept2  -2.9643 0.3492 -3.6487 -2.2799 -8.49 <.0001 

Intercept3  -2.1085 0.3422 -2.7791 -1.4378 -6.16 <.0001 

ddepress  0.3001 0.1389 0.0278 0.5724 2.16 0.0308 

drelser  0.1462 0.1600 -0.1673 0.4598 0.91 0.3606 

dsevent  0.1728 0.0798 0.0165 0.3292 2.17 0.0303 

mdepress  0.7831 0.1258 0.5365 1.0298 6.22 <.0001 

mrelser  -0.3619 0.1572 -0.6700 -0.0538 -2.30 0.0213 

msevent  0.0579 0.1294 -0.1957 0.3116 0.45 0.6543 

time 1 0.7816 0.1712 0.4460 1.1172 4.56 <.0001 

time 2 0.4850 0.1696 0.1526 0.8175 2.86 0.0042 

time 3 0.0000 0.0000 0.0000 0.0000 . . 

 
Contrast Results for GEE Analysis 

Contrast DF Chi-Square Pr > ChiSq Type 

Fixed vs. Random Effects 3 11.87 0.0078 Score

 
Results are displayed in Output 3.13.  The coefficients for the three deviation variables (those 
whose names begin with D) can be interpreted as if they were fixed effects coefficients.  
Because these coefficients depend only on variation over time within persons, they control  
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for all stable covariates.  Among these coefficients, we see significant effects of depression 
and number of stressful events.  As expected, those who are more depressed and who had 
more stressful events are more likely to have trouble forgiving themselves.  It’s clear, on the 
other hand, that the deviation score for attendance at religious services does not have an 
effect, even though the mean score is significant at the .02 level.  The results from the 
CONTRAST statement indicate that we should reject the null hypothesis that the deviation 
coefficients are the same as the corresponding mean coefficients.  The implication is that we 
should focus our attention on the deviation coefficients, since they control for all stable 
covariates.   

As we have previously observed, one limitation of the GEE method is that the coefficients are 
population averaged rather than subject specific, implying that they are attenuated toward 
zero because of population heterogeneity.  If you’re willing to put in some additional 
programming effort and computer time, you can avoid this problem by fitting a random 
effects model with PROC NLMIXED.  Because the cumulative logit model is not built into 
NLMIXED, however, the programming is somewhat more involved: 

PROC NLMIXED DATA=forgive; 
   eta=bddepress*ddepress + bdrelser*drelser + bdsevent*dsevent 
      + bmdepress*mdepress + bmrelser*mrelser + bmsevent*msevent +  
        t1*(time EQ 1) + t2*(time EQ 2) + alpha; 
   IF forgive=1 THEN p=1/(1+EXP(-b1-eta)); 
   ELSE IF forgive=2 THEN p=1/(1+EXP(-b2-eta))-1/(1+EXP(-b1- 
           eta)); 
   ELSE IF forgive=3 THEN p=1/(1+EXP(-b3-eta))-1/(1+EXP(-b2- 
           eta)); 
   ELSE p=1-1/(1+EXP(-b3-eta)); 
   ll=LOG(p); 
   MODEL forgive~GENERAL(ll); 
   RANDOM alpha~NORMAL(0,var) SUBJECT=subjid; 
   CONTRAST 'Test of fixed vs. random' bddepress-bmdepress,  
             bdrelser-bmrelser,bdsevent-bmsevent,bdsevent- 
             bmsevent; 
   PARMS  bddepress=0 bdrelser=0 bdsevent=0 bmdepress=0    
          bmrelser=0 bmsevent=0 t1=0 t2=0 b1=1 b2=2 b3=3 var=1; 
RUN; 
 

The first statement after the PROC statement defines ETA to be a linear function of the 
explanatory variables, including a random disturbance term ALPHA.  As with previous 
NLMIXED programs, I’ve chosen names for the coefficients that are the same as the names 
for the covariates, except prefixed by B, making it easier to interpret the output.  The next 
four IF and ELSE IF statements specify the probability P of observing each outcome of the 
response variable, as it depends on ETA.  The log-likelihood LL is defined to equal the log of 
the probability P.  The MODEL statement says simply that the response variable FORGIVE 
has a log-likelihood given by LL.  The RANDOM statement declares ALPHA to be normally 
distributed with a mean of 0 and a variance parameter VAR. The CONTRAST statement tests 
whether the coefficients for the deviation variables are the same as the coefficients for the 
corresponding mean variables.  Finally, the PARMS statement assigns starting values to all 
the parameters.   

The coefficient estimates in Output 3.14 generally follow the same pattern as those in Output 
3.13 produced by PROC GENMOD, but their magnitudes are all noticeably larger.  This is 
just what we would expect from a subject-specific method.  The increased magnitude does 
not always imply an increased level of statistical significance, however, because the standard  
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errors also increase.  For example, the coefficient for DSEVENT has a p-value of .03 in 
Output 3.13 and .09 in Output 3.14.   Another thing to keep in mind is that PROC GENMOD 
took 0.2 seconds to estimate the model on my PC, whereas PROC NLMIXED took 8 
seconds.   

Output 3.14  Estimates for Cumulative Logit Model with PROC NLMIXED 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

bddepress -0.5128 0.1948 395 -2.63 0.0088 0.05 -0.8957 -0.1298 0.000115

bdrelser -0.2621 0.2324 395 -1.13 0.2602 0.05 -0.7191 0.1949 -0.00007

bdsevent -0.2319 0.1380 395 -1.68 0.0935 0.05 -0.5032 0.03927 0.000148

bmdepress -1.2357 0.2041 395 -6.05 <.0001 0.05 -1.6369 -0.8344 -0.00013

bmrelser 0.6043 0.2408 395 2.51 0.0125 0.05 0.1310 1.0777 -0.00004

bmsevent -0.09638 0.2235 395 -0.43 0.6665 0.05 -0.5357 0.3430 -0.00006

t1 -1.1166 0.2639 395 -4.23 <.0001 0.05 -1.6355 -0.5978 0.000016

t2 -0.6750 0.2521 395 -2.68 0.0077 0.05 -1.1706 -0.1794 0.000035

b1 3.2332 0.5851 395 5.53 <.0001 0.05 2.0829 4.3835 -0.00004

b2 4.5390 0.6096 395 7.45 <.0001 0.05 3.3406 5.7374 -0.00004

b3 5.6948 0.6374 395 8.93 <.0001 0.05 4.4416 6.9480 0.00005

var 4.1569 0.8213 395 5.06 <.0001 0.05 2.5422 5.7716 -4.26E-6

 
Contrasts 

Label 
Num 

DF
Den 
DF F Value Pr > F

Test of fixed vs. random 3 395 4.60 0.0035

 
Now let’s consider the more complicated situation in which the J categories are unordered.  
The most popular model for unordered dependent variables is the multinomial logit model 
(also known as the generalized logit model), which we now extend to include fixed effects: 
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In essence, this is a set of binary logistic regression equations that simultaneously compare 
each category to the last category.  Notice that the fixed effects Dij vary both over individuals 
and over response values.  

As with a single binary logistic model  (a special case of the multinomial model), there are 
reduced sufficient statistics for the Dij terms, namely the frequency counts over time of the 
different response values for each individual. By conditioning on those counts, this model can 
be estimated by conditional maximum likelihood.  Unfortunately, there are no SAS 
procedures that are designed to do this.  For certain simple cases in which the time-varying  
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covariates are categorical, the model can be reformulated as a log-linear model that can be 
estimated with PROC GENMOD or PROC CATMOD (Tjur 1982; Conaway 1989; Darroch 
and McCloud 1986; Kenward and Jones 1991), but I will not pursue those methods here.  
Alternatively, one could break the multinomial model into a set of binary models, one model 
for each comparison of a particular category with a reference category (Begg and Gray 1984; 
Allison 1999).  Each binary model could then be estimated using the conditional logistic 
regression methods we have already discussed in this chapter.  While this approach produces 
consistent estimates (in the statistical sense) of the coefficients, results will differ depending 
on the choice of the reference category.  Furthermore, there is no overall test for the effect of 
each variable on the response variable.  

As with the cumulative logit model, it seems that the best available approach in SAS is to use 
the hybrid method.  In fact, we can use the same data set that we created earlier for estimating 
the cumulative model.  Unfortunately, PROC GENMOD will not estimate an unordered 
multinomial model, and PROC LOGISTIC does not allow for dependence among the 
repeated observations.  Instead, we shall use PROC SURVEYLOGISTIC, which does 
conventional maximum likelihood estimation of the coefficients but produces standard errors 
and test statistics that allow for dependence among the repeated observations.  Here’s the 
code: 

PROC SURVEYLOGISTIC DATA=forgive; 
   CLASS time; 
   MODEL forgive(REF='1')=  ddepress drelser dsevent 
         mdepress mrelser msevent time / LINK=GLOGIT; 
   CLUSTER subjid; 
   CONTRAST 'Fixed vs. Random Effects' ddepress 1 mdepress -1,  
            drelser 1 mrelser -1, dsevent 1 msevent -1; 
RUN; 
 

The syntax of  PROC SURVEYLOGISTIC is nearly identical to that of PROC LOGISTIC 
except, in this example, for the CLUSTER statement.  The CLUSTER statement specifies an 
id variable that defines groups within which observations are allowed to be dependent.  In the 
MODEL statement, the REF= ‘1’ option specifies that the reference category for the 
dependent variable will be 1, which is the value for 83% of the cases.   The default is to 
choose the highest value (in this case 5) as the reference category, but only about 4% of the 
cases have that value.  Although the generalized logit model is fundamentally invariant to the 
choice of the reference category, choosing a reference category with few cases can make it 
appear as though none of the coefficients is statistically significant.  

The LINK=GLOGIT option tells SAS that this is a generalized (unordered) logit model rather 
than the cumulative logit model, which is the default.  The CONTRAST statement tests the 
null hypothesis that all the deviation coefficients are identical to all the corresponding mean 
coefficients.  Although the syntax is the same as the CONTRAST statement for the 
cumulative model in GENMOD, the consequences are somewhat different.  In our unordered 
model, each predictor variable has three coefficients. Each coefficient measures the effect of 
the variable on being in one particular category rather than the reference category.  When the 
CONTRAST statement specifies, say, DDEPRESS 1 MDEPRESS –1, each of the three 
coefficients for DDEPRESS is compared with the corresponding coefficients for 
MDEPRESS.  Thus, the chi-square statistic produced by our CONTRAST statement has nine 
degrees of freedom (three variables × three coefficients).  
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Results are shown in Output 3.15.  The “Type 3 Analysis of Effects” panel gives chi-squares 
for the null hypotheses that all three coefficients for each variable are zero, controlling for all 
the other variables.  These chi-squares are invariant to the choice of the reference category.   
We see that none of the fixed effects deviation variables is statistically significant.   

The “Analysis of Maximum Likelihood Estimates” panel reports the individual coefficient 
estimates and associated statistics.  As already noted, these coefficients are conventional 
maximum likelihood estimates under the assumption that all observations are independent.  
Hence, they are the same numbers that would be produced by PROC LOGISTIC with the 
LINK=GLOGIT option.  The standard errors, on the other hand, are adjusted for dependence 
among the repeated observations for each person.  In fact, they are not all that different from 
the standard errors produced by PROC LOGISTIC (or PROC SURVEYLOGISTIC without 
the CLUSTER statement).  Finally, the results for the CONTRAST statement provide 
marginal evidence that the deviation coefficients are different from the mean coefficients. 

Output 3.15  Estimates for Generalized Logit Model with PROC SURVEYLOGISTIC 

Type 3 Analysis of Effects 

Effect DF 
Wald

Chi-Square Pr > ChiSq

ddepress 3 6.0613 0.1087

drelser 3 1.4103 0.7031

dsevent 3 5.5606 0.1351

mdepress 3 37.0442 <.0001

mrelser 3 7.3868 0.0605

msevent 3 0.9435 0.8149

time 6 24.4000 0.0004

 
Analysis of Maximum Likelihood Estimates 

Parameter  forgive DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept  2 1 -2.0965 0.3992 27.5840 <.0001 

Intercept  3 1 -3.3333 0.5462 37.2401 <.0001 

Intercept  4 1 -3.4458 0.5699 36.5541 <.0001 

ddepress  2 1 0.2869 0.2154 1.7746 0.1828 

ddepress  3 1 0.0597 0.2625 0.0518 0.8200 

ddepress  4 1 0.5162 0.2418 4.5566 0.0328 

drelser  2 1 0.0979 0.2933 0.1114 0.7386 

drelser  3 1 0.1264 0.4082 0.0958 0.7569 

drelser  4 1 0.3057 0.3016 1.0275 0.3107 

continued 
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Output 3.15  (continued) 

Analysis of Maximum Likelihood Estimates 

Parameter  forgive DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

dsevent  2 1 0.1197 0.1450 0.6820 0.4089 

dsevent  3 1 0.0869 0.1907 0.2076 0.6487 

dsevent  4 1 0.2961 0.1505 3.8730 0.0491 

mdepress  2 1 0.6285 0.1362 21.3044 <.0001 

mdepress  3 1 0.8142 0.1783 20.8480 <.0001 

mdepress  4 1 1.0347 0.2091 24.4928 <.0001 

mrelser  2 1 -0.4500 0.1715 6.8824 0.0087 

mrelser  3 1 -0.2040 0.2703 0.5694 0.4505 

mrelser  4 1 -0.3816 0.2572 2.2015 0.1379 

msevent  2 1 0.1280 0.1404 0.8313 0.3619 

msevent  3 1 -0.00520 0.2073 0.0006 0.9800 

msevent  4 1 0.0326 0.2266 0.0207 0.8856 

time 1 2 1 0.1745 0.1571 1.2343 0.2666 

time 1 3 1 0.5163 0.1682 9.4245 0.0021 

time 1 4 1 0.5069 0.1911 7.0390 0.0080 

time 2 2 1 0.1984 0.1404 1.9957 0.1577 

mdepress  4 1 1.0347 0.2091 24.4928 <.0001 

mrelser  2 1 -0.4500 0.1715 6.8824 0.0087 

 

Contrast Test Results 

Contrast DF
Wald

Chi-Square Pr > ChiSq

Fixed vs. Random Effects 9 16.0781 0.0653

3.8 Summary 
In this chapter we’ve seen how the fixed effects methods developed for continuous response 
variables in chapter 2 can be extended to categorical response variables.  Most of the chapter 
focused on regression models for dichotomous responses.  When there are just two 
dichotomous observations for each individual, a fixed effects regression model can be 
estimated by (a) discarding all cases that have the same values on the two response variables, 
(b) recoding all time-varying explanatory variables as difference scores, and (c) fitting a 
conventional logistic regression model to one of the response variables.  This is a form of 
conditional maximum likelihood.   
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We then considered the more general case where individuals may have more than two 
dichotomous response observations.  As in chapter 2, the first step is to reorganize the data so 
that there is a separate record for each response for each individual.  But unlike the linear 
models in chapter 2, it is not legitimate to estimate a conventional logistic regression model 
with dummy variables for the individuals.  Because of the incidental parameters problem, the 
coefficients from such a regression will be upwardly biased.  Instead, we use conditional 
maximum likelihood to “condition out” the fixed effects.  In SAS, this is accomplished with 
the STRATA statement in PROC LOGISTIC.   

Possible alternatives to fixed effects logistic regression are GEE estimation of logistic 
regression models with PROC GENMOD and random effects logistic regression models 
estimated with PROC NLMIXED.  Unlike the fixed effects approach, neither of these 
methods controls for unmeasured, time-invariant explanatory variables.   Among these two 
methods, PROC NLMIXED has the advantage of producing subject-specific rather than 
population-averaged coefficients.  Population-averaged coefficients are generally attenuated 
toward zero by unobserved heterogeneity.  We then combined the fixed effects and random 
effects approaches into a hybrid model by decomposing time-varying covariates into 
individual mean values and deviations from those means.  This can be accomplished with 
either PROC GENMOD or PROC NLMIXED.  

Finally, we considered how these approaches might be extended to response variables with 
more than two categories.  Although conditional maximum likelihood could, in principle, be 
applied to unordered, multinomial response models, there is currently no SAS procedure that 
will accomplish this in general cases.  For ordered multinomial responses, a hybrid 
cumulative logit model can be estimated with GENMOD or NLMIXED.  For unordered 
multinomial responses, a hybrid generalized logit model can be estimated with PROC 
SURVEYLOGISTIC.   
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4.1 Introduction 
Many response variables are counts of something:  number of articles published by scientists, 
number of sex partners in the last year, number of arrests in a one-year period, number of 
students enrolled in a class, and so on.  Some data analysts still treat count variables as 
continuous measures and apply ordinary linear regression.  But that practice ignores two 
facts:  the data are really discrete, and the distributions of count variables are typically highly 
skewed.  For these reasons, it may be inappropriate to use models that assume normally 
distributed errors.  

Nowadays, it’s becoming increasingly popular to estimate Poisson regression models or 
negative binomial regression models, both of which are explicitly designed to model count 
data.  In this chapter we’ll see how to extend these count data methods to handle multiple 
observations per individual, with the inclusion of fixed effects to control for all stable 
predictor variables.  Along the way, we’ll revisit many of the issues that arose for 
dichotomous outcomes in chapter 3, although the problems encountered there turn out to be 
less serious for count data models.  

Let’s begin by describing the example that will carry us through the chapter.  The data consist 
of 346 manufacturing firms with yearly counts of patents received in each of the years from 
1975 through 1979.  These data were previously analyzed by Hall, Griliches, and Hausman 
(1986) and later by Cameron and Trivedi (1998).  There is one record per firm, with variables 
PAT75 through PAT79 containing the patent counts for the five years.  As predictors we have 

 

4 
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the logarithm of research and development expenditures for each year from 1970 through 
1979 (LOGR70 through LOGR79). There are also two time-invariant predictors:  LOGSIZE, 
which is the natural logarithm of the book value of the firm in 1972, and SCIENCE, an 
indicator variable equal to 1 if the firm is in the science sector, and otherwise equal to 0.   

4.2 Poisson Models for Count Data with Two 
Observations Per Individual 
When there are only two observations per individual, we saw previously that a linear or 
logistic fixed effects analysis could be done using simplified methods with conventional 
software.  This is also true for count data.  In fact, a fixed effects Poisson regression model 
can be estimated with an ordinary logistic regression program.   

For the patent data, let’s ignore the intervening years and focus only on 1975 and 1979.  Let 
yi1 be the patent count for firm i in 1975 and yi2 the patent count in 1979.  We assume that 
each of these variables has a Poisson distribution with parameter Oit.  That is, the probability 
that yit = r is given by 
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Why a Poisson distribution?  Well, the Poisson distribution is perhaps the simplest 
probability distribution that is appropriate for count data.  It can be derived from a stochastic 
process in which it is assumed that events (in this case patents) cannot occur simultaneously, 
and that events are independent (Cameron and Trivedi 1998).  That is, the occurrence of an 
event neither raises nor lowers the probability of future events.  Note that we are not 
assuming that there is a single Poisson distribution for the entire sample.  Instead, each firm’s 
patent count is drawn from a different Poisson distribution whose parameter Oit varies across 
both firms and time.   

An important property of the Poisson distribution is that its mean and variance are equal, and 
both are equal to the Poisson parameter: 

ititit yyE O== )var()(                   (4.2) 

Next, we let Oit be a log-linear function of the predictor variables: 

iiittit zx DJEμO +++=log                  (4.3) 

As in earlier chapters, xit represents the time-varying predictor variables, zi denotes the time-
invariant predictors, and Di denotes the unobserved fixed effects.  The vector xit includes the  
R & D expenditures in the current year t and in each of the preceding five years.   

Our goal is to estimate the parameters in equation (4.3).  To do this, we shall use conditional 
maximum likelihood, the same method used in chapter 3 to estimate the fixed effects logistic 
regression model. Consider the distribution of yi2 conditional on the total event count for the 
two time periods combined, denoted by wi = yi1 + yi2.  It can be shown that yi2|wi ~ B (pi, wi). 
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That is, conditional on the total count wi, the 1979 count yi2 has a binomial distribution with 
parameters pi and wi, where  
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It follows, after a bit of algebra, that  

)()(
1

log 1212 ii
i

i xx
p

p
�+�=¸̧

¹

·
¨̈
©

§
�

Eμμ                  (4.5) 

Thus, we have converted our Poisson regression model into a logistic regression model in 
which the predictor variables are difference scores for the original predictors.  Note that, as in 
earlier applications, both Di and Jzi drop out of equation (4.5).   

To implement this conditional approach in SAS, we may use any SAS procedure that does 
logistic regression for grouped data, including LOGISTIC, GENMOD, CATMOD and 
PROBIT.  Here’s how to do it in GENMOD.  First, we create a new data set that contains the 
total count for each firm and the difference scores for the research and development 
variables: 

DATA patents; 
   SET my.patents; 
   total=pat75+pat79; 
   rd_0=logr79-logr75; 
   rd_1=logr78-logr74; 
   rd_2=logr77-logr73; 
   rd_3=logr76-logr72; 
   rd_4=logr75-logr71; 
   rd_5=logr74-logr70; 
RUN; 
 

RD_0 is the difference score for the same years in which the patents were counted, whereas 
RD_1 through RD_5 are difference scores for lags of one to five years.   

Let’s first estimate a model with no covariates: 

PROC GENMOD DATA=patents; 
   MODEL pat79/total = / DIST=B; 
RUN; 
 

Note that the dependent variable is expressed with the events/trials syntax, which tells SAS 
that PAT79 events occurred out of a possible TOTAL.   As in chapter 3, DIST=B specifies 
that PAT79 has a binomial distribution whose default link function is logit (i.e., logistic).  
Results are shown in Output 4.1. 
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Output 4.1  Conditional Poisson Regression Model for Patents, with No Covariates 

Model Information 

Data Set WORK.PATENTS

Distribution Binomial

Link Function Logit

Response Variable (Events) pat79

Response Variable (Trials) total

 

Number of Observations Read 346

Number of Observations Used 300

Number of Events 11107

Number of Trials 23865

Number of Invalid Responses 46

 
Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 299 1001.3656 3.3490

Scaled Deviance 299 1001.3656 3.3490

Pearson Chi-Square 299 938.2458 3.1379

Scaled Pearson X2 299 938.2458 3.1379

Log Likelihood  -16484.8031

 
Analysis Of Parameter Estimates 

Parameter DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -0.1386 0.0130 -0.1640 -0.1131 114.03 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000  

 

Under “Model Information” we see that 46 firms had invalid response values.  These are 
firms that had 0 patents in both 1975 and 1979, so their total for the two years was also 0.  Of 
course, the binomial distribution is undefined when the number of trials is 0, which is why 
these firms are excluded.  This points out a more general characteristic of Poisson regression 
that extends to the next section as well.  Whenever you condition on the total count, those 
cases that have a total count of 0 are effectively removed from the likelihood function.  If the 
total is 0, then each component must also be 0, leaving no within-individual variability to 
analyze.   
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In the next panel, “Criteria for Goodness of Fit,” we see that both the deviance and the 
Pearson chi-square statistics are more than three times their degrees of freedom.  For a model 
to have a good fit, these statistics should be close to their degrees of freedom.  However, 
because many of the expected counts generated by this model are small (near 0), the chi-
square distribution may not be a good approximation.  For that reason, it’s probably not a 
good idea to compute a p-value.  Nevertheless, the magnitude of these ratios suggests that 
there is a problem with overdispersion, about which I’ll have more to say as the chapter 
progresses.   

Finally, we get to the “Analysis of Parameter Estimates.”  The only estimate is the intercept, 
with a value of –.1386.  What does this tell us?  Well, if m1 is the mean number of patents in 
year 1 and m2 is the mean for year 2, the intercept is log(m1/m2).   If the mean number of 
patents were exactly the same in both years, the intercept would be 0.  The fact that it’s 
negative indicates that the mean went down over time.  More specifically, if we calculate 
100(exp(–.1386) – 1) = – 12.9%, we get the percentage decrease in the mean from 1975 to 
1979.  Furthermore, because the chi-square for the intercept is so large, we can reject the null 
hypothesis that the means for the two years are the same.  In effect, what we have here is the 
count data analog of the paired-comparisons t-test discussed in chapter 1, or the McNemar 
test for dichotomous variables discussed in chapter 3.   

Now let’s add the lagged variables for research and development expenditures as covariates, 
with results shown in Output 4.2.  Again we see that the ratio of the goodness-of-fit chi-
square statistics to their degrees of freedom is above 3, suggesting that we really need to do 
something about overdispersion.  But let’s postpone that issue for a moment.  Examining the 
parameter estimates and their associated statistics, we see that RD_0, the contemporaneous 
measure of research and development expenditures, has a highly significant effect on the 
patent count, with a coefficient of .5214.  To interpret this, keep in mind that both the 
dependent variable (expected number of patents) and the independent variable (research and 
development expenditures) are logged (see equation (4.3)).  In that case, we can say that a 1% 
increase in R & D expenditures is associated with a .52% increase in the expected number of 
patents in the same year, controlling for the lagged R & D measures.  The effects of the 
lagged measures are much smaller.   

Output 4.2  Conditional Poisson Regression Model for Patents, with Covariates 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 293 949.3031 3.2399

Scaled Deviance 293 949.3031 3.2399

Pearson Chi-Square 293 890.2903 3.0385

Scaled Pearson X2 293 890.2903 3.0385

Log Likelihood  -16458.7718

continued 
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Output 4.2  (continued) 

Analysis Of Parameter Estimates 

Parameter DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -0.2225 0.0178 -0.2573 -0.1876 156.50 <.0001

rd_0 1 0.5214 0.0844 0.3561 0.6868 38.19 <.0001

rd_1 1 -0.2067 0.1129 -0.4280 0.0146 3.35 0.0671

rd_2 1 -0.1179 0.1110 -0.3355 0.0996 1.13 0.2880

rd_3 1 0.0601 0.0958 -0.1277 0.2478 0.39 0.5305

rd_4 1 0.1806 0.0900 0.0042 0.3569 4.03 0.0448

rd_5 1 -0.0932 0.0690 -0.2284 0.0420 1.83 0.1765

Scale 0 1.0000 0.0000 1.0000 1.0000  

 
Now let’s attend to the overdispersion problem.  The big danger with overdispersion is that 
the standard errors may be underestimated, leading to chi-squares that are too large and p-
values that are too low.  There are several possible solutions to this problem, one of which is 
to formulate and estimate a model that directly builds in the overdispersion.  One such model 
is the negative binomial model that will be discussed later in this chapter.  But a simpler, 
though less elegant, approach is to correct the standard errors and chi-squares based on the 
goodness-of-fit ratios that alerted us to the problem.  In PROC GENMOD, this is 
accomplished by using the DSCALE or PSCALE options on the MODEL statement.  For 
example, 

PROC GENMOD DATA=patents; 
   MODEL pat79/total = rd_0-rd_5 / DIST=B DSCALE; 
RUN; 
 

The DSCALE option uses the deviance chi-square to make the adjustment while PSCALE 
uses the Pearson chi-square.   The adjustment is very simple:  Calculate the square root of the 
ratio of the chi-square statistic to its degrees of freedom.  In Output 4.3 this number is 
reported as the “Scale” parameter in the last line.  All standard errors are then multiplied by 
the scale parameter, which in turn attenuates the chi-squares and the p-values, as shown in 
Output 4.3. 

Output 4.3  Conditional Poisson Regression Model with Overdispersion Adjustment 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 293 949.3031 3.2399

Scaled Deviance 293 293.0000 1.0000

Pearson Chi-Square 293 890.2903 3.0385

Scaled Pearson X2 293 274.7858 0.9378

Log Likelihood  -5079.9585

continued  
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Output 4.3  (continued) 

Analysis Of Parameter Estimates 

Parameter DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -0.2225 0.0320 -0.2852 -0.1597 48.30 <.0001

rd_0 1 0.5214 0.1519 0.2238 0.8191 11.79 0.0006

rd_1 1 -0.2067 0.2032 -0.6050 0.1916 1.03 0.3091

rd_2 1 -0.1179 0.1998 -0.5095 0.2736 0.35 0.5550

rd_3 1 0.0601 0.1724 -0.2779 0.3980 0.12 0.7275

rd_4 1 0.1806 0.1620 -0.1369 0.4980 1.24 0.2649

rd_5 1 -0.0932 0.1241 -0.3365 0.1501 0.56 0.4527

Scale 0 1.8000 0.0000 1.8000 1.8000  

 

When this is done for the patent data, we find that only RD_0 retains its statistical 
significance, and even for this variable the chi-square is greatly reduced.  Note also that the 
coefficients are not modified at all by this overdispersion correction.  Other approaches to 
overdispersion—such as estimating a negative binomial model—might produce different 
coefficient estimates.   

It’s also possible to include predictor variables that do not vary with time, although the 
interpretation of their coefficients is not always straightforward.  Output 4.4, for example, 
shows results for a model that includes the dummy variable for SCIENCE sector and the 
variable for LOGSIZE of the firm (while deleting the nonsignificant lagged R & D 
measures).  Neither variable approaches statistical significance.  Their coefficients can be 
interpreted as measuring interactions between each variable and time.  Like all interactions, 
these coefficients can be interpreted in two ways.  For example, the coefficient of .0275 for 
SCIENCE represents the difference between the coefficient for SCIENCE in 1979 and the 
coefficient in 1975.  The fact that it is far from statistically significant suggests that this 
variable has the same the effect in both years.  Alternatively, we can interpret .0275 as the 
increment in the effect of time for firms in the science sector, relative to those not in the 
science sector.  Again, because it is far from significant, we may conclude that the rate of 
change in the number of patents from 1975 through 1979 is essentially the same for the two 
sectors.   

Output 4.4  Conditional Poisson Model with Time-Invariant Covariates 

Analysis Of Parameter Estimates 

Parameter DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -0.3335 0.1100 -0.5490 -0.1180 9.20 0.0024

rd_0 1 0.3770 0.1025 0.1761 0.5778 13.53 0.0002

continued 
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Output 4.4  (continued) 

Analysis Of Parameter Estimates 

Parameter DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

science 1 0.0275 0.0482 -0.0670 0.1219 0.33 0.5686

logsize 1 0.0161 0.0146 -0.0125 0.0448 1.22 0.2700

Scale 0 1.7961 0.0000 1.7961 1.7961  

4.3 Poisson Models for Data with More Than Two 
Observations Per Individual 
When there are more than two observations per individual, estimation of a fixed effects 
Poisson model in SAS is not so straightforward.  Let’s extend the example of the last section 
by analyzing annual patent counts from 1975 through 1979, with each count denoted by yit.  
As before, we assume that yit has a Poisson distribution given by equation (4.1) with 
parameter Oit, and we let Oit be the log-linear function of the predictor variables given in 
equation (4.3).   

We’ll consider two approaches to estimation conditional maximum likelihood and 
unconditional maximum likelihood.   In conditional maximum likelihood, the likelihood 
function is conditioned on the total count for each individual, thereby eliminating the fixed 
effects (Di).  The resulting conditional likelihood (Cameron and Trivedi 1998) is proportional to 

 

                 (4.6) 

SAS has no procedure that is explicitly designed to maximize this likelihood.  However, by 
directly specifying the likelihood function, it’s possible to accomplish this with PROC 
NLMIXED.  In chapter 3, we used NLMIXED to estimate random effects (mixed) models, 
which is what the procedure was designed for.  But NLMIXED is also adept at estimating any 
model with a user-specified likelihood function.  Here’s how it’s done for the patent data: 

PROC NLMIXED DATA=my.patents; 
   ARRAY pat [*] pat75-pat79; 
   ARRAY rd [*] logr70-logr79; 
   sum1=0; sum2=0; sum3=0; 
   DO t=1 TO 5; 
      j=t+5; 
      eta=brd0*rd[j]+brd1*rd[j-1]+brd2*rd[j-2]+brd3*rd[j-3]+ 
          brd4*rd[j-4]+brd5*rd[j-5]+d1*(t EQ 1)+d2*(t EQ 2)+ 
          d3*(t EQ 3)+d4*(t EQ 4); 
    sum1=sum1+pat[t]*eta; 
    sum2=sum2+pat[t]; 
    sum3=sum3+EXP(eta); 
   END; 
   ll=sum1-sum2*LOG(sum3); 
   MODEL pat79~GENERAL(ll); 
   PARMS  brd0=.32 brd1=0 brd2=0 brd3=0 brd4=0 brd5=0 d1=0 d2=0  
          d3=0 d4=0 ; 
RUN; 
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Keep in mind that the MY.PATENTS data set used here has one record per firm, with the 
annual patent counts stored as separate variables in each record. The ARRAY statements 
create two arrays to hold the yearly counts of patents and the yearly measures of R & D 
expenditures. These are followed by three assignment statements that initialize to 0 the three 
sums needed in the construction of the likelihood function. The DO loop constructs the linear 
function of the covariate for each of the five years and accumulates the appropriate sums for 
constructing the log-likelihood. Note that the J=T+5 statement is needed here to align the 
different array lengths for patents and R & D measures. Note also the inclusion of four 
dummy variables (with coefficients D1 through D4) that allow the intercepts in 1975 through 
1978 to differ from the intercept in 1979.  The log-likelihood itself is defined in the line 
beginning LL.  The MODEL statement specifies that PAT79 (it could have been any of the 
five response variables) has a distribution with log-likelihood LL.  The PARMS statement 
sets starting values for all the parameters.   

Results in Output 4.5 are similar to those we got in Output 4.2 using just two of the five 
years.  That is, we find strong effects of R & D expenditures in the same year (BRD0), but 
much weaker effects for the lagged values (BRD1 through BRD5).   The D1 through D4 
coefficients show a tendency for patent counts to decline over the five-year period.   

Output 4.5  Conditional Poisson Estimates for Five Years of Patent Counts 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

brd0 0.3222 0.04594 346 7.01 <.0001 0.05 0.2319 0.4126 0.011078

brd1 -0.08714 0.04869 346 -1.79 0.0744 0.05 -0.1829 0.008623 -0.00008

brd2 0.07859 0.04478 346 1.75 0.0802 0.05 -0.00949 0.1667 -0.00081

brd3 0.001053 0.04142 346 0.03 0.9797 0.05 -0.08040 0.08251 -0.0083

brd4 -0.00465 0.03785 346 -0.12 0.9023 0.05 -0.07909 0.06979 -0.00354

brd5 0.002616 0.03226 346 0.08 0.9354 0.05 -0.06083 0.06607 0.01007

d1 0.1980 0.01529 346 12.95 <.0001 0.05 0.1679 0.2281 -0.02576

d2 0.1554 0.01513 346 10.28 <.0001 0.05 0.1257 0.1852 -0.00123

d3 0.1580 0.01449 346 10.90 <.0001 0.05 0.1295 0.1865 -0.01514

d4 0.04092 0.01396 346 2.93 0.0036 0.05 0.01347 0.06837 0.039358

 
Now let’s try unconditional maximum likelihood. This can be accomplished by estimating a 
conventional Poisson regression model with dummy variables for all the firms (less one).  
The first step is to restructure the data so that there is one record for each firm year: 

DATA patents2; 
   SET my.patents; 
   ARRAY pat (*) pat75-pat79; 
   ARRAY logr (*) logr70-logr79; 
   id=_N_; 
   sumpat=pat79+pat78+pat77+pat76+pat75; 
   IF sumpat NE 0 THEN DO t=1 TO 5; 
      j=t+5; 
      patent=pat(t); 
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    rd_0=logr(j); 
    rd_1=logr(j-1); 
    rd_2=logr(j-2); 
    rd_3=logr(j-3); 
    rd_4=logr(j-4); 
    rd_5=logr(j-5); 
    OUTPUT; 
   END; 
RUN; 
 

As before, two arrays are created to hold the patent and R & D measures.  Then we define an 
ID variable that has a common value for all the records for each firm.  Next we sum the 
patent counts for the five years.  This is necessary in order to test (in the subsequent IF 
statement) whether the sum is 0 and then to eliminate 22 firms whose sum is 0.  If this is not 
done, the coefficients for the dummy variables for those firms will fail to converge. 

For each firm whose patent sum is not 0, the DO loop produces five records. Each record 
contains a patent count, a contemporaneous R & D value, and five lagged values of R & D, 
along with any other variables already in the MY.PATENTS data set.  The new data set has 
1620 observations.  Observations for the first four firms are shown in Output 4.6. 

Output 4.6  Observations for the First Four Firms in the Restructured Data Set 

Obs id t patent rd_0 rd_1 rd_2 rd_3 rd_4 rd_5 

1 1 1 32 0.92327 1.02901 1.06678 0.94196 0.88311 0.99684 

2 1 2 41 1.02309 0.92327 1.02901 1.06678 0.94196 0.88311 

3 1 3 60 0.97240 1.02309 0.92327 1.02901 1.06678 0.94196 

4 1 4 57 1.09500 0.97240 1.02309 0.92327 1.02901 1.06678 

5 1 5 77 1.07624 1.09500 0.97240 1.02309 0.92327 1.02901 

6 2 1 3 -1.48519 -0.68464 -0.15087 0.08434 -0.21637 -0.45815 

7 2 2 2 -1.19495 -1.48519 -0.68464 -0.15087 0.08434 -0.21637 

8 2 3 1 -0.60968 -1.19495 -1.48519 -0.68464 -0.15087 0.08434 

9 2 4 1 -0.58082 -0.60968 -1.19495 -1.48519 -0.68464 -0.15087 

10 2 5 1 -0.60915 -0.58082 -0.60968 -1.19495 -1.48519 -0.68464 

11 3 1 49 3.67343 3.58542 3.52962 3.44199 3.40697 3.39054 

12 3 2 42 3.77871 3.67343 3.58542 3.52962 3.44199 3.40697 

13 3 3 63 3.82205 3.77871 3.67343 3.58542 3.52962 3.44199 

14 3 4 77 3.88021 3.82205 3.77871 3.67343 3.58542 3.52962 

15 3 5 80 3.90665 3.88021 3.82205 3.77871 3.67343 3.58542 

16 4 1 0 0.43436 0.53714 0.48840 0.58779 0.48454 0.54340 

17 4 2 0 0.33836 0.43436 0.53714 0.48840 0.58779 0.48454 

18 4 3 1 0.36561 0.33836 0.43436 0.53714 0.48840 0.58779 

19 4 4 0 0.43860 0.36561 0.33836 0.43436 0.53714 0.48840 

20 4 5 0 0.42459 0.43860 0.36561 0.33836 0.43436 0.53714 
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Once the new data set has been constructed, estimation with PROC GENMOD is 
straightforward: 

PROC GENMOD DATA=patents2; 
   CLASS t id; 
   MODEL patent = rd_0-rd_5 t id / DIST=POISSON ; 
RUN; 
 

Specifying ID as a CLASS variable implies that GENMOD will create a set of 323 dummy 
variables comparing each firm with the reference firm.  Note that for the Poisson distribution, 
the default link function is the logarithmic, which is consistent with equation (4.3).   

Results are shown in Output 4.7.  This output shows the first five estimates for the ID 
variable, but there are 318 more estimates that are not shown.  These estimates of the fixed 
effects are of little interest in themselves, but their inclusion in the model is necessary to 
control for all the stable covariates.  They will be omitted from the output displays for later 
models. 

Output 4.7  Unconditional Poisson Estimates for Five Years of Patent Counts 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 1286 2807.9304 2.1835

Scaled Deviance 1286 2807.9304 2.1835

Pearson Chi-Square 1286 2709.6854 2.1071

Scaled Pearson X2 1286 2709.6854 2.1071

Log Likelihood 224169.5057

 
Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

Intercept  1 2.8057 0.1851 2.4428 3.1686 229.64 <.0001

rd_0  1 0.3222 0.0459 0.2322 0.4123 49.19 <.0001

rd_1  1 -0.0871 0.0487 -0.1826 0.0083 3.20 0.0735

rd_2  1 0.0786 0.0448 -0.0092 0.1664 3.08 0.0793

rd_3  1 0.0011 0.0414 -0.0801 0.0822 0.00 0.9796

rd_4  1 -0.0046 0.0378 -0.0788 0.0695 0.02 0.9024

rd_5  1 0.0026 0.0323 -0.0606 0.0658 0.01 0.9356

t 1 1 0.1980 0.0153 0.1681 0.2280 167.64 <.0001

t 2 1 0.1554 0.0151 0.1258 0.1851 105.58 <.0001

t 3 1 0.1580 0.0145 0.1296 0.1864 118.82 <.0001

t 4 1 0.0409 0.0140 0.0136 0.0683 8.59 0.0034

continued 
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Output 4.7  (continued) 

Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

t 5 0 0.0000 0.0000 0.0000 0.0000 . .

id 1 1 0.7417 0.1457 0.4560 1.0273 25.89 <.0001

id 2 1 -2.1747 0.4160 -2.9900 -1.3594 27.33 <.0001

id 3 1 0.0255 0.0921 -0.1550 0.2061 0.08 0.7818

id 4 1 -4.6540 1.0125 -6.6385 -2.6694 21.13 <.0001

id 5 1 -3.9906 1.0286 -6.0066 -1.9746 15.05 0.0001

 
Comparing Output 4.7 with Output 4.5, we find that the coefficients for the R & D measures 
and for the time dummies are identical for the conditional and unconditional methods.  Standard 
errors, chi-squares and p-values are also identical for these variables.  Unlike logistic 
regression, for which conditional and unconditional estimates can differ substantially, these two 
methods always produce identical results for Poisson regression (Cameron and Trivedi 1998).   

There may still be reasons for choosing one method over the other, however.  It takes 
somewhat more computing time to do the unconditional estimation (although the difference 
was trivial for this example). The reason is that PROC GENMOD must repeatedly invert a 
large matrix to estimate coefficients for the dummy variables distinguishing different firms.  
Greene (2001) has shown that it’s possible to do unconditional estimation without the 
computational burden of inverting a large matrix, but that would require significant 
modification of GENMOD’s algorithms.   

Although conditional maximum likelihood has a computational advantage, there are also 
some disadvantages. As we’ve seen, the programming for PROC NLMIXED is considerably 
more involved than that for GENMOD.  More important, unconditional estimation with 
GENMOD gives us statistics for gauging overdispersion and easy ways to correct for it.  In 
Output 4.7, for example, we see that both the deviance and Pearson chi-square are more than 
twice their degrees of freedom, a clear signal that overdispersion may be a problem.  As in 
the previous section, we can correct for overdispersion by using either the PSCALE  or 
DSCALE option on the MODEL statement.  Using PSCALE (which adjusts the standard 
errors based on the Pearson chi-square), we get the results in Output 4.8.  With this 
adjustment, the chi-squares for the covariates are cut in half, and the p-values rise 
substantially.  It is now quite clear that lagged measures of R & D expenditures contribute 
little, if anything, to the prediction of patent counts beyond the contemporaneous measure. 

Output 4.8  Unconditional Poisson Estimates with Overdispersion Correction 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 1286 2807.9304 2.1835

Scaled Deviance 1286 1332.6265 1.0363

Pearson Chi-Square 1286 2709.6854 2.1071

continued 
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Output 4.8  (continued) 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Scaled Pearson X2 1286 1286.0000 1.0000 

Log Likelihood  106389.4684  

 
Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept  1 2.8057 0.2688 2.2789 3.3324 108.99 <.0001

rd_0  1 0.3222 0.0667 0.1915 0.4529 23.35 <.0001

rd_1  1 -0.0871 0.0707 -0.2257 0.0514 1.52 0.2176

rd_2  1 0.0786 0.0650 -0.0488 0.2060 1.46 0.2267

rd_3  1 0.0011 0.0601 -0.1168 0.1189 0.00 0.9859

rd_4  1 -0.0046 0.0549 -0.1123 0.1030 0.01 0.9327

rd_5  1 0.0026 0.0468 -0.0892 0.0944 0.00 0.9556

t 1 1 0.1980 0.0222 0.1545 0.2415 79.56 <.0001

t 2 1 0.1554 0.0220 0.1124 0.1985 50.11 <.0001

t 3 1 0.1580 0.0210 0.1168 0.1992 56.39 <.0001

t 4 1 0.0409 0.0203 0.0012 0.0806 4.08 0.0434

t 5 0 0.0000 0.0000 0.0000 0.0000 . .

 
The predictor variables in Output 4.8 are all time varying.  Can we also include time-invariant 
covariates in the model?  In the previous section, with only two observations per firm, we 
included two time-invariant covariates in the logistic regression model that was used for 
conditional estimation of the Poisson model.  The coefficients of those variables were 
interpreted as interactions with time.  In the present example, time-invariant covariates cannot 
be directly included in the model because they would be perfectly collinear with the dummy 
variables for firms.  However, we can specify interactions between time-invariant covariates 
and time-varying covariates, including time itself.  For example, one might hypothesize that 
R & D expenditures have a greater effect on patents in science-based firms than in other 
sectors.  Here’s a model to test that hypothesis: 

PROC GENMOD DATA=patents2; 
   CLASS t id; 
   MODEL patent = rd_0 rd_0*science t id / PSCALE D=P ; 
RUN; 
 

For simplicity, this model deletes the lagged effects of R & D, which were not significant in 
Output 4.8.   
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Results in Output 4.9 show a significant interaction between RD_0 and the indicator variable 
SCIENCE, but the effect is opposite to the hypothesis; R & D expenditures have a greater 
impact on patent counts among non-science firms than in science firms.  To be more specific, 
the effect of R & D for non-science firms is .3755, the main effect for RD_0.  The effect for 
science firms is .3755 – .2038 = .1717, the main effect plus the interaction.   

Output 4.9  Unconditional Poisson Estimates with Time-Invariant Covariate 

Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

Intercept  1 3.2427 0.2739 2.7059 3.7795 140.19 <.0001

rd_0  1 0.3755 0.0691 0.2400 0.5110 29.49 <.0001

rd_0*science  1 -0.2038 0.0969 -0.3938 -0.0139 4.42 0.0355

t 1 1 0.1886 0.0222 0.1450 0.2322 71.88 <.0001

t 2 1 0.1541 0.0215 0.1119 0.1964 51.18 <.0001

t 3 1 0.1542 0.0203 0.1143 0.1940 57.42 <.0001

t 4 1 0.0380 0.0197 -0.0007 0.0767 3.70 0.0544

t 5 0 0.0000 0.0000 0.0000 0.0000 . .

 
Now let’s test whether the rate of change over time in patents is different for science and non-
science sectors.  The following program removes T from the CLASS statement to constrain 
the effect of time to be linear, and then includes the interaction between T and SCIENCE. 

PROC GENMOD DATA=patents2; 
   CLASS id; 
   MODEL patent = rd_0 t t*science id / PSCALE D=P ; 
RUN; 
 

Results in Output 4.10 show no evidence for a difference between science and non-science 
firms in their rate of change over time.  The interaction coefficient is far from statistically 
significant, and its magnitude is only about 2% of the main effect of time.  

Output 4.10  Poisson Model with Interaction between Time and SCIENCE 

Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept  1 3.1833 0.1918 2.8074 3.5593 275.43 <.0001

rd_0  1 0.2759 0.0573 0.1635 0.3883 23.15 <.0001

t  1 -0.0490 0.0071 -0.0629 -0.0352 48.14 <.0001

t*science  1 -0.0013 0.0085 -0.0179 0.0154 0.02 0.8801
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4.4 Fixed Effects Negative Binomial Models for Count 
Data 
As we just saw in the last section, Poisson regression models often run into problems with 
overdispersion.  That’s a bit surprising for fixed effects models because these models already 
allow for unobserved heterogeneity across individuals by way of the Di parameters.  But that 
heterogeneity is presumed to be time-invariant.  There might still be unobserved 
heterogeneity that is specific to particular points in time, leading to observed overdispersion.  
As we’ve seen, the standard errors can be corrected for overdispersion by a simple method 
based on the ratio of the deviance (or Pearson chi-square) to its degrees of freedom.   

Although that’s not a bad method, we might do better by directly building overdispersion into 
the model for event counts.  Specifically, we will now assume that the patent counts have a 
negative binomial distribution for each firm at each point in time.  The negative binomial 
distribution can be regarded as a generalization of the Poisson distribution with an additional 
parameter that allows for overdispersion.  The attraction of this approach is that the estimated 
regression coefficients might be more efficient (in the statistical sense), and the standard 
errors and test statistics might be more accurate than those produced by the simpler, after-the-
fact correction method.   

Negative binomial regression models can be formulated in different ways.  The model we 
shall use here is what Cameron and Trivedi (1998) call an NB2 model.   In this model, the 
probability mass function for yit is given by 
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In this equation Oit is the expected value of yit, T is the overdispersion parameter, and *(.) is 
the gamma function.  As T of, this distribution converges to the Poisson distribution.   As 
before, we assume a log-linear regression decomposition of the expected value, 

iiittit zx DJEμO +++=log                  (4.8) 

where the Di are treated as fixed effects.  Conditional on Di, the multiple event counts for each 
individual (in this case, a firm) are assumed to be independent.  But unconditionally, they 
may be dependent.  

How can we estimate this model?  Unlike the Poisson model, conditional likelihood is not an 
option here.  In technical terminology, the total count for each individual is not a complete 
sufficient statistic for Di, so conditioning on the total does not remove Di from the likelihood 
function.  Hausman, Hall and Griliches (1984) proposed a rather different fixed effects 
negative binomial regression model, and they derived a conditional maximum likelihood 
estimator for that model.  In fact, their method has been incorporated into procedures in some 
widely available commercial software packages (not SAS).  But Allison and Waterman 
(2002) have shown that this is not a true fixed effects regression model, and the method does 
not, in fact, control for all stable covariates.   

Instead, we shall consider unconditional maximum likelihood estimation of models that 
include dummy variables for all individuals (except one).  The following program estimates 
an unconditional negative binomial model in PROC GENMOD for the patent data. 
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PROC GENMOD DATA=patents2; 
   CLASS t id; 
   MODEL patent = rd_0-rd_5 t id / DIST=NB SCALE=0; 
RUN; 
 

The key difference with Poisson regression is the DIST=NB option on the MODEL 
statement.  The SCALE option sets the starting value for the dispersion parameter.  That 
option won’t be necessary for most applications, but, in this case, the default starting value 
was not very good and the model failed to converge. 

Results in Output 4.11 should be compared with those for Poisson regression in Output 4.7 
(without overdispersion correction) and Output 4.8 (with overdispersion correction).  It’s 
apparent that the coefficients for the negative binomial model are very similar to those for the 
Poisson model.  Moreover, the standard errors and test statistics for the negative binomial 
model are close to those for the Poisson model with overdispersion adjustment.  (Note that 
the dispersion estimate reported in the last line of Output 4.11 is actually an estimate of 1/T, 
where T is the parameter in 4.7.)  

Output 4.11  Fixed Effects Negative Binomial Regression Model 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 1286 1704.1804 1.3252

Scaled Deviance 1286 1704.1804 1.3252

Pearson Chi-Square 1286 1618.5570 1.2586

Scaled Pearson X2 1286 1618.5570 1.2586

Log Likelihood 224419.2756
 

Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

Intercept  1 2.5055 0.2809 1.9550 3.0560 79.56 <.0001

rd_0  1 0.3706 0.0634 0.2464 0.4948 34.22 <.0001

rd_1  1 -0.0827 0.0676 -0.2152 0.0499 1.49 0.2216

rd_2  1 0.0636 0.0641 -0.0621 0.1892 0.98 0.3214

rd_3  1 0.0136 0.0596 -0.1032 0.1305 0.05 0.8193

rd_4  1 0.0345 0.0565 -0.0763 0.1452 0.37 0.5420

rd_5  1 0.0018 0.0464 -0.0890 0.0927 0.00 0.9685

t 1 1 0.2237 0.0254 0.1738 0.2736 77.27 <.0001

t 2 1 0.1750 0.0251 0.1258 0.2241 48.69 <.0001

t 3 1 0.1722 0.0243 0.1246 0.2199 50.22 <.0001

t 4 1 0.0649 0.0235 0.0188 0.1110 7.62 0.0058

continued 
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Output 4.11  (continued) 

Analysis Of Parameter Estimates 

Parameter  DF Estimate
Standard 

Error

Wald 95% 
Confidence 

Limits Chi-Square Pr > ChiSq

t 5 0 0.0000 0.0000 0.0000 0.0000 . .

id 1 1 0.9477 0.2177 0.5210 1.3745 18.95 <.0001

id 2 1 -1.8294 0.4892 -2.7882 -0.8705 13.98 0.0002

id 3 1 -0.0103 0.1329 -0.2708 0.2502 0.01 0.9382

.   .  

.   .  

.   .  

id 344 1 -2.7074 0.5289 -3.7439 -1.6708 26.21 <.0001

id 345 1 1.0781 0.1957 0.6945 1.4616 30.35 <.0001

id 346 0 0.0000 0.0000 0.0000 0.0000 . .

Dispersion  1 0.0196 0.0020 0.0156 0.0236  

 
Because the Poisson model is a special case of the negative binomial regression model, we 
can compare the two by constructing a likelihood ratio chi-square statistic.  This is 
accomplished by taking the difference in their log-likelihoods and multiplying by 2: 

 2(224419 – 224169) = 500. 

With only 1 degree of freedom, this result is statistically significant by any standard. (Note 
that one cannot take differences in the deviance to construct this test because the deviance is 
computed differently for Poisson and negative binomial models).  The implication is that we 
should reject the Poisson model in favor of the negative binomial model.  Equivalently, we 
reject the hypothesis that 1/T is equal to 0.    

There are a couple of things worth noting about this test.  First, some readers will be puzzled 
by the fact that both of the log-likelihoods are positive, although log-likelihoods for these 
models must in fact be negative.  The reason is that the log-likelihood reported in GENMOD 
is not the true log-likelihood, but differs from it by a constant that depends on the data.  This 
implies that differences in the reported log-likelihoods will be the same as differences in the 
true log-likelihoods.  The other thing to remember is that you can’t compare the log-
likelihood for the negative binomial model with the log-likelihood for the Poisson model with 
overdispersion correction (reported in Output 4.8).  That’s because the overdispersion 
correction rescales the log-likelihood as well as the standard errors and test statistics.   

So the negative binomial model is clearly a better fit to these data than the Poisson model.  
But, unlike the Poisson model (where conditional and unconditional estimates must be 
identical), we have no guarantee that unconditional negative binomial estimation is resistant 
to the incidental parameters problem (discussed for the logistic model in chapter 2).   Allison 
and Waterman (2002) investigated this question with Monte Carlo simulations.  They found 
that the unconditional estimator did not show any substantial bias, even under conditions 
most likely to produce bias from incidental parameters.  Their simulations also showed that 



96   Fixed Effects Regression Methods for Longitudinal Data Using SAS 

negative binomial estimators had substantially smaller true standard errors than Poisson 
estimators.  Furthermore, confidence intervals produced by the Poisson method, even with the 
overdispersion correction, tended to be much too small under many conditions.  

In sum, negative binomial estimation seems substantially superior to Poisson estimation for 
many applications.  Nevertheless, the simulations also showed that the negative binomial 
method produced confidence intervals that tended to be too small, although the 
undercoverage was not nearly as severe as for the Poisson.  Under many conditions, nominal 
95% confidence intervals covered the true value only about 85% of the time.  This problem is 
easily corrected by using the DSCALE option in GENMOD (not the PSCALE option) to 
introduce additional correction for overdispersion.  When this was done in simulations, the 
actual coverage rates were very close to the nominal 95% confidence intervals for nearly all 
conditions.  Output 4.12 shows the results of applying the DSCALE correction to the model 
for the patent data.  For this set of covariates, these estimates are the best among the various 
estimation methods we have considered. 

Output 4.12  Fixed Effects Negative Binomial Model with Overdispersion Correction 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF

Deviance 1286 1704.1754 1.3252

Scaled Deviance 1286 1286.0000 1.0000

Pearson Chi-Square 1286 1618.5521 1.2586

Scaled Pearson X2 1286 1221.3872 0.9498

Log Likelihood 169350.6376

 
Analysis Of Parameter Estimates 

Parameter  DF Estimate Standard Error
Wald 95% 

Confidence Limits Chi-Square Pr > ChiSq

Intercept  1 1.4442 0.1343 1.1810 1.7074 115.66 <.0001

rd_0  1 0.3706 0.0729 0.2277 0.5136 25.82 <.0001

rd_1  1 -0.0827 0.0779 -0.2352 0.0699 1.13 0.2884

rd_2  1 0.0636 0.0738 -0.0811 0.2082 0.74 0.3891

rd_3  1 0.0136 0.0686 -0.1209 0.1482 0.04 0.8427

rd_4  1 0.0345 0.0651 -0.0931 0.1620 0.28 0.5963

rd_5  1 0.0018 0.0534 -0.1028 0.1064 0.00 0.9726

t 1 1 0.0965 0.0175 0.0622 0.1309 30.38 <.0001

t 2 1 0.0478 0.0170 0.0144 0.0812 7.87 0.0050

t 3 1 0.0451 0.0167 0.0124 0.0778 7.29 0.0069

t 4 1 -0.0623 0.0171 -0.0958 -0.0288 13.28 0.0003
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Although computation time for the unconditional negative binomial estimates was quite 
tolerable for the patent data, it could become a burden for very large data sets with lots of 
dummy variable coefficients to estimate.  Again, Greene (2001) has shown how such 
computational difficulties can be readily overcome, but that would require modification of 
GENMOD algorithms. 

4.5 Comparison with Random Effects Models and GEE 
Estimation 
As we saw in chapters 2 and 3, random effects models and GEE estimation are widely used 
alternatives to fixed effects methods for longitudinal data.  Both methods can be applied to 
count data and are readily available in SAS.  The principal attractions of these alternative 
methods are (1) the ability to estimate effects for time-invariant covariates, and (2) more 
efficient use of the data (if the assumptions are met).  The major disadvantage is that neither 
method controls for unmeasured time-invariant covariates.  I’ll briefly describe these methods 
in this section, both to serve as a point of comparison with the fixed effects methods and 
because they will be needed for the hybrid method discussed in the next section.  

As we’ve seen before, GEE is a form of iterated generalized least squares that allows for 
correlations among the repeated observations for each individual.  GEE is easily invoked with 
the REPEATED statement in PROC GENMOD, and can be used with either a negative 
binomial model or a Poisson model.  Here’s the SAS code for GEE estimation of a negative 
binomial model for the patent data, with separate records for each firm-year:   

PROC GENMOD DATA=patents2; 
   CLASS id t; 
   MODEL patent= rd_0-rd_5 t / D=NB; 
   REPEATED SUBJECT=id / TYPE=MDEP(4) CORRW; 
RUN; 
 

The TYPE=MDEP(4) option specifies that the correlation matrix for patent counts among the 
five years of observation has a “banded” structure.  There is one correlation for counts that 
are one year apart, another correlation for counts that are two years apart, and so on.  The 
correlation for counts more than four years apart is set to 0 (hence the 4 in MDEP(4)), but 
four years is the maximum distance for these data anyway.  This imposed structure can be 
seen in the estimated “Working Correlation Matrix,” requested with the CORRW option and 
shown in Output 4.13.  I also tried other correlation structures, but the TYPE=UN (for 
unstructured) could not be fitted with these data.  The TYPE=EXCH (for exchangeable) 
specifies that all the inter-year correlations are identical.  Although this specification yielded 
similar results, it seems unnecessarily restrictive. 
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Output 4.13  GEE Estimates for a Negative Binomial Model 

Working Correlation Matrix 

 Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7567 0.7349 0.6655 0.6909

Row2 0.7567 1.0000 0.7567 0.7349 0.6655

Row3 0.7349 0.7567 1.0000 0.7567 0.7349

Row4 0.6655 0.7349 0.7567 1.0000 0.7567

Row5 0.6909 0.6655 0.7349 0.7567 1.0000
 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate
Standard 

Error
95% Confidence 

Limits Z Pr > |Z|

Intercept  1.0839 0.0884 0.9106 1.2572 12.26 <.0001

rd_0  0.4969 0.1131 0.2752 0.7186 4.39 <.0001

rd_1  -0.0451 0.1162 -0.2728 0.1826 -0.39 0.6977

rd_2  0.1613 0.0855 -0.0063 0.3289 1.89 0.0593

rd_3  0.0729 0.0944 -0.1121 0.2579 0.77 0.4401

rd_4  0.1380 0.0735 -0.0061 0.2821 1.88 0.0605

rd_5  0.0247 0.0544 -0.0818 0.1313 0.45 0.6492

t 1 0.2326 0.0497 0.1351 0.3301 4.68 <.0001

t 2 0.1825 0.0465 0.0914 0.2736 3.93 <.0001

t 3 0.1855 0.0383 0.1104 0.2606 4.84 <.0001

t 4 0.1169 0.0403 0.0380 0.1958 2.90 0.0037

t 5 0.0000 0.0000 0.0000 0.0000 . .

 

Parameter estimates in Output 4.13 are roughly similar to those in Output 4.12 for the fixed 
effects negative binomial model.  But unlike the fixed effects method, two of the lagged  
R & D measures have GEE coefficients that approach statistical significance.  Interestingly, 
the standard errors for the GEE estimates are generally larger than those for the fixed effects 
method, which is the opposite of what would ordinarily be expected.   

Random effects models can be fitted with PROC NLMIXED for either the Poisson or negative 
binomial distributions.  Let’s first consider a Poisson model.  As before, we begin by assuming 
that yit has a Poisson distribution with expected value Oit.  As with the fixed effects model, we 
then assume that                                                   . Now, however, instead of treating Di as a set 
of fixed constants, we assume that it is a random variable, normally distributed with a mean of 0 
and a variance V2.  We also assume that Di is independent of all measured variables in the 
model, and that the yit terms are independent of each other, conditional on i.   Under these 

log it t it i ix zλ μ β γ α= + + +
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assumptions, NLMIXED produces maximum likelihood estimates of all parameters.  Here’s 
the code for the patent data: 

PROC NLMIXED DATA=patents2;   
lambda=EXP(int+brd0*rd_0+brd1*rd_1+brd2*rd_2+brd3*rd_3+brd4*rd_4  
   +brd5*rd_5+d1*(t EQ 1)+d2*(t EQ 2)+d3*(t EQ 3)+ 
   d4*(t EQ 4)+alpha); 
   MODEL patent~POISSON(lambda); 
   RANDOM alpha~NORMAL(0,s2) SUBJECT=id; 
   PARMS int=1 brd0=0 brd1=0 brd2=0 brd3=0 brd4=0 brd5=0 d1=0  
         d2=0 d3=0 d4=0 s2=1; 
RUN; 
 

The statement that begins with LAMBDA defines the expected patent count as a function of 
the explanatory variables.  Note the inclusion of ALPHA, which is the random, firm-level 
effect. The MODEL statement says that patent counts have a Poisson distribution with 
parameter LAMBDA.  The RANDOM statement declares that ALPHA has a normal 
distribution with a mean of 0 and variance of S2.  This variance is assumed to be constant 
across firms and across time.  Alternatively, it could be written as a function of other 
variables simply by including another assignment equation similar to the one for LAMBDA.   

This model took about 19 seconds to estimate on my computer, as compared with about a 
quarter second for the GEE model with PROC GENMOD.  Results are shown in Output 4.14.  
The coefficients are roughly similar to those we just saw with GEE estimation, but the 
standard errors are quite a bit smaller.  This is probably because the GEE estimates presumed 
a negative binomial distribution, whereas the random effects model presumes a Poisson 
distribution, which allows for less overdispersion.    

Output 4.14  NLMIXED Output for a Random Effects Poisson Model 

Fit Statistics 

-2 Log Likelihood 10410

AIC (smaller is better) 10434

AICC (smaller is better) 10435

BIC (smaller is better) 10480

 
Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

int 0.8460 0.06729 323 12.57 <.0001 0.05 0.7136 0.9784 -0.26972

brd0 0.4762 0.04227 323 11.26 <.0001 0.05 0.3930 0.5593 0.043797

brd1 -0.00684 0.04797 323 -0.14 0.8867 0.05 -0.1012 0.08754 0.258257

brd2 0.1333 0.04473 323 2.98 0.0031 0.05 0.04532 0.2213 -0.08825

brd3 0.05825 0.04126 323 1.41 0.1589 0.05 -0.02291 0.1394 0.260459

brd4 0.02590 0.03761 323 0.69 0.4916 0.05 -0.04810 0.09989 -0.02615

brd5 0.07911 0.03100 323 2.55 0.0112 0.05 0.01812 0.1401 0.076259

continued 



100   Fixed Effects Regression Methods for Longitudinal Data Using SAS 

Output 4.14  (continued) 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

d1 0.2520 0.01422 323 17.72 <.0001 0.05 0.2240 0.2799 0.048431

d2 0.2053 0.01422 323 14.43 <.0001 0.05 0.1773 0.2333 -0.03654

d3 0.1962 0.01394 323 14.07 <.0001 0.05 0.1687 0.2236 0.030349

d4 0.06218 0.01378 323 4.51 <.0001 0.05 0.03507 0.08929 0.006942

s2 0.8169 0.07580 323 10.78 <.0001 0.05 0.6677 0.9660 0.149421

 
To get a fairer comparison, let’s estimate a random effects negative binomial model.  While 
this can also be done with PROC NLMIXED, it’s a little tricky because the parameterization 
of the negative binomial distribution in NLMIXED is different from the one I’ve used here.  
NLMIXED labels the parameters N and p (Johnson and Kotz 1969) while I use O and T.  The 
functional relationship is N = T and p = T / (O+T).  Here’s how to set it up:  

PROC NLMIXED DATA=patents2; 
lambda=EXP(int+brd0*rd_0+brd1*rd_1+brd2*rd_2+brd3*rd_3+brd4*rd_4 
   +brd5*rd_5+d1*(t EQ 1)+d2*(t EQ 2)+d3*(t EQ 3)+ 
   d4*(t EQ 4)+alpha); 
   MODEL patent~NEGBIN(theta,(theta/(lambda+theta))); 
   RANDOM alpha~NORMAL(0,s2) SUBJECT=id; 
   PARMS int=1 brd0=0 brd1=0 brd2=0 brd3=0 brd4=0 brd5=0 d1=0  
         d2=0 d3=0 d4=0 s2=1 theta=1; 
RUN; 
 

Results are shown in Output 4.15. 

Output 4.15  NLMIXED Output for a Random Effects Negative Binomial Model 

Fit Statistics 

-2 Log Likelihood 9703.9

AIC (smaller is better) 9729.9

AICC (smaller is better) 9730.1

BIC (smaller is better) 9779.0

 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

int 0.7069 0.06960 323 10.16 <.0001 0.05 0.5699 0.8438 -0.01105

brd0 0.5021 0.06226 323 8.06 <.0001 0.05 0.3796 0.6245 0.024034

brd1 -0.01835 0.07302 323 -0.25 0.8018 0.05 -0.1620 0.1253 0.015229

brd2 0.1205 0.06923 323 1.74 0.0828 0.05 -0.01573 0.2567 0.026795

continued 
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Output 4.15  (continued) 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

brd3 0.06403 0.06473 323 0.99 0.3233 0.05 -0.06331 0.1914 0.020925

brd4 0.1044 0.06142 323 1.70 0.0901 0.05 -0.01642 0.2252 0.057457

brd5 0.07823 0.04764 323 1.64 0.1015 0.05 -0.01548 0.1720 0.08812

d1 0.2802 0.02719 323 10.31 <.0001 0.05 0.2268 0.3337 -0.00773

d2 0.2244 0.02722 323 8.24 <.0001 0.05 0.1708 0.2779 0.032592

d3 0.2074 0.02702 323 7.68 <.0001 0.05 0.1542 0.2606 -0.04431

d4 0.08709 0.02680 323 3.25 0.0013 0.05 0.03436 0.1398 0.006565

s2 0.7720 0.06956 323 11.10 <.0001 0.05 0.6351 0.9088 0.003151

theta 30.2799 3.0701 323 9.86 <.0001 0.05 24.2400 36.3199 0.000062

 
In Output 4.15, the coefficients are quite similar in magnitude to those in Output 4.14 for the 
Poisson model, but the standard errors are somewhat larger. These are about on par with 
those for the fixed effects negative binomial model in Output 4.12, but still not as large as 
those for the GEE estimates in Output 4.13.  For this model, like the fixed effects model, the 
only significant R & D coefficient is for the contemporaneous year.  A chi-square statistic for 
testing the Poisson random effects model versus the negative binomial random effects model 
can be obtained by calculating the difference in their –2 log-likehoods:  10410 – 9704 = 706.  
With 1 d.f., this chi-square is highly significant, implying a strong preference for the less 
restrictive negative binomial model.   

4.6  A Hybrid Approach 
As we saw with linear models and logistic models, it’s possible to combine the fixed effects 
and random effects approaches to get some of the virtues of each.  As before, the first step is 
to calculate the mean of each time-varying predictor variable for each individual, and then 
calculate the deviations from those means: 

PROC SORT DATA=patents2; 
   BY id; 
PROC MEANS DATA=patents2 NWAY NOPRINT; 
   CLASS id; 
   VAR  rd_0-rd_5; 
   OUTPUT OUT=means MEAN=mrd_0 mrd_1 mrd_2 mrd_3 mrd_4 mrd_5; 
DATA patcomb; 
   MERGE patents2 means; 
   BY id; 
   drd_0=rd_0-mrd_0; 
   drd_1=rd_1-mrd_1; 
   drd_2=rd_2-mrd_2; 
   drd_3=rd_3-mrd_3; 
   drd_4=rd_4-mrd_4; 
   drd_5=rd_5-mrd_5; 
RUN; 
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The next step is to run a regression model with both the deviations and the means as predictor 
variables.  To do this correctly, it’s important to use an estimation method that allows for 
dependence among the multiple observations for each individual.  The simplest approach is 
GEE with PROC GENMOD: 

PROC GENMOD DATA=patcomb; 
   CLASS id t; 
   MODEL patent= drd_0-drd_5 mrd_0-mrd_5  t / DIST=NB; 
   REPEATED SUBJECT=id / TYPE=MDEP(4) CORRW; 
   CONTRAST 'FE VS. RE' drd_0 1 mrd_0 -1,drd_1 0 mrd_1 -1, 
             drd_2 1 mrd_2 -1, drd_3 1 mrd_3 -1,drd_4 1 mrd_4 -1, 
             drd_5 1 mrd_5 -1; 
RUN; 
 

Here I’ve specified a negative binomial distribution with an MDEP correlation structure.  The 
CONTRAST statement produces a chi-square test of the null hypothesis that all the deviation 
coefficients are equal to all the corresponding mean coefficients.   

Results are in Output 4.16.  The coefficients for the deviation variables can be interpreted as 
if they were fixed effects estimates in the sense that they control for all stable covariates.  In 
fact, they are quite close to the fixed effects coefficients of the R & D variables in Output 
4.12.  However, the GEE standard error estimates are somewhat larger than those from the 
unconditional fixed effects method.  The coefficients for the means are generally quite 
different from the deviation coefficients, although none is statistically significant.  Under the 
GEE and random effects models of the last section, the deviation and mean coefficients 
should be the same.  The chi-square test of that assumption, reported at the end of the output, 
indicates that there is marginal evidence for rejection.   

Output 4.16  GEE Estimates of the Hybrid Model 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 
Standard 

Error
95% Confidence 

Limits Z Pr > |Z|

Intercept  1.0944 0.0876 0.9227 1.2661 12.49 <.0001

drd_0  0.3597 0.1223 0.1201 0.5994 2.94 0.0033

drd_1  -0.1158 0.1177 -0.3465 0.1149 -0.98 0.3252

drd_2  0.0529 0.0819 -0.1076 0.2134 0.65 0.5183

drd_3  -0.0287 0.0887 -0.2024 0.1451 -0.32 0.7465

drd_4  0.0273 0.0852 -0.1397 0.1943 0.32 0.7485

drd_5  -0.0775 0.0781 -0.2305 0.0755 -0.99 0.3209

mrd_0  -0.0490 0.8545 -1.7239 1.6258 -0.06 0.9542

mrd_1  1.0590 1.8618 -2.5902 4.7081 0.57 0.5695

mrd_2  -0.9196 1.9653 -4.7714 2.9322 -0.47 0.6398

mrd_3  -0.3526 1.5650 -3.4200 2.7148 -0.23 0.8218

mrd_4  1.3779 1.1420 -0.8603 3.6162 1.21 0.2276

continued 
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Output 4.16  (continued) 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 
Standard 

Error
95% Confidence 

Limits Z Pr > |Z| 

mrd_5  -0.2428 0.4805 -1.1846 0.6990 -0.51 0.6134 

t 1 0.1924 0.0504 0.0935 0.2912 3.81 0.0001 

t 2 0.1428 0.0492 0.0464 0.2391 2.90 0.0037 

t 3 0.1537 0.0392 0.0769 0.2305 3.92 <.0001 

t 4 0.1019 0.0411 0.0214 0.1823 2.48 0.0131 

t 5 0.0000 0.0000 0.0000 0.0000 . . 
 

Contrast Results for GEE Analysis 

Contrast DF Chi-Square Pr > ChiSq Type 

FE VS. RE 6 12.99 0.0432 Score
 

The alternative to GEE is to implement the hybrid method in the context of a random effects 
model.  Here’s the PROC NLMIXED code for doing that, with results in Output 4.17: 

PROC NLMIXED DATA=patcomb; 
lambda=EXP(int+d0*drd_0+d1*drd_1+d2*drd_2+d3*drd_3+d4*drd_4+ 
   d5*drd_5+m0*mrd_0+m1*mrd_1+m2*mrd_2+m3*mrd_3+m4*mrd_4+m5*mrd_5 
   +t1*(t EQ 1)+t2*(t EQ 2)+t3*(t EQ 3)+t4*(t EQ 4)+alpha); 
   MODEL patent~NEGBIN(theta,(theta/(lambda+theta))); 
   RANDOM alpha~NORMAL(0,s2) SUBJECT=id; 
   PARMS int=1 d0=0 d1=0 d2=0 d3=0 d4=0 d5=0 m0=0 m1=0 
         m2=0 m3=0 m4=0 m5=0 t1=0 t2=0 t3=0 t4=0 s2=1 theta=1; 
RUN; 
 

The coefficients for the deviation scores, along with their standard errors, are remarkably 
close to the fixed effects estimates in Output 4.12.  This suggests that the random effects 
hybrid approach may be superior to GEE in replicating fixed effects results (as we found for 
logistic models in chapter 3), but beware.  While PROC GENMOD took about a fifth of a 
second to run the GEE model, PROC NLMIXED took seven minutes to estimate the random 
effects model.  For both of these methods I could also have included time-invariant variables 
like SCIENCE.  I did not do so in order to maximize comparability with the fixed effects 
results.  

Output 4.17  PROC NLMIXED Estimates of the Hybrid Model 

Fit Statistics 

-2 Log Likelihood 9671.0

AIC (smaller is better) 9709.0

AICC (smaller is better) 9709.5

BIC (smaller is better) 9780.9

continued 
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Output 4.17  (continued) 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient

int 0.6940 0.07057 323 9.83 <.0001 0.05 0.5552 0.8328 0.009595

d0 0.3745 0.06874 323 5.45 <.0001 0.05 0.2393 0.5097 -0.00483

d1 -0.08268 0.07341 323 -1.13 0.2609 0.05 -0.2271 0.06175 -0.00721

d2 0.05900 0.06976 323 0.85 0.3984 0.05 -0.07825 0.1962 0.002148

d3 0.009520 0.06492 323 0.15 0.8835 0.05 -0.1182 0.1372 0.00983

d4 0.04112 0.06181 323 0.67 0.5063 0.05 -0.08047 0.1627 0.005421

d5 -0.00224 0.05033 323 -0.04 0.9646 0.05 -0.1012 0.09677 -0.00302

m0 -0.1543 0.7641 323 -0.20 0.8401 0.05 -1.6576 1.3490 -0.02112

m1 2.0226 1.5748 323 1.28 0.2000 0.05 -1.0756 5.1208 0.011452

m2 -2.1181 1.7480 323 -1.21 0.2265 0.05 -5.5570 1.3208 0.07705

m3 -0.2077 1.5771 323 -0.13 0.8953 0.05 -3.3104 2.8951 -0.11503

m4 1.7695 1.2742 323 1.39 0.1659 0.05 -0.7373 4.2763 0.06146

m5 -0.4168 0.5980 323 -0.70 0.4864 0.05 -1.5933 0.7598 -0.00998

t1 0.2285 0.02864 323 7.98 <.0001 0.05 0.1722 0.2849 0.006028

t2 0.1791 0.02824 323 6.34 <.0001 0.05 0.1236 0.2347 0.00154

t3 0.1739 0.02745 323 6.34 <.0001 0.05 0.1199 0.2279 -0.00316

t4 0.06997 0.02659 323 2.63 0.0089 0.05 0.01765 0.1223 0.009996

s2 0.7530 0.06758 323 11.14 <.0001 0.05 0.6201 0.8860 0.004639

theta 32.1344 3.3315 323 9.65 <.0001 0.05 25.5802 38.6886 0.000046

 

4.7  Summary 
Fixed effects models for count data can be estimated using either PROC GENMOD or PROC 
NLMIXED.  When there are only two observations per individual, conditional maximum 
likelihood estimation of a fixed effects Poisson model can be implemented by converting the 
Poisson model into a logistic regression model for grouped data, with difference scores as 
independent variables.  When there are more than two observations per individual, 
conditional maximum likelihood estimation of the Poisson model can be accomplished with 
PROC NLMIXED.  Unconditional maximum likelihood can be done with PROC GENMOD 
using dummy variables to estimate the fixed effects.  Fortunately, conditional and 
unconditional estimation of the Poisson model yield identical coefficients and standard errors.  
However, estimation with PROC GENMOD makes it easy to adjust for overdispersion, a 
problem that frequently occurs with Poisson models.   

A more elegant approach to overdispersion is to estimate negative binomial models which 
include an overdispersion parameter.  Conditional maximum likelihood is not an option for 
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these models, however.  Unconditional maximum likelihood can be done with PROC 
GENMOD using dummy variables for the fixed effects and an additional overdispersion 
correction using the DSCALE option.   

Finally, a hybrid method allows for the estimation of fixed effects coefficients for time-
varying predictors while also estimating the effects of time-invariant predictors.  As in 
previous chapters, this is accomplished by decomposing each time-varying predictor as an 
individual-specific mean and a deviation from that mean.  Both sets of variables are included 
in the regression model, along with any time-invariant predictors.  To adjust for within-
individual dependence, one can use either GEE estimation (using PROC GENMOD with the 
REPEATED statement) or maximum likelihood estimation of a random effects model (with 
PROC NLMIXED).  
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5.1 Introduction 
In both the social and biomedical sciences, there is a great deal of interest in regression 
models for predicting the occurrence and timing of events.  Medical researchers primarily 
study deaths, but they may also model such events as infections or tumor recurrences.  Social 
scientists are interested in a wide array of events, including births, marriages, divorces, job 
terminations, promotions, arrests, residence changes, and so on.  

Statistical methods for modeling events are often called survival analysis because they were 
originally developed by biostatisticians to analyze the occurrence of deaths.  But I prefer the 
term event history analysis, commonly used among social scientists, because it more aptly 
expresses the generality of these methods, and because it is particularly appropriate for 
modeling repeated events, which are a major focus of this chapter.   

To do an event history analysis, you need a set of event history data, which is simply a 
longitudinal record of when events occurred to some individual or sample of individuals.  
Here’s an example that we’ll use throughout this chapter.  In the 1995 National Survey of 
Family Growth (NSFG), a representative sample of American women was asked to report 
information on the births of all children ever born to them 
(http://www.cdc.gov/nchs/nsfg.htm). In the version of the data used here, 6,911 women 
reported on 14,932 live births.  For each of these births, I calculated a birth interval labeled 
DUR:  the length of time (in months) from the current birth to the next birth, or until the 

 

5 
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interview date if no subsequent birth was observed.  As potential predictors of these birth 
intervals, several variables characterize the current birth: 

 PREGORDR Order of the birth (1 through 15) 
 MARRIED 1 if married at the time of the birth, otherwise 0 
 AGE  Mother’s age (in years) at birth 
 PASST  1 if delivery was paid for, in part, by public assistance funds, otherwise 0 
 NOBREAST 1 if mother did not breast feed baby, otherwise 0 
 LBW  1 if low birth weight, otherwise 0 
 CAESAR 1 if birth was by Caesarian section, otherwise 0 
 MULTIPLE 1 if more than one baby born, otherwise 0 
 

There is also a variable COLLEGE, which is equal to 1 if the woman had some college 
education (at the time of the interview), and is otherwise 0; and a variable BIRTH, which is 
equal to 1 if the interval ended in another birth, or 0 if the interval was terminated by the 
interview (a censored interval).  Finally, there is a variable CASEID, which is an ID number 
that is common to all the birth intervals for the same woman.  The goal is to estimate a 
regression model predicting the length of birth interval.   

5.2 Cox Regression 
The most popular method for analyzing event history data is Cox regression, named after its 
inventor, David Cox (1972), who introduced the proportional hazards model and the partial 
likelihood method for estimating that model.  Before we discuss fixed effects analysis, it’s 
essential to review this method. 

Rather than directly modeling the length of the interval, the dependent variable in Cox 
regression is the hazard, or instantaneous likelihood of event occurrence.  For repeated 
events, the hazard may be defined as follows.  Let Ni(t) be the number of events that have 
occurred to individual i by time t.  The hazard for individual i at time t is given by 

t
tNttNth ii

ti '
=�'+

=
o'

]1)()(Pr[lim)(
0

                 (5.1) 

In words, this equation says to consider the probability of one additional event in some small 
interval of time 't.  Then form the ratio of this probability to 't, and take the limit of this 
ratio as 't goes to 0.  For repeated events, the hazard function is also known as the intensity 
function.   

The next step is to model the hazard as a function of the predictor variables.  Letting hik(t) be 
the hazard for the kth event for individual i, a proportional hazards model is given by  

ikkiik xttth Eμ +�= � )()(log )1(                  (5.2) 

where xik is a column vector of predictor variables that may vary across individuals and across 
events, E is a row vector of coefficients, ti(k-1) is the time of the (k–1)th event, and μ(.) is an 
unspecified function.  In this model, the hazard of an event depends on the time since the 
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most recent event.  Later, we’ll consider alternative ways of representing the dependence on 
time.   

The method of partial likelihood makes it possible to estimate E without specifying anything 
about the function μ.  For details on how this is accomplished, see Allison (1995).  In SAS, 
partial likelihood is implemented with PROC PHREG.  Here’s a program for estimating the 
model in (5.2), without incorporating fixed effects: 

PROC PHREG DATA=my.nsfg; 
  MODEL dur*birth(0)=pregordr age married passt  
        nobreast lbw caesar multiple college / TIES=EFRON; 
RUN; 
 

In the MODEL statement, the left-hand side of the equation is expressed as DUR*BIRTH(0), 
which is necessary to allow for the fact that many of the intervals are terminated by the 
interview rather than by another birth.  In event history terminology, these are called 
censored intervals.  The variable BIRTH indicates whether or not an interval is censored, and 
the number in parentheses (in this case 0) gives the value of the variable that corresponds to 
censored cases.  The TIES=EFRON option requests a slight technical change in the 
estimation method that I strongly recommend for routine use.  See Allison (1995) for details. 

In Output 5.1, we see that 6,911 of the birth intervals were censored.  That’s not surprising, 
because the data collection method implies that each woman’s last interval was terminated by 
the interview.  Looking at the “Analysis of Maximum Likelihood Estimates,” we find that all 
the variables but one (low birth weight) have highly significant effects on the hazard for a 
subsequent birth.  Increased hazards are associated with being married or being on public 
assistance.  All the other variables have negative signs. 

To get a more precise interpretation for the effect of each variable, it’s helpful to look at the 
last column, labeled “Hazard Ratio.”  These numbers are the exponentiated values of the 
parameter estimates, and they are interpreted similarly to odds ratios in logistic regression.   
For example, MARRIED has a hazard ratio of 1.25.  This means that women who are married 
at the time of a birth have a hazard for another birth that is 25% larger than the hazard for 
unmarried women (controlling for other variables in the model).  The hazard ratio for 
MULTIPLE is .493, which means that if a woman has twins, the hazard for the next birth is 
cut in half.  For AGE, the hazard ratio is .936, which means that each additional year of the 
mother’s age reduces the hazard of a subsequent birth by 100(1 – .936) = 6.4%. 

Output 5.1  Cox Regression Estimates for a Conventional Model 

Model Information 

Data Set MY.NSFG

Dependent Variable dur 

Censoring Variable birth 

Censoring Value(s) 0 

Ties Handling EFRON 

continued 
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Output 5.1  (continued) 

Summary of the Number of Event 
and Censored Values 

Total Event Censored 
Percent

Censored

14932 8021 6911 46.28

 
Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1702.5117 9 <.0001

Score 1607.4459 9 <.0001

Wald 1585.4544 9 <.0001

 
Analysis of Maximum Likelihood Estimates 

Variable DF 
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq 
Hazard

Ratio

pregordr 1 -0.16434 0.01150 204.0833 <.0001 0.848

age 1 -0.0006565 0.0000306 461.2265 <.0001 0.999

married 1 0.22320 0.02867 60.6010 <.0001 1.250

passt 1 0.13824 0.02868 23.2324 <.0001 1.148

nobreast 1 -0.27190 0.02332 135.9444 <.0001 0.762

lbw 1 -0.00246 0.04204 0.0034 0.9533 0.998

caesar 1 -0.11706 0.03054 14.6912 0.0001 0.890

multiple 1 -0.70661 0.14257 24.5635 <.0001 0.493

college 1 -0.20844 0.02598 64.3778 <.0001 0.812

 
Unfortunately, there’s a potential problem with these results: 69% of the women contributed 
at least two birth intervals to the data set, and it’s reasonable to suspect that there would be 
some dependence among these repeated observations.  In particular, it’s natural to suppose 
that some women have persistently short birth intervals, whereas others have persistently long 
intervals.  The failure to address this dependence could lead to serious underestimates of the 
standard errors and p-values.  

Fortunately, beginning with SAS 8.1, PROC PHREG includes an option called 
COVSANDWICH that makes it easy to correct for dependence when there are repeated 
observations.  This option invokes a method variously known as the robust variance 
estimator or the modified sandwich estimator, developed for Cox regression by Lin and Wei 
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(1989) and described in some detail in Therneau and Grambsch (2000).  Here’s a modified 
PHREG program that includes this option.    

PROC PHREG DATA=my.nsfg COVSANDWICH(AGGREGATE); 
   MODEL dur*birth(0)=pregordr age married passt  
         nobreast lbw caesar multiple college / TIES=EFRON; 
   ID caseid; 
RUN; 
 

The option COVSANDWICH can be abbreviated to COVS.  To correct for dependence, it’s 
necessary to include both the AGGREGATE option and an ID statement that gives the name 
of the variable containing the ID number that is common to all observations in the same 
“cluster” (a woman, in this example).   

Results are shown in Output 5.2.  Looking first at the “Testing Global Null Hypothesis” 
panel, we find the score and Wald statistics now have two versions, “model-based” and 
“sandwich.”  The model-based chi-squares are the same as in Output 5.1, whereas the 
sandwich chi-squares have been adjusted for dependence among the observations. Clearly the 
adjustments have not been major.  In the “Analysis of Maximum Likelihood Estimates,” we 
see that the coefficient estimates and the hazard ratios are exactly the same as in Output 5.1.  
Robust variance estimation only affects the standard errors and associated statistics.  The 
reported standard errors, chi-squares and p-values are all adjusted for dependence.  We also 
get a new column “StdErr Ratio,” which is the ratio of the corrected standard errors to the 
uncorrected standard errors in Output 5.1.  For the most part, the corrections here are rather 
small.  The one exception is the corrected standard error for PREGORDER, which is 37% 
larger than its uncorrected version, resulting in a corrected chi-square that is only about half 
the uncorrected statistic.  It’s still highly significant, however.   

Output 5.2  Cox Regression with Robust Variance Estimation 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1702.5117 9 <.0001

Score (Model-Based) 1607.4459 9 <.0001

Score (Sandwich) 1503.1134 9 <.0001

Wald (Model-Based) 1585.4544 9 <.0001

Wald (Sandwich) 1575.6025 9 <.0001

 
Analysis of Maximum Likelihood Estimates 

Variable DF 
Parameter

Estimate
Standard

Error
StdErr
Ratio Chi-Square Pr > ChiSq

Hazard
Ratio

pregordr 1 -0.16434 0.01575 1.369 108.8409 <.0001 0.848

age 1 -0.0006565 0.0000310 1.016 447.0998 <.0001 0.999

married 1 0.22320 0.02942 1.026 57.5589 <.0001 1.250

passt 1 0.13824 0.02952 1.029 21.9242 <.0001 1.148

continued 
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Output 5.2  (continued) 

Analysis of Maximum Likelihood Estimates 

Variable DF 
Parameter

Estimate 
Standard

Error 
StdErr
Ratio Chi-Square Pr > ChiSq 

Hazard
Ratio 

nobreast 1 -0.27190 0.02275 0.975 142.8908 <.0001 0.762

lbw 1 -0.00246 0.04298 1.022 0.0033 0.9543 0.998 

caesar 1 -0.11706 0.02792 0.914 17.5824 <.0001 0.890 

multiple 1 -0.70661 0.14371 1.008 24.1746 <.0001 0.493 

college 1 -0.20844 0.02615 1.007 63.5451 <.0001 0.812 

5.3 Cox Regression with Fixed Effects 
Now we’re ready to introduce fixed effects into the Cox regression model.  As usual, this 
makes it possible to control for all stable predictor variables, while at the same time 
addressing the problem of dependence among the repeated observations.  As in earlier fixed 
effects models, Di represents the combined effects of all stable covariates:   

iikkiik xttth DEμ ++�= � )()(log )1(                  (5.3) 

How can we estimate equation (5.3) for our birth interval data?  One obvious possibility is to 
put dummy variables in the model for all women (except one).  This method worked well for 
the Poisson and negative binomial regression models in chapter 4, but it runs into serious 
difficulties here.  First, there is the practical problem of putting 6,910 dummy variables into a 
PROC PHREG model.  I actually tried to do this, but my computer was still running after 10 
days, at which point I terminated the job.  In principle, such computational difficulties could 
be solved by using Greene’s (2001) algorithms, but these are not currently available in any 
commercial software.   

The more fundamental difficulty is the potential bias introduced by estimating so many 
“incidental parameters.”  In previous chapters, we saw that this bias could be quite serious for 
logistic regression models, but not for Poisson or negative binomial models.  Elsewhere 
(Allison 2002), I’ve shown that Cox regression is more like logistic regression in this regard.  
When the average number of intervals per person is fewer than three, regression coefficients 
are inflated by approximately 30 to 90%, depending on the level of censoring (a higher 
proportion of censored cases produces greater inflation).   

Fortunately, there is a simple alternative method that does the job very well.  It’s similar to 
the conditional likelihood methods used for both logistic and Poisson regression in that the 
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coefficients for the dummy variables are not actually estimated but are eliminated from the 
likelihood function.   First we modify equation (5.3) by defining 

ikikii tttt Dμμ +�=� �� )()( )1()1(  

which yields 

ikkiiik xttth Eμ +�= � )()(log )1(                  (5.4) 

In this equation, the fixed effect Di has been absorbed into the unspecified function of time, 
which is now allowed to vary from one individual to another.  Thus, each individual has her 
own hazard function, which is considerably less restrictive than allowing each individual to 
have her own constant.   

Model (5.4) can be estimated by partial likelihood using the well-known method of 
stratification.  Stratification allows different subgroups to have different baseline hazard 
functions, while constraining the coefficients to be the same across subgroups.  It is 
accomplished by constructing a partial likelihood function for each subgroup, multiplying 
those likelihood functions together, and then maximizing the resulting likelihood function 
with respect to the coefficient vector E.  In PHREG, stratification is implemented with the 
STRATA statement.  Here’s how it’s done for the birth interval data: 

PROC PHREG DATA=my.nsfg NOSUMMARY; 
   MODEL dur*birth(0)= pregordr age married passt nobreast lbw  
         caesar multiple college / TIES=EFRON; 
   STRATA caseid; 
RUN; 
 

The statement STRATA CASEID creates a separate stratum for each value of CASEID, 
which means a separate stratum for each of the 6,911 women.  That may seem like an 
enormous number of strata, but PHREG handles it with ease.  The NOSUMMARY option is 
not essential, but it’s strongly advised in order to avoid voluminous, uninformative output.  If 
you don’t include it, the output contains a line for each stratum, reporting the numbers of 
cases and events for that stratum. 

The results in Output 5.3 show some noteworthy differences from those in Outputs 5.1 or 5.2.  
First, there’s nothing reported for COLLEGE.  Like most of our fixed effects methods, we 
can’t estimate coefficients for variables that do not vary within person.  Moving upward from 
COLLEGE, we see that the effect of a multiple birth is about the same as the previous 
estimates.  But the coefficient for CAESAR is somewhat attenuated and no longer 
statistically significant.  Low birth weight was previously far from statistically significant, but 
here the p-value is less than .01.  The hazard ratio for LBW tells us that a low birth weight is 
associated with a 21% reduction in the hazard for a subsequent birth.  The effect of breast 
feeding is attenuated, both in magnitude and significance. Public assistance was previously 
highly significant, but here it’s not significant at all.   The effect of marital status is about the 
same.  Age is no longer statistically significant.  On the other hand, the effect of pregnancy 
order is much greater, both in magnitude and statistical significance.  Each additional birth is 
associated with about a 50% reduction in the hazard for a subsequent birth. 
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Output 5.3  Cox Regression with Fixed Effects via Stratification 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 2640.9583 8 <.0001

Score 2293.6193 8 <.0001

Wald 1855.3631 8 <.0001

 
Analysis of Maximum Likelihood Estimates 

Variable DF 
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq 
Hazard

Ratio

pregordr 1 -0.71663 0.03372 451.7316 <.0001 0.488

age 1 0.0000818 0.0001125 0.5285 0.4672 1.000

married 1 0.18307 0.06958 6.9219 0.0085 1.201

passt 1 0.07590 0.06863 1.2229 0.2688 1.079

nobreast 1 -0.12832 0.06047 4.5035 0.0338 0.880

lbw 1 -0.23642 0.08117 8.4832 0.0036 0.789

caesar 1 -0.07839 0.09272 0.7148 0.3979 0.925

multiple 1 -0.60731 0.21852 7.7240 0.0054 0.545

college 0 0 . . . .

 
Why the differences?  Well, like any fixed effects method, this one controls for all stable 
covariates, so it’s possible that some of the earlier results in Output 5.2 were spurious.  Thus, 
if I had to choose between the results in Output 5.2 and Output 5.3, I would emphatically 
choose the latter.  The thing to keep in mind is that, in this analysis, each woman is being 
compared to herself in a different birth interval.  For each woman, we’re asking why some of 
her birth intervals are longer or shorter than others.  Is it, for example, because she’s married 
for some of the intervals and not for others?  This approach will produce different answers 
than asking why some women tend to have longer birth intervals than other women. 

This is particularly relevant to the PREGORDR variable.  In a conventional Cox regression, 
this variable is likely to have a positive effect on the hazard for purely artifactual reasons.  
For a fixed interval of time, women who make it to higher numbers of births in that interval 
will necessarily have shorter birth intervals.  By doing a fixed effects analysis, we are able to 
remove that artifact, which is why the negative coefficient becomes so much larger than 
before.   

As with linear and logistic models, even though the fixed effects Cox model will not estimate 
the effects of time-invariant covariates like COLLEGE, it is possible to estimate interactions 
between time-invariant variables and other variables.  For example, let’s estimate a model 
that includes an interaction between COLLEGE and NOBREAST.  Since PROC PHREG 
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does not allow interactions to be directly specified in the MODEL statement,1 it’s necessary 
to create a new variable in a DATA step:   

DATA nsfg2; 
   SET my.nsfg; 
   collbreast=college*nobreast; 
PROC PHREG DATA=nsfg2 NOSUMMARY; 
   MODEL dur*birth(0)=pregordr age married passt nobreast lbw  
         caesar multiple collbreast / TIES=EFRON; 
   STRATA caseid; 
RUN; 
 

Results are in Output 5.4.  The interaction between COLLEGE and NOBREAST is 
statistically significant at the .05 level.  But how is it interpreted?  The main effect of 
NOBREAST represents the effect of this variable when COLLEGE=0, that is, among women 
without a college education.  That coefficient is positive and far from statistically significant.  
The effect of NOBREAST among college-educated women is found by adding the main 
effect to the interaction (–.2659 + .0421) = –.22, which is statistically significant.  The 
conclusion is that breast feeding increases the hazard of a subsequent birth among college-
educated women, but not among other women.   

Output 5.4  Fixed Effects Cox Regression with Interaction 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 2645.5030 9 <.0001

Score 2296.1533 9 <.0001

Wald 1857.0837 9 <.0001

 
Analysis of Maximum Likelihood Estimates 

Variable DF 
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq 
Hazard 

Ratio 

pregordr 1 -0.71740 0.03373 452.4115 <.0001 0.488 

age 1 0.0000777 0.0001126 0.4762 0.4901 1.000 

married 1 0.18341 0.06955 6.9552 0.0084 1.201 

passt 1 0.07536 0.06861 1.2064 0.2720 1.078 

nobreast 1 0.04210 0.10019 0.1766 0.6744 1.043 

lbw 1 -0.24208 0.08120 8.8879 0.0029 0.785 

caesar 1 -0.07869 0.09277 0.7195 0.3963 0.924 

multiple 1 -0.58926 0.21909 7.2334 0.0072 0.555 

collbreast 1 -0.26590 0.12479 4.5402 0.0331 0.767 

                                                 
1 In SAS 9, there is an experimental procedure called TPHREG that essentially duplicates PHREG 
with the addition of the CLASS statement.  With this procedure, one can directly specify interactions 
on the MODEL statement. 
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5.4 Some Caveats  
Despite the attractions of fixed effects Cox regression, it also has the usual disadvantages.  As 
with other fixed effects methods we’ve employed, there may be a substantial loss of power 
compared with the conventional analysis.  In this example, any woman with only one birth 
interval gets excluded because that interval can’t be compared with any others.  This 
eliminates 2,109 birth intervals.  Second, among women with exactly two birth intervals, if 
the second interval (which is always censored) is shorter than the first, both intervals will be 
excluded.  Here’s why.  Suppose the first interval is 28 months long, and the second interval 
is censored at 20 months.  In constructing the partial likelihood for the birth that occurs at 28 
months, the algorithm looks for other intervals (from the same woman) that are at risk of the 
event at that same time.  But if the only other interval was censored at 20 months, the woman 
is no longer at risk of an observable birth at 28 months.   As a result, there is nothing with 
which to compare the birth, and the woman is eliminated from the partial likelihood function. 
For the NSFG data, the elimination of these intervals results in the loss of another 1,468 
cases.   

Finally, even for those observations that are retained, the fixed effects method essentially 
discards information about variation across women and only uses variation within women.  
So if a particular covariate varies a great deal across women, but shows little variation over 
time for each woman, the coefficient for that variable will be poorly estimated.  The variable 
PASST, for example, has 80% of its variance across women and only 20% within women.   
Not surprisingly, the standard error for its coefficient is more than twice as large in Output 
5.3 as compared with Output 5.2, which was based on variation both within and between 
women.      

Besides the usual limitations of fixed effects methods, fixed effects Cox regression is also 
susceptible to bias for certain kinds of variables.  These problems are most likely to occur 
with the kind of data structure that occurs in the birth interval study.  In that structure, 
individuals are observed for a fixed period of time and may have multiple events during that 
period, but only the last interval is censored.  Chamberlain (1985) argued that this structure 
violates a basic condition of likelihood-based estimation because the probability that an 
interval is censored depends on the length of the previous intervals.   

In a simulation study (Allison 1996), I showed that this violation does not create a serious 
problem for most predictor variables, but could lead to biases in estimating the effects of 
variables that describe the previous event history.  In particular, fixed effects partial 
likelihood tends to find negative effects on the hazard for the number of previous events and 
the length of the previous interval, even when those variables do not have true effects.  This is 
certainly consistent with the results in Outputs 5.3 and 5.4, which show strong negative 
effects of pregnancy order on the hazard of a subsequent birth.  We should be very cautious 
in interpreting those effects, because they could potentially be an artifact of the method.  This 
problem tends to be most severe when the average number of events per individual is low, 
and the proportion of intervals that are censored is high.   

5.5 Cox Regression Using the Hybrid Method 
In previous chapters, we saw that we could duplicate or closely approximate the results from 
a fixed effects analysis by decomposing the time-varying covariates into individual-specific 
means and deviations from those means, and then putting all the variables into a conventional 
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regression analysis, possibly correcting for dependence among the multiple observations for 
each individual.  Unfortunately, for reasons that are not clear, this approach does not seem to 
work well for Cox regression.  For example, if the hybrid method is applied to the birth 
interval data, several of the variables have coefficients and p-values that are dramatically 
different from those shown in Output 5.3.  My simulation studies of the hybrid method for 
Cox regression have also been discouraging.   Accordingly, I cannot recommend the hybrid 
method for event history analysis.   

5.6 Fixed Effects Event History Methods for               
Nonrepeated Events 
Fixed effects Cox regression requires that at least some of the individuals in a sample 
experience more than one event, so that within-individual comparisons are possible.  
Obviously, then, the method cannot be applied to a nonrepeatable event like death.  
Nevertheless, under certain conditions, it may be possible to do a fixed effects analysis for 
nonrepeatable events by treating time as discrete and applying conditional logistic regression.  
In the epidemiological literature, this type of analysis is called a case-crossover study 
(Maclure 1991), although the implementation I describe here is a little different from the way 
that epidemiologists usually do it.  

As usual, I begin with an empirical example.  Suppose we want to answer the following 
question: Does the death of a wife increase the hazard for the death of her husband?  That’s a 
difficult question to answer with confidence, because any association between husband’s 
death and wife’s death could be due to the effects of common environmental characteristics.  
Most husbands and wives will have lived in the same house in the same neighborhood for 
substantial periods of time.  Moreover, they will tend to have come from similar social and 
economic backgrounds and have similar lifestyles.  Unless we can control for those 
commonalities, any observed association between the death of one spouse and the death of 
the other could be spurious.  Hence, a fixed effects analysis is highly desirable as a way to 
control for all stable unmeasured covariates.   

To answer our question, we have data on 49,990 married couples in which both spouses were 
alive and at least 68 years old on January 1, 1993.  Death dates for both spouses are available 
through May 30, 1994.  During that 17-month interval, there were 5,769 deaths of the 
husband and 1,918 deaths of the wife.  We regard time as consisting of discrete units, in this 
case days, which we can enumerate as t = 1, 2, 3, ….   Let pit be the probability that husband i 
dies on day t, given that he was still alive on the preceding day, and let Wit = 1 if the wife i 
was alive on day t, and otherwise 0.   

We’ll represent the effect of the wife’s vital status on the probability of the husband’s death 
by a logistic regression model 
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where Jt  represents a linear effect of time on the log-odds on death, and Di represents the 
fixed effects of all unmeasured variables that are constant over time.  Note that no time-
invariant covariates are included in the model because their effects are absorbed into the Di 
term. 
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We will estimate the model by the method of conditional maximum likelihood, described in 
chapter 3, which eliminates the Di terms from the estimating equations. Here’s how it’s done. 
For men who died, a separate observational record is created for each day that the couple is 
observed, from day 1 (January 1, 1993) until the day of death or the day of censoring. For 
each of these couple-days, the dependent variable Yit is coded 0 if the man remained alive on 
that day, and coded 1 if he died on that day.  Thus a man who died on June 1, 1993, would 
contribute 152 couple-days; 151 of those would have a value of 0 on Yit, while the last would 
have a value of 1.  The predictor variable Wit is coded 0 for all days on which the wife was 
alive and 1 for all days on which she was dead.  No observations are created for men who did 
not die because, in a fixed effects analysis for dichotomous outcomes, individuals who do not 
change contribute nothing to the likelihood function.  The model can then be estimated with 
PROC LOGISTIC as described in chapter 3.   

Below is a SAS program to create the couple-day data set and estimate the model with PROC 
LOGISTIC.  The original data set (MY.COUPLE) has one record per couple, with the 
following variables: 

HDEAD 1 if husband died, otherwise 0 
WDEAD 1 if wife died, otherwise 0 
HDTIME   day of husband’s death or day of censoring 
WDTIME day of wife’s death or day of censoring 
COUPLEID a unique ID number for each couple 
 
Here is the code for constructing the couple-day data set: 

DATA coupleday; 
   SET my.couple; 
   WHERE hdead=1; 
   DO day=1 TO hdtime; 
      IF day = hdtime THEN husdead=1; 
      ELSE husdead=0; 
      IF wdtime<day THEN wifedead=1;  
      ELSE wifedead=0; 
      OUTPUT; 
   END; 
KEEP husdead wifedead day coupleid; 
RUN; 
 

The new data set, COUPLEDAY, has one record per couple per day, for a total of 1,377,282 
records.  Note that couples in which the husband did not die are excluded (as explained 
above).  Next, we estimate a conditional logistic regression with PROC LOGISTIC: 

PROC LOGISTIC DATA=coupleday DESC; 
   MODEL husdead=wifedead day; 
   STRATA coupleid; 
RUN; 
 

Unfortunately, this program produces the following warning messages: 

WARNING: NRRIDG Optimization cannot be completed. 
 
WARNING: The LOGISTIC procedure continues in spite of the above 
         warning. Results shown are based on the last maximum 
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         likelihood iteration. Validity of the model fit is 
         questionable. 
 
WARNING: The information matrix is singular and thus the 
         convergence is questionable 

 
The reason for the convergence failure is that each couple’s sequence of observations consists 
of a string of 0’s on the dependent variable, followed by a 1.  That is, the event always occurs 
at the last observation unit.  As a consequence, any monotonically increasing function of time 
will perfectly predict the outcome for that person, making it impossible to get maximum 
likelihood estimates for that covariate or any other covariate in the model.  In the logistic 
regression literature, this problem is known as complete separation (Albert and Anderson 
1984; Allison 2003).  Obviously, the problem would also occur if the covariate was the 
square root of time or the logarithm of time.  On the other hand, it is possible to include non-
monotonic functions of time such as sin(2S t/365), which would vary periodically over the 
course of a year. 

Actually, for our mortality example, the problem of nonconvergence is not confined to the 
DAY variable.  If we remove DAY from the model, we get the results in Output 5.5. 

Output 5.5  Fixed Effects Event History Analysis with No Dependence on Time  

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 259.4514 1 <.0001

Score 190.1588 1 <.0001

Wald 0.0436 1 0.8346

 
Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard

Error
Wald

Chi-Square Pr > ChiSq

wifedead 1 15.3441 73.5073 0.0436 0.8346

 
This time we don’t get a warning message that the model has not converged, but that’s 
misleading.  The coefficient for WIFEDEAD is extremely large, with an even larger standard 
error, a telltale indication of convergence problems.  Another warning sign is the huge 
disparity between the likelihood ratio chi-square and the Wald chi-square.  The reason for 
these problems is the same as before.  Because WIFEDEAD may increase with time but never 
decrease, it perfectly predicts the occurrence of a death on the last day.  Consequently, the 
coefficient for WIFEDEAD gets larger at each iteration of the estimation algorithm.  

One way to circumvent this problem is to redefine WIFEDEAD to be an indicator of whether 
the wife died within, say, the previous 60 days.  This covariate increases from 0 to 1 when the 
wife dies, but then goes back to 0 after 60 days (if the husband is still alive).  Estimating the 
model with varying windows of time can give useful information about how the effect of the 
wife’s death starts, peaks and stops.   
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Here’s the new code for a window of 60 days: 

DATA coupleday; 
   SET my.couple; 
   WHERE hdead=1; 
   DO day=1 TO hdtime; 
      IF day = hdtime THEN husdead=1; 
      ELSE husdead=0; 
      IF 0<day-wdtime<60 THEN wifedead60=1;  
      ELSE wifedead60=0; 
      OUTPUT; 
   END; 
KEEP husdead wifedead60 day coupleid; 
RUN; 
PROC LOGISTIC DATA=coupleday DESC; 
   MODEL husdead=wifedead60; 
   STRATA coupleid; 
RUN; 
 

Based on the output from this code using several different windows of time, Table 5.1 gives 
estimated odds ratios for the effect of the wife’s death on the husband’s death.  In all cases, 
the odds ratios exceed 1.0, and they are statistically significant for the 60-day interval and the 
30-day interval.  For the latter, the odds of the husband’s death on a day in which the wife 
died during the previous 30 days are nearly double the odds if the wife did not die during that 
interval.   

Table 5.1  Odds Ratios for Predicting Husband’s Death from Wife’s Death within Varying 
Intervals of Time  

Wife Died Within 

 15 days 30 days 60 days 90 days 120 days 

Odds Ratio 1.26 1.96 1.61 1.27 1.26 

p-value .54 .006 .03 .24 .25 
 

Although these results are certainly intriguing, the danger is that there is no control for 
change over time. This is not merely a technical problem, but one that can seriously 
compromise any conclusions drawn from a case-crossover study (Suissa 1995, Greenland 
1996).  For our example, if there is any tendency for the incidence of wife death to increase 
over the period of observation, this can produce a spurious relationship between the wife’s 
death (however coded) and the husband’s death.  Intuitively, the reason is that the husband’s 
death always occurs at the end of the sequence of observations for each couple, so any 
variable that tends to increase over time will appear to increase the hazard of the husband’s 
death.  

We now consider an alternative fixed effects method that appears to solve the problems that 
arise from uncontrolled dependence on time.  Introduced by Suissa (1995), who called it the 
case-time-control design, the key innovation in this approach is the computational device of 
reversing the dependent and independent variables in the estimation of the conditional logit 
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model.  This makes it possible to introduce a control for time, something that cannot be done 
with the case-crossover method. 

As is well known, when both the dependent and independent variables are dichotomous, the 
odds-ratio is symmetric: reversing the dependent and independent variables yields the same 
result, even when there are other covariates in the model. (This symmetry is exact when the 
model is saturated in the control covariates, but only approximate for unsaturated models.)  In 
the case-time-control method, the working dependent variable is the dichotomous covariate—
in our case, whether or not the wife died during the preceding specified number of days.  
Independent variables are the dummy variable for the occurrence of an event (the husband’s 
death) on a given day and some appropriate representation of time, such as a linear function. 
Again a conditional logistic regression is estimated with each couple treated as a separate 
stratum. Under this formulation there is no problem with including time as a covariate, 
because the working dependent variable is not a monotonic function of time.   

In Suissa’s formulation of the method, it is critically important to include data from all 
individuals, both those who experienced the event and those who are censored.  However, his 
model was developed for data with only two points in time for each individual, an event 
period and a control period.  In that scenario, the covariate effect and the time effect are 
perfectly confounded if the sample is restricted to those who experienced events. On the other 
hand, censored individuals provide information about the dependence of the covariate on 
time, information that is not confounded with the occurrence of the event.   

By contrast, our data set (and presumably many others) has multiple controls at different 
points in time for each individual.  That eliminates the complete confounding of time with the 
occurrence of the event (the husband’s death), making it possible to apply the case-time-
control method to uncensored cases only.  That’s a real boon in situations where it is difficult 
or impossible to get information for those who did not experience the event.  The only 
restriction is that when the model is estimated without the censored cases, one cannot 
estimate a model with a completely arbitrary dependence on time that is, with dummy 
variables for every point in time.  

Of course, if the censored cases are available (as in our data set), more precise estimates of 
the dependence on time can be obtained by including them.  But even if censored cases are 
available, there is a potential advantage to limiting the analysis to those who experienced the 
event.  The case-time-control method has been criticized for assuming that the dependence of 
the covariate on time is the same among those who did and did not experience the event 
(Greenland 1996).  This criticism has no force if the data are limited to those individuals who 
experience events.   

For the mortality data, the working data set is the same as before, with one record for each 
day of observation from the origin until the time of the husband’s death or censoring.  
Because conditional logistic regression requires variation on the dependent variable for each 
conditioning stratum, we can eliminate couples in which the wife did not die before the 
husband, with no loss of information.  Here is the DATA step to produce the observations for 
a 60-day window: 

DATA coupleday2; 
SET my.couple; 
WHERE hdead=1 AND wdead=1 AND wdtime<hdtime; 
DO day=1 TO hdtime; 
   IF day = hdtime THEN husdead=1;  
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   ELSE husdead=0; 
   IF 0<day-wdtime<60 THEN wifedead60=1;  
   ELSE wifedead60=2; 
   OUTPUT; 
END; 
KEEP husdead wifedead60 day coupleid; 
RUN; 
 

This DATA step produced 39,942 couple-days, which came from only 126 couples.  This is 
the number of couples in which the husband died and the wife died before the husband.  
Although this is a tiny fraction of the original sample of 49,990 couples, it’s the only group 
that contains information about the effect of the wife’s death on the husband’s death using a 
fixed effects approach.   

The working model is defined as follows.  Let Hit be a dummy variable for the death of 
husband i on day t, and let Pit be the probability that the wife’s death occurred within a 
specified number of days prior to day t.  The logistic regression model is 
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This model allows for a quadratic dependence on time, although other functions could be 
used instead.  Here is the program to do the estimation: 

PROC LOGISTIC DATA=coupleday2 DESC; 
   MODEL wifedead60=husdead day day*day; 
   STRATA coupleid; 
RUN; 
 

Table 5.2 gives estimates of the odds ratios for varying windows of time.  Results are quite 
similar to those in Table 5.2, which used the case-crossover method.  Again, the evidence 
suggests that the effects of the wife’s death on the hazard of the husband’s death are limited 
in time, with considerable fading after about two months.  

Although our working dependent variable is the wife’s death, the odds ratios must be 
interpreted as the effect of the wife’s death on the odds of the husband’s death.  That’s 
because of the time ordering of the observations—the wife’s death always precedes the 
husband’s death. If the goal were to estimate the effect of the husband’s death on the wife’s 
mortality, we would have to construct a completely different data set that would include 
couple-days prior to the wife’s death, but not thereafter.  

Table 5.2  Odds Ratios for Predicting Husband’s Death from Wife’s Death within Varying 
Intervals of Time, Case-Time-Control Method  

 15 days 30 days 60 days 90 days 120 days 

Odds Ratio 1.26 2.08 1.74 1.28 1.11 

p-value .54 <.004 .01 .25 .63 
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In this example, we estimated the effect of a single dichotomous covariate (the wife’s death 
within a specified number of days) on the occurrence of a nonrepeated event (the husband’s 
death).  The method enabled us to control for all stable covariates.  But suppose we want to 
control for time-varying covariates, like smoking status. Simulation studies (Allison and 
Christakis 2000) indicate that additional covariates can simply be included as predictor 
variables in the logistic regression model specified in equation (5.6).  Although the 
coefficients for any additional covariates would not be unbiased estimates of their effects on 
the husband’s death, the introduction of such covariates will yield approximately unbiased 
estimates for the effect of the wife’s death on the husband’s death (E in equation (5.6)).  If we 
want to estimate the effect of smoking status on the husband’s death, then we must make the 
probability of smoking be the dependent variable in equation (5.6), possibly including the 
wife’s vital status as a covariate.  This procedure could work even if smoking status had more 
than two categories, in which case equation (5.6) would need to be specified as a multinomial 
logistic regression.  However, I know of no way to generalize the case-time-control method 
to quantitative covariates (except as control variables).   

5.7 Summary 
Fixed effect regression analysis of event history data is easily accomplished when each 
individual has multiple, usually repeated, events.  Like logistic regression, and unlike linear 
regression or Poisson regression, the use of dummy variables to represent the fixed effects 
typically leads to biased coefficient estimates for the other variables.  Instead, the preferred 
method for fixed effects event history analysis is to do Cox regression with stratification to 
eliminate the fixed effects from the estimating equations.   In PROC PHREG this is 
implemented by using the STRATA statement with a variable containing common ID 
numbers for each individual.  This method is computationally efficient even for large 
numbers of strata and produces approximately unbiased estimates under most conditions.  

As with other forms of fixed effects analysis, Cox regression with stratification can involve a 
substantial loss of statistical power.  Of course, individuals with only one censored or 
uncensored observation contribute nothing to the analysis.  Even individuals with one 
censored and one uncensored interval are eliminated if the censored interval is the shorter of 
the two.  Finally, only within-individual variation is used in estimating the coefficients.  For 
reasons that are not fully understood, the hybrid method, which worked well for linear, 
logistic and count data regression, does not produce correct results for Cox regression.  

Serious difficulties arise in the attempt to do fixed effects regression analysis with 
nonrepeated events.  The basic idea is to treat time as discrete and create a separate record for 
each discrete time point that is observed for each individual, from the beginning of 
observation to the time of the event or censoring.  For each record, a dichotomous dependent 
variable is coded 1 if an event occurred at that time point, and otherwise is coded 0.  Finally, 
one does a conditional logistic regression of this dependent variable with stratification on 
individuals, using predictors that vary across time points.   The fundamental problem with 
this appealing approach is that if time (or any monotonic function of time) is used as a 
predictor, the model will not converge due to complete separation.  The reason is that the 
event always occurs at the end of each individual’s sequence of records, so time perfectly 
predicts the occurrence of the event.   
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Although models that do not include time can certainly be estimated, the resulting coefficient 
estimates might be biased because effects of time on both the hazard and the covariates have 
not been controlled.  One solution is the case-time-control method, which appears to work 
well for a estimating the effect of a categorical covariate on the hazard.  The innovation of 
this method is to reverse the role of the dependent and independent variables in the 
conditional logistic regression, making it possible to include time as a covariate in the model.   
Again, this is accomplished in SAS by using PROC LOGISTIC with stratification. 
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6.1  Introduction 
In chapter 2, we saw how to estimate fixed effects linear regression models using several 
different methods and several different SAS procedures, including REG, GLM, TSCSREG, 
GENMOD, and MIXED.  Now we are going to estimate the same model with PROC CALIS, 
which is designed to estimate linear structural equation models with latent variables, 
sometimes known as LISREL models.   Why do we need another SAS procedure when we 
already have five that will do the job?  The reason is that by estimating the linear fixed effects 
model in CALIS, we can do several important things that are not possible with the other 
procedures: 

• estimate models that are a compromise between fixed and random effects models 
• construct a likelihood ratio test for fixed versus random effects 
• estimate fixed effects models that include reciprocal effects of two response variables 
• estimate fixed effects models with lagged values of the response variable 
 
A separate chapter is devoted to this method because the data structure and the conceptual 
framework is quite different from that used for most of the methods described in chapter 2.  I 
will first explain how to use PROC CALIS to estimate the random effects model described in 
chapter 2.  Then we will see how that model can be modified to produce the fixed effects 
model. 

 

6 



126   Fixed Effects Regression Methods for Longitudinal Data Using SAS 

6.2  Random Effects as a Latent Variable Model 
In chapter 2, the random effects model was specified as 

itiiittit zxy HDJEμ ++++=                  (6.1) 

where yit is the value of the response variable for individual i at time t,  xit is a vector of time-
varying covariates, zi is a vector of time-invariant covariates, Di denotes the random effects, 
and Hit is a random disturbance term.  We assume that Di and Hit represent independent 
normally distributed variables, each with a mean of 0 and a constant variance.  We also 
assume, at least for now, that these random components are independent of both xit and zi. 

It is now well known (Muthén 1994) that a random effects models such as the one in equation 
(6.1) can be represented as a structural equation model (SEM) that can be estimated with one 
of several software programs (e.g., LISREL, EQS, AMOS, or PROC CALIS).  Conceptually, 
we regard equation (6.1) as specifying a separate equation for each point in time, with 
regression coefficients constrained to be the same across time points.  The random 
components D and H are regarded as latent variables; however, while there is only one D, 
there is a distinct H for each time point. 

SEM models are often represented as path diagrams (Kline 1998).  Figure 6.1 is a path 
diagram for a model with three points in time and a single time-varying independent variable.  
In path diagrams for SEMs, the convention is that directly observed variables are enclosed by 
rectangles, whereas latent variables are enclosed by circles or ellipses.  A straight, single-
headed arrow denotes a direct causal effect of one variable on another, while a curved 
double-headed arrow denotes a bivariate correlation between two exogenous variables.  (In 
the language of simultaneous equations, endogenous variables are those that are dependent 
variables in at least one equation.  Exogenous variables are those that are not dependent 
variables in any equation.) 

Figure 6.1  Path Diagram of a Random Effects Model for Three Points in Time 
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In chapter 2, we estimated the model in equation (6.1) using PROC MIXED for the NLSY 
data, which had observations at three points in time for 581 children.  The working data set 
had three records per child, for a total of 1743 records.  The dependent variable was a 
measure of antisocial behavior (ANTI).  Independent variables included two time-varying 
variables, poverty (POV) and self-esteem (SELF), along with several time-invariant 
variables. 
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To estimate the model with PROC CALIS, we use the original form of the data set with one 
record per child and separate variable names for the same variable measured at different 
times.  The model is specified as three distinct equations, one for each of the three time 
points, and each equation is a SAS language representation of equation (6.1).  Here is the 
code: 

PROC CALIS DATA=my.nlsy UCOV AUG; 
LINEQS 
   anti90=t1 INTERCEPT + b1 pov90 + b2 self90 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e1, 
   anti92=t2 INTERCEPT + b1 pov92 + b2 self92 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e2,  
   anti94=t3 INTERCEPT + b1 pov94 + b2 self94 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e3; 
STD 
   falpha e1 e2 e3 = s1 s2 s2 s2; 
RUN; 
 

Several things are worth noting about this program: 

• The UCOV and AUG options are necessary for estimating a model with an explicit 
intercept.  UCOV tells CALIS to estimate the model based on a sum of squares and a 
cross-products matrix rather than a correlation matrix.  AUG says to augment this matrix 
with a column corresponding to a “variable” that has a constant value of 1. 

• The LINEQS statement specifies the set of linear equations that make up the model.  The 
equations are separated by commas and concluded with a semicolon. 

• In each equation, names must be chosen for each of the parameters (b1, b2, etc.).  If the 
same name is used in more than one equation, the corresponding parameter estimates are 
constrained to be equal. 

• INTERCEPT refers to a “variable” with the constant value of 1.  T1, T2 and T3 refer to 
the actual intercepts, which are allowed to differ across the three equations.  This is 
equivalent to letting TIME be a CLASS variable in PROC MIXED. 

• Variable names that are not on the input data set and which begin with an E, F, or D are 
assumed to be latent, unobserved variables.  FALPHA, which appears in all three 
equations with an implicit coefficient of 1.0, corresponds to the Di in equation (6.1).  
Similarly, E1, E2, and E3 correspond to the Hit in equation (6.1). 

• The STD statement assigns names to the variances of the latent variables and also imposes 
constraints.  Thus, S1 is the variance of FALPHA, S2 is the variance of E1 and also the 
variance of E2 and E3.  Setting those three variances equal is equivalent to the constant 
variance assumption. 

As with most SEM programs, PROC CALIS produces a large amount of output. A small but 
crucial part of this output—the regression coefficients, standard errors and test statistics—is  
displayed in Output 6.1.  Estimates are reported for each of the three equations, but because 
only the intercept is allowed to vary with time, most of this information is redundant. These 
estimates should be compared with those in Output 2.15 produced by PROC MIXED.  The 
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coefficient estimates are very close but, in some cases, differ slightly in the fourth or fifth 
decimal place.  For example, the PROC MIXED coefficient for HISPANIC is –.2182, but for 
PROC CALIS it is –.2180.  The reason for this difference is that the default estimation 
method in PROC MIXED is something called restricted maximum likelihood (REML), 
whereas the estimation method used in PROC CALIS is conventional maximum likelihood 
(ML).  PROC MIXED can be forced to produce results that are identical to PROC CALIS by 
putting the option METHOD=ML on the PROC statement. 

Another difference is that PROC CALIS produces three different intercepts, one for each 
point in time, whereas PROC MIXED gives one intercept and two coefficients for TIME.  
This difference is only apparent, however.  The intercept reported by MIXED (2.741) is the 
intercept for time 3, which is close to the time 3 intercept in the CALIS output (2.748).  To 
get the intercept for time 1, we add the coefficient for the time 1 dummy (–.2163) to the 
intercept, yielding 2.53, which is what PROC CALIS reports.  Similarly, to get the intercept 
for time 2, we add the coefficient for the time 2 dummy (–.1690) to the intercept, yielding 
2.579. 

PROC CALIS also reports estimates of the variance of the latent variable, FALPHA, and the 
common variance for E1 through E3, as seen in Output 6.2.   These are quite close to the 
covariance parameter estimates reported in Output 2.15 for PROC MIXED.  Again, they 
would be virtually identical if we had used the METHOD=ML option on the PROC MIXED 
statement. 

Output 6.1  Random Effects Model Estimated with PROC CALIS 

                Manifest Variable Equations with Estimates 
 
  anti90    =  -0.0219*momage    + -0.4834*gender    +  0.0885*childage 
  Std Err       0.0252 b8           0.1060 b7           0.0907 b5 
  t Value      -0.8709             -4.5602              0.9757 
 
        + -0.2182*hispanic  +  0.2268*black     +  0.2611*momwork 
           0.1376 b4           0.1251 b3           0.1142 b9 
          -1.5861              1.8125              2.2875 
 
        + -0.0496*married   + -0.0621*self90    +  0.2471*pov90 
           0.1258 b6          0.00950 b2           0.0802 b1 
          -0.3939             -6.5374              3.0813 
 
        +  2.5314*Intercept +  1.0000 falpha    +  1.0000 e1 
           1.0907 t1 
           2.3209 
 
  anti92    =  -0.0219*momage    + -0.4834*gender    +  0.0885*childage 
  Std Err       0.0252 b8           0.1060 b7           0.0907 b5 
  t Value      -0.8709             -4.5602              0.9757 
continued 
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Output 6.1  (continued) 
        + -0.2182*hispanic   + -0.2268*black    +  0.2611*momwork 
           0.1376 b4           0.1251 b3           0.1142 b9 
          -1.5861              -1.8125             2.2875 
 
        + -0.0496*married   + -0.0621*self92    +  0.2471*pov92 
           0.1258 b6           0.00950 b2          0.0802 b1 
          -0.3939             -6.5374              3.0813 
 
        +  2.5788*Intercept +  1.0000 falpha    +  1.0000 e2 
           1.0911 t2 
           2.3634 
 
  anti94    =  -0.0219*momage    + -0.4834*gender    +  0.0885*childage 
  Std Err       0.0252 b8           0.1060 b7           0.0907 b5 
  t Value      -0.8709             -4.5602              0.9757 
 
        + -0.2182*hispanic  +  0.2268*black     +  0.2611*momwork 
           0.1376 b4           0.1251 b3           0.1142 b9 
          -1.5861              1.8125              2.2875 
 
        + -0.0496*married   + -0.0621*self94    +  0.2471*pov94 
           0.1258 b6          0.00950 b2           0.0802 b1 
          -0.3939             -6.5374              3.0813 
 
        +  2.7478*Intercept +  1.0000 falpha    +  1.0000 e3 
           1.0915 t3 
           2.5174 

Output 6.2  Variance Estimates Produced by PROC CALIS for Random Effects Model 

Variances of Exogenous Variables 

Variable Parameter Estimate
Standard

Error t Value

falpha s1 1.28489 0.09591 13.40

e1 s2 0.99458 0.04130 24.08

e2 s2 0.99458 0.04130 24.08

e3 s2 0.99458 0.04130 24.08

 
We now have a way of estimating a random effects model with PROC CALIS that gives us 
the same results as PROC MIXED.  However, there are some important limitations to this 
method.  First, unlike PROC MIXED, this method is difficult to implement with unbalanced 
data.  That is, there must be the same number of repeated measurements on the outcome 
variable for each individual in the sample.  If some of the children in our sample had missing 
values for, say, ANTI94, they would have to be deleted entirely from the sample.  Second, 
although possible, it’s quite cumbersome to set up the model to handle linear effects of time, 
linear interactions with time, or random coefficients (Muthén and Curran 1997).  By contrast, 
this is easily managed in PROC MIXED.  In PROC CALIS, it is easy to allow for 
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unrestricted interactions with time by simply giving different parameter names to a variable’s 
coefficients at different points in time. 

Balancing these limitations are some important advantages to the SEM approach.  First, it is 
possible to combine the random effects model with models for multiple indicators of latent 
variables. These variables may be either independent or dependent variables.  Good 
introductions to latent variable models with multiple indicators can be found in Kline (1998) 
or Hatcher (1994).  Second, as we will see in the next section, the random effects model in 
PROC CALIS  can be extended to estimate fixed effects models in ways that facilitate a 
comparison and a compromise between the two models. 

6.3  Fixed Effects as a Latent Variable Model 
As noted in chapter 2, the basic random effects model is actually a special case of the fixed 
effects model (Mundlak 1978).  The random effects model assumes that Di is uncorrelated 
with xit, the vector of time-varying covariates.  The fixed effects model allows for any 
correlations between Di and the elements of xit.  Figure 6.2 shows a path diagram for a 
simplified fixed effects model with a single time-varying predictor.  The only difference 
between this diagram and the one in Figure 6.1 is the addition of the curved arrows 
representing correlations between D and the x variables. 

Figure 6.2  Path Diagram of a Fixed Effects Model for Three Points in Time 
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These additional correlations can be easily incorporated into SEM software such as PROC 
CALIS (Allison and Bollen 1997; Teachman et al. 2001).  The default in CALIS is to assume 
that any latent variables are uncorrelated with all the observed predictor variables.  To relax 
that assumption, we add the COV statement to our previous PROC CALIS program: 

PROC CALIS DATA=my.nlsy UCOV AUG; 
LINEQS 
   anti90=t1 INTERCEPT + b1 pov90 + b2 self90 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e1, 
   anti92=t2 INTERCEPT + b1 pov92 + b2 self92 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e2,  



Chapter 6  Linear Fixed Effects Models with PROC CALIS   131 

   anti94=t3 INTERCEPT + b1 pov94 + b2 self94 +b3 black + b4 
     hispanic + b5 childage + b6 married + b7 gender + b8 momage + 
     b9 momwork + falpha + e3; 
STD 
   falpha e1 e2 e3 = s1 s2 s2 s2; 
COV 
   falpha*pov90 pov92 pov94 self90 self92 self94 = c:; 
RUN; 
 

The COV statement allows a covariance (correlation) between FALPHA and each of the six 
variables representing the two time-varying explanatory variables, SELF and POV.  The C: at 
the end of the statement says to name these covariances C1, C2, …, C6.  Note that a 
correlation cannot be allowed between FALPHA and any time-invariant predictors such as 
GENDER or MARRIED.  Attempting to do so results in what is called an underidentified 
model, which may produce the following warning message in PROC CALIS: 

NOTE: Covariance matrix for the estimates is not full rank. 
 
NOTE: The variance of some parameter estimates is zero or some 
      parameter estimates are linearly related to other parameter 
      estimates as shown in the following equations: 
 

The coefficient estimates and associated statistics for the fixed effects model are shown in 
Output 6.3.  Only one equation is displayed because the other two are identical except for the 
intercept.  Looking first at the coefficients for SELF and POV, we see that they are identical 
to the fixed effects estimates in Output 2.10, estimated with PROC GLM, and Output 2.21, 
estimated with PROC MIXED.  The standard errors and t-statistics are also identical.  Like 
the PROC MIXED results in Output 2.21, we also get estimates for the time-invariant 
variables. However, the estimates and test statistics in Output 6.3 for these variables are quite 
different from the estimates and test statistics in Output 2.21.  For example, the coefficient for 
MOMWORK in Output  6.3 is clearly statistically significant, but is just as clearly not 
significant in Output 2.21.  Why the difference?  One clue is that when the mean scores for 
poverty and self-esteem (MPOV and MSELF) are removed from the model in Output 2.21, 
the results for the time-invariant variables, although not identical to those in Output 6.3, are 
quite close and certainly in qualitative agreement.  This makes sense, because the CALIS 
model has no comparable variables to the mean scores (and, so far as I can tell, no way to 
include them). 

Output 6.3  Fixed Effects Model Estimated with PROC CALIS 

              Manifest Variable Equations with Estimates 
 
anti90    =  -0.0255*momage    + -0.4760*gender    +  0.0895*childage 
  Std Err       0.0249 b8           0.1046 b7           0.0895 b5 
  t Value      -1.0267             -4.5482              1.0001 
 
        + -0.1976*hispanic  +  0.2688*black     +  0.2959*momwork 
           0.1359 b4           0.1244 b3           0.1133 b9 
          -1.4540              2.1606              2.6110 

continued 
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Output 6.3  (continued) 

              Manifest Variable Equations with Estimates 
 
        + -0.0221*married   + -0.0552*self90    +  0.1125*pov90 
           0.1245 b6           0.0105 b2           0.0933 b1 
          -0.1777             -5.2442              1.2051 
 
        +  2.4609*Intercept +  1.0000 falpha    +  1.0000 e1 
           1.0802 t1 
           2.2781 
 

 

Variances of Exogenous Variables 

Variable Parameter Estimate
Standard

Error t Value 

falpha s1 1.30190 0.09751 13.35 

e1 s2 0.99244 0.04121 24.08 

e2 s2 0.99244 0.04121 24.08 

e3 s2 0.99244 0.04121 24.08 

 
Now that we have both a fixed effects and random effects version of our model in PROC 
CALIS, it is a simple matter to produce a likelihood-ratio statistic to compare them.  For each 
model, the output contains a chi-square statistic and associated degrees of freedom.  This 
statistic compares the overall fit of the model to a saturated model that perfectly reproduces 
the covariance matrix for all the variables.  For the random effects model of Output 6.1, the 
chi-square is 84.4180 with 34 degrees of freedom.  For the fixed effects model of Output 6.3, 
it’s 66.4505 with 28 degrees of freedom.  The difference between the two is a chi-square of 
18.0305 and 6 degrees of freedom.  The six degrees of freedom correspond to the six 
additional correlations that are allowed under the fixed effects model.  The p-value for this 
chi-square is .006, indicating that we should reject the random effects model in favor of the 
fixed effects model.  This is the same conclusion that we reached in chapter 2 using either the 
Hausman test produced by PROC TSCSREG or the tests of equality for coefficients of the 
mean and centered scores.  (Both of those tests had 2 degrees of freedom.)  From a theoretical 
point of view, however, the likelihood ratio test computed here is more elegant and might 
have better statistical properties.  The Hausman test, for example, could have negative values 
for some data configurations, but this not possible for the likelihood ratio test. 

6.4 A Compromise between Fixed Effects and Random 
Effects 
In the previous section, we obtained a fixed effects model by starting with a random effects 
model and then allowing for all possible correlations between the random effect D and the 
time-varying explanatory variables.  But perhaps all those correlations aren’t really needed.  
Output 6.4 shows estimated correlations and covariances between D and the time-varying 
variables produced by PROC CALIS.  It appears that the correlations with the SELF variables 
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are very small and not statistically significant, whereas the correlations with the POV 
variables are somewhat larger, and two of the three are statistically significant.  This suggests 
that we could set the SELF correlations equal to 0 without appreciably worsening the fit of 
the model. 

Output 6.4  Correlations and Covariances of D and Time-Varying Variables 

Correlations Among Exogenous Variables 

Var1 Var2 Parameter Estimate

self90 falpha c4 -0.00569

self92 falpha c5 -0.01407

self94 falpha c6 -0.00756

pov90 falpha c1 0.12273

pov92 falpha c2 0.04911

pov94 falpha c3 0.09536

 
Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate
Standard

Error t Value

self90 falpha c4 -0.13203 0.17203 -0.77

self92 falpha c5 -0.33204 0.19404 -1.71

self94 falpha c6 -0.18020 0.17811 -1.01

pov90 falpha c1 0.08120 0.02429 3.34

pov92 falpha c2 0.03216 0.02414 1.33

pov94 falpha c3 0.06178 0.02477 2.49

 
This is easily accomplished by modifying the COV statement to eliminate the SELF 
variables, i.e., 

COV 
 falpha*pov90 pov92 pov94 =c:; 
 

This produces the results shown in Output 6.5.  The coefficient and t-statistic for POV is 
about the same as for the fixed effects model in Output 6.3.  On the other hand, the 
coefficient and t-statistic for SELF is somewhat larger than in the pure fixed effects model.  
Taking the difference in the chi-squares for the two models, we get a chi-square of 3.00 with 
3 degrees of freedom.  This is definitely not statistically significant, indicating that we cannot 
reject the simpler model (which set three correlations equal to 0) in favor of the more 
complicated model. 
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Output 6.5  Compromise Model Estimated with PROC CALIS 

                Manifest Variable Equations with Estimates 
 
 
  anti90    =  -0.0250*momage  + -0.4792*gender  +  0.0895*childage 
  Std Err       0.0249 b8           0.1049 b7           0.0897 b5 
  t Value      -1.0038             -4.5704              0.9987 
 
        + -0.2017*hispanic  +  0.2686*black     +  0.2948*momwork 
           0.1362 b4           0.1246 b3           0.1135 b9 
          -1.4808              2.1550              2.5964 
 
        + -0.0248*married   + -0.0622*self90    +  0.1114*pov90 
           0.1248 b6          0.00947 b2           0.0931 b1 
          -0.1984             -6.5706              1.1967 
 
        +  2.5953*Intercept +  1.0000 falpha    +  1.0000 e1 
           1.0791 t1 
           2.4051 

6.5  Reciprocal Effects with Lagged Predictors 
We have seen that many of the fixed and random effects models estimated in chapter 2 can 
also be estimated with PROC CALIS, and that there are both advantages and disadvantages to 
this approach.  We are now going to consider some important fixed effects models that go 
considerably beyond those in chapter 2.  These models involve reciprocal effects among two 
or more endogenous variables as well as lagged values of both endogenous and exogenous 
variables.  The models are important because they offer the possibility of greatly advancing 
our ability to determine the direction of causality among variables that are associated with 
one another. 

Let’s suppose that we observe two variables, x and y, that are known to be correlated, and we 
would like to know whether x causes y or y causes x (or perhaps both).  Both variables are 
observed at several points in time.  Consider the following model: 
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This model says that y is affected by x at an earlier time point, and x is affected by y at an 
earlier time point.  The model also includes fixed effects D and K, representing the effects of 
any and all time-invariant covariates on each variable, along with time-specific disturbances H 
and X.  Other lagged time-varying variables could be included, but that would unnecessarily 
complicate the discussion. 
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How can this model be estimated?  If there are observations at exactly three time points, the 
model can be estimated by taking first differences and applying OLS to each equation 
separately: 
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When there are more than three time points, it might seem that the methods used in chapter 2 
(dummy variables for individuals or deviations from the means) might do the job.  
Unfortunately, because of the reciprocal effects, the deviation scores used in fixed effects 
estimation are necessarily correlated with the error terms in the regressions, and that leads to 
biased estimation (Wooldridge 2001).  Fortunately, the method used for handling fixed 
effects in PROC CALIS can circumvent those difficulties. 

Even more serious difficulties arise when the model is extended to allow for lagged values of 
the dependent (endogenous) variables: 
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Without the fixed effects, this model is well known in the social science literature as the two-
wave, two-variable panel model, or as the cross-lagged panel model.  In the econometric 
literature, models with lagged dependent variables are referred to as dynamic models.  They 
are known to pose serious difficulties for conventional estimation methods, and several 
alternative methods have been proposed to deal with them (Baltagi 1995) 

It turns out that dynamic fixed effects models can also be estimated in a straightforward way 
using PROC CALIS (or equivalent SEM software).  Although the properties of this method 
have not been investigated analytically, my own simulation studies (Allison 2000) have 
shown that it does an excellent job of recovering the parameters for models such as the one in 
equations (6.4). 

As an example, we shall analyze data for 178 occupations in the U.S. for the years 1983, 
1989, 1995 and 2001 (labeled T1 through T4).  The data come from the March “Current 
Population Survey: Annual Demographic File” (CPS). The observations in CPS data are 
individuals, but the analysis is based on occupational averages for each year on all the 
variables.  For each year, I calculated the proportion of females and the median wage for 
females for each occupation.  This was done only for the 178 occupations that had at least 50 
sample members in each of the years.  Further details can be found in England et al. (2004).  
For wages, the variables are labeled MDWGF1 through MDWGF4, and for the proportion of 
females we have PF1 through PF4. 

For the model in equation (6.4), let y be median wage and let x be the proportion of females. 
In 1983, the correlation between these two variables was –.33, which was highly significant.  
There has been considerable controversy regarding the possible direction of causality 
between these two variables (England et al. 2004).  One argument is that employers devalue 
occupations that have a high proportion of females and consequently pay lower wages.  The 
rival hypothesis is that declining wages make occupations less attractive to men; as they leave 
for better paying work, women fill their vacant positions.  I shall assume that changes in 
either of these variables show up in changes in the other variable six years later. 
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By estimating the equations in (6.4), we can assess each of the two possible causal effects.  
Although it’s possible to estimate the two equations simultaneously, estimating them 
separately allows for considerably more flexibility in specifying the model.  In addition to the 
fixed effects, the key device that allows for the reciprocal effects is this:  the error term at 
each point in time must be allowed to correlate with future values of the time-dependent 
covariate (Wooldridge 2001).  Here is the PROC CALIS program to estimate the two 
equations: 

PROC CALIS DATA=my.occ UCOV AUG;  
LINEQS 
   mdwgf4= t4 INTERCEPT + b1 pf3  + b2 mdwgf3 + falpha + e4, 
   mdwgf3= t3 INTERCEPT + b1 pf2  + b2 mdwgf2 + falpha + e3, 
   mdwgf2= t2 INTERCEPT + b1 pf1  + b2 mdwgf1 + falpha + e2; 
STD  
   falpha=s1, e2 e3 e4=sa:;  
COV 
   falpha*mdwgf1 pf1 pf2 pf3=ca:, 
   e2*pf3 =cb; 
RUN; 
PROC CALIS DATA=my.occ UCOV AUG;  
LINEQS 
   pf4= t4 INTERCEPT + b1 mdwgf3 + b2 pf3 + falpha + e4, 
   pf3= t3 INTERCEPT + b1 mdwgf2 + b2 pf2 + falpha + e3, 
   pf2= t2 INTERCEPT + b1 mdwgf1 + b2 pf1 + falpha + e2; 
STD  
   falpha=s1, e2 e3 e4=sa:;  
COV 
   falpha*pf1 mdwgf1 mdwgf2 mdwgf3=ca:, 
   e2*mdwgf3=cb; 
RUN; 
 

The basic structure of this program should now be familiar. There is a separate equation for 
each dependent variable at each point in time, and those equations correspond directly to the 
equations in (6.4).   Note that there is no equation predicting median wage or proportion of 
females at time 1 because we do not observe their lagged values six years earlier (1977). 

The fixed effects are represented by FALPHA in each equation.  The COV statement allows 
correlations between FALPHA and the time-varying covariates, thus implementing a fixed 
effects model.  Note that for the lagged dependent variable, a correlation is allowed only 
between FALPHA and the value of the variable at time 1.  That’s because only the time 1 
variable is exogenous, and correlations are only allowed among exogenous variables.  
There’s actually no need to specify a correlation between FALPHA and the later values of the 
lagged dependent variable, because FALPHA is one of the predictors in the equation for each 
of these variables.  The COV statement also allows a correlation between E2 and the cross-
lagged variable at time 3.  Again, this allows for the reciprocal effect of one variable on the 
other at a later point in time. 
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Output 6.6  Estimates for Reciprocal Model with Fixed and Lagged Effects 

                Manifest Variable Equations with Estimates 
 
mdwgf2    =  -0.0836*pf1     +  0.3434*mdwgf1    +  7.9837*Intercept 
  Std Err       2.4323 b1           0.0640 b2           1.2411 t2 
  t Value      -0.0344              5.3680              6.4329 
 
                  +  1.0000 falpha    +  1.0000 e2 
 
pf2       =   0.2994*pf1     +-0.00054*mdwgf1    +  0.3353*Intercept 
  Std Err       0.0820 b2          0.00151 b1           0.0384 t2 
  t Value       3.6534             -0.3572              8.7220 
 
                  +  1.0000 falpha    +  1.0000 e2 
 

Results for the two equations are shown in Output 6.6.  To save space, I’ve edited out 
everything that’s redundant and nonessential.  Not surprisingly, each variable has a positive, 
statistically significant effect on itself six years later. With respect to the “cross-lagged” 
coefficients, however, there is no evidence for an effect in either direction. 

Elsewhere, I have questioned the desirability of including lagged values of the dependent 
variable as predictors when fixed effects are already in the model (Allison 1990).  So I also 
estimated a model that removes the lagged dependent variables, and I got essentially the same 
results for the cross-lagged coefficients.  Similarly, a model that includes the lagged 
dependent variables but does not include the fixed effects (the classic 2-wave, 2-variable 
panel model) yields no evidence for a cross-lagged effect in either direction. 

6.6  Summary and Conclusion 
Linear, fixed effects or random effects regression models for quantitative response variables 
can be estimated with PROC CALIS to yield the same results as those obtained using other 
SAS procedures as described in chapter 2.  This method requires a different data structure, 
however, with one record containing all the measurements for each individual or cluster, and 
with the multiple measurements coded as distinct variables.  In PROC CALIS, a separate 
equation is specified for each response variable at each point in time, and the coefficients are 
typically constrained to be the same across equations.  The random or fixed effect is specified 
as a latent variable that is common to all the equations.  In the fixed effects version, this latent 
variable is allowed to be correlated with all the predictor variables that vary across equations. 

This approach is typically more cumbersome to set up than the methodology described in 
chapter 2.  Nevertheless, it allows for a number of interesting extensions, including a 
likelihood ratio test comparing fixed and random effects, a compromise between fixed effects 
and random effects models, and models that have multiple indicators of latent variables.  
Most importantly, within PROC CALIS it is possible to estimate models for panel data in 
which two or more response variables are believed to have lagged, reciprocal effects on each 
other.  Such models allow for much stronger causal inferences from nonexperimental data 
than is ordinarily the case. 
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