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Event History Analysis

PAUL D. ALLISON

Event history analysis is 2 term commonly
used to describe a variety of statistical meth-
ods that are designed to describe, explain or
predict the occurrence of events. Qutside the
social sciences, these methods are often called
survival analysis, owing to the fact that they
were originally developed by biostatisticians
to analyze the occurrence of deaths. But
despite their biomedical origin, these same
methods are perfectly suitable for studying a
vast array of social phenomena such births,
marriages, divorces, job terminations, promo-
tions, arrests, migrations, and revolutions.
There also many other names for event
history methods, including failure time analy-
sis, hazard analysis, transition analysis, and
duration analysis,

In general, an event may be defined as a
qualitative change that occurs at some partic-
ular point in time. To apply event history
methods you need event history data - a lon-
gitudinal record of when events occurred to
some individual or sample of individuals. For
example, if you ask a sample of women to
report the birth dates of all their children,
you will get a set of event history data that
will allow you to analyze the occurrence of
births. Of course, if you want to do a causal
or predictive analysis, you would also want to
measure possible explanatory variables, such
as the woman’s date of birth, race, education,
family income, marital status, and so on.
Some of these may be constant over time
(like race or region of origin) while others
(like marital status and income) may vary

with time. As we shall see, the distinction
between time-constant and time-varying
explanatory variables can be very important
in selecting a method of analysis.

Some kinds of event history analysis allow
for repeated events and different kinds of
events. But it is helpful to postpone these
complications until we have dealt with the
simpler situation in which each individual
experiences no more than one event, and all
events are assumed to be of the same type.
The classic example is where the event of
interest is a death and we do not distinguish

different kinds of deaths.

PROBLEMS WITH CONVENTIONAL METHODS:
RECIDIVISM EXAMPLE

To appreciate the virtues of event history
analysis, it is helpful to consider the problems
that arise in attempting to apply conven-
tional methods (like linear regression) to the
analysis of event history data. Here is an
example. In the early 1970s, researchers con-
ducted a field experiment on 432 inmates
who were released from Maryland state pen-
itentiaries (Rossi et al., 1980). Half of them
were randomly assigned to receive financial
aid (roughly equivalent to unemployment
compensation) for the first three months
after their release. The other half got no
money. The goal was to determine whether
financial aid would reduce the likelihood
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of arrest. At the time of their release, the
subjects completed an extensive interview
about their past history. They were then
followed for one year after their release, and
the event of interest was the first arrest, the
date of which was obtained from police
records. Only about 25% of the inmates were
arrested. During the one-year follow-up, they
were also interviewed at regular intervals to
ascertain changes in employment status,
marital status, and so on.

Now, how should one analyze such data?
An obvious approach would be to do a logis-
tic regression in which the dependent vari-
able is whether or not a person was arrested.
The independent variables could include
such things as receipt of financial aid, years of
schooling, age at release, and number of prior
convictions. This would not be a bad method,
but neither is it ideal. For one thing, the
method does not make use of the timing of
the arrests. It is reasonable to suppose that, on
average, people who were arrested in the first
week after being released had a higher
propensity toward crime than those who
were arrested near the end of the one-year
period. But the logistic regression treats them
as identical.

A potential solution to this problem is to
use the length of time from release to first
arrest as the dependent variable, and do an
ordinary linear regression instead of a logistic
regression. That might work well if all the
released inmates were arrested but, as already
noted, only 25% were arrested during the one-
year follow-up. What should be done with the
other 75% who were not arrested? In the par-
lance of event history analysis, cases that do
not experience the event during the period of
observation are called ‘censored’. Virtually all
event history data contain some censored
observations, and all methods that claim the
title of event history methods are designed to
deal with censoring in one way or another.

If the number of censored cases is small, it
is tempting to exclude them from the analy-
sis. But few researchers would want to lose
75% of the cases. Alternatively, one could
assign the maximum time observed - one
year in this example — as the value of the
dependent variable for censored cases. But
clearly this is an underestimate. It has been
shown that both of these ad hoc methods can
lead to substantial biases (Serensen, 1977;
Tuma and Hannan, 1978).

Regardless of whether you do logistic
regression of arrest status or linear regression

of time to arrest, there is another problem
that is even more serious than censoring:
How do you include variables that vary over
the one-year follow-up period? Take employ-
ment status, for instance. In each of the 52
weeks of observation, we know whether the
person was employed full-time or not. One
possibility would be to include 52 dummy
variables for employment status in the regres-
sion model. Aside from being unwieldy, how-
ever, this would raise the possibility of reverse
causation. If someone is arrested in the 10th
week and incarcerated as a result, that could
have a big impact on whether he is employed
in the 12th week. The result would poten-
tially be a large bias in estimating the effect of
employment status on arrest. To my knowl-
edge, there is no ad hoc solution to this
problem that even comes close to the event
history methods we will consider shortly.

To sum up, event history data typically
have two characteristics that make conven-
tional methods unsuitable: censoring and
time-varying explanatory variables (also
known as time-dependent covariates). All
event history methods deal with censoring in
some way. Some also deal with time-varying
explanatory variables, Before examining these
methods in more detail, we need to take a
closer look at various kinds of censoring.

CENSORING

Censoring can take several different forms. In
the recidivism example we have just consid-
ered, all the censored cases were right cen-
sored. Or more accurately, their event times
were right censored. An event time is said to
be right censored if all we know is that is
greater than some number ¢, called the cen-
soring time, For the recidivism example, if
arrest times are measured in weeks from
release, then ¢ = 52. In this case, the censoring
time is the same for everyone, so the data are
described as singly right censored. In many
other data sets, however, the censoring times
(or potential censoring times) vary across
observations. This could happen, for example,
if prisoners are released at different points in
calendar time, but everyone is followed up
until some particular date in calendar time.
Those released earlier have longer potential
censoring times than those released later.
This variation in censoring times is relatively
unproblematic if censoring occurs simply
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because the researcher stops the follow-up
according to some prespecified rule. On the
other hand, we also treat observations as right
censored if the follow-up stops for reasons
that are not under control of the researcher.
For example, people may die, move away, or
refuse to continue participating in the study.
Censoring of this sort is called random censor-
ing, but it is important to understand that in
this context random does not mean that the
censoring is unrelated to anything else.
Rather, it means that the censoring is part of
the phenomenon under investigation, not a
part of the research design.

Random censoring is potentially problem-
atic. Conventional event history methods
implicitly assume that random censoring is
noninformative. This means that the fact that
an individual is censored at a certain point in
time does not provide any information about
that individual’'s risk of experiencing the
event. In the recidivism example, suppose
that some of the released prisoners died
during the one-year follow-up period (in fact,
none did). The usual approach would be to
treat their arrest times as censored at the time
of death. This censoring would be noninfor-
mative if those who were censored by death
had the same risk of arrest as those who did
not die.

Unfortunately, there are many situations in
which it is not plausible to assume that cen-
soring is noninformative, More unfortunate
is the fact that there is no way to test this
assumption. Worse still, even if one is certain
that the assumption is violated, there is no
generally acceptable way to correct for such
violations. So we are stuck with using the
conventional methods despite the fact that
they may produce somewhat biased esti-
mates. The lesson here is that, in designing
and executing the collection of event history
data, one should do everything possible to
minimize random censoring.

Although right censoring is by far the most
common kind of censoring, some event
history data may also have left censoring. An
event time is said to be left censored if all we
know about it is that it is less than some
number ¢. For example, suppose we do a
prospective study of intravenous drug users
with the aim of determining when and if they
contract HIV. At the onset of the study, how-
ever, some users are found to have already
contracted the disease, and we have no way of
knowing when that happened. These cases
are left censored. Most event history methods,

like Cox regression, are not designed to
handle left censoring.

Finally, an observation is called interval
censored if we know that an event occurred
between time a and time b, but we do not
know exactly when it happened within the
interval. This kind of censoring is also quite
common. For the intravenous drug user
example, the study might administer blood
tests at six-month intervals. If a particular
person is HIV-negative at one screening but
HIV-positive at the next, the time of the
event is interval censored. If the intervals are
regularly spaced for all observations, the data

can often be analyzed by the discrete-time
methods described later.

NONPARAMETRIC ESTIMATION OF
SURVIVAL DISTRIBUTIONS

Without a doubt, the oldest method of event
history analysis is the life table, with the first
known example appearing in the seventeenth
century. The life table can be regarded as a
nonparametric method for estimating the
probability distribution of event times even
when some of the observed event times are
right censored. More specifically, the goal is
to estimate the survivor function, denoted by
S(). This is the probability that an event has
not yet occurred by time t. (If the event is
death, we say that the individual has survived
to time t). We would like to be able to esti-
mate this probability for any value of t.
When there are no censored cases, this is an
easy task. To estimate the probability of sur-
viving to a specified time ¢, we simply calcu-
late the proportion of cases that are still alive
at time . There is also little difficulty if all
censoring occurs at the end of the study.
Again, we calculate the proportion of cases
surviving to each specified time ¢, except that
we have to stop at the earliest censoring time.
In the recidivism study, for example, all the
censoring occurred at 52 weeks. So we can
easily estimate the survivor function for
weeks 1 to 52, but cannot go any further.
This simple approach does not work, how-
ever, if some censoring times are smaller than
some event times. That is when a life table is
necessary. Here is an example. The sample
consisted of 1296 nursing home patients who
were followed from the date of entry to the
date of discharge or the date of censoring
(Morris et al., 1994). (These data are available
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Table 16.1 Life table for discharge of nursing home patients

Effective Conditional
Interval Number Number sample probability
(Lowver, Upper) failed censored size of failure Survival
0 150 719 0 1296.0 0.5548 1.0000
150 300 172 0 577.0 0.2981 0.4452
300 450 78 40 385.0 0.2026 0.3125
450 600 40 56 259.0 0.1544 0.2492
600 750 17 72 155.0 0.1097 0.2107
750 900 7 42 81.0 0.0864 0.1876
200 1050 4 37 34.5 0.1159 0.1714
1050 0 12 6.0 0 0.1515

on the web at http://lib.stat.cmu.edu/
datasets/csb/). About 20% of the discharge
times were censored because patients were
still in the nursing home when the study ter-
minated. Our goal is to estimate the survivor
distribution for length of stay, that is, the
number of days between entry and discharge.
For the uncensored patients, the length of
stay varied between 0 and 942, For the cen-
sored patients, the censoring times varied
between 365 and 1092 (by design, everyone
was followed for at least one year).

Table 16.1 displays a typical life table for
these data. The time scale has been divided
into seven intervals, each 150 days long,
plus a final open-ended interval. In practice,
the number of intervals and their upper and
lower boundaries are somewhat arbitrary.
The last column, labeled ‘Survival’, is the goal
of the calculations. It is the estimated proba-
bility of surviving (still being in the nursing
home), at the start of each interval. Thus, we
see that the estimated probability of still
being in the nursing home at 300 days is
0.3125.

The preceding columns give the intermedi-
ate calculations. ‘Number failed’ is the number
of people who experience the event during
each interval. ‘Number censored’ is the
number of people whose censoring time falls
within the interval. For example, among
those people who had not yet been dis-
charged when the study terminated, 40 had
been in the nursing home between 350 and
450 days. The next column, ‘Effective sample
size’, is an estimate of the number of people
‘at risk’ of discharge during that interval. The
presumption is that people who were censored
within the interval were only at risk for half
the interval. Therefore, the effective sample
size is the number who had not yet been dis-
charged at the start of the interval, minus half

the number who were censored within the
interval. For the third interval, 405 patients
had not yet been discharged at 300 days. But
40 of those patients were censored between
time 300 and 450. So the effective sample
size is 405 ~40/2 = 385. The ‘Conditional
probability of failure’ is an estimate of the
probability that someone who survived to the
start of the interval (had not yet been dis-
charged) was discharged during the interval.
It is simply the number who failed divided by
the effective sample size. In the first interval,
the estimated conditional probability of fail-
ure is 719/1296 = 0.5548.

Once we have the conditional probabilities
of failure, it is easy to calculate the survivor
probabilities. The probability of surviving
to time 150 is just 1 minus the probability
of failing in the first interval: 1 0.5548 = 0.4452,
What is the probability of surviving to time
300? To get to 300, you have to survive the
first interval and then survive the second
interval. The probability of doing that is
the probability of surviving the first interval
times the conditional probability of surviving
the second interval, given that you have
survived the first: (1 — 0.5548) (1 ~0.2981)
=0.3125. Simililarly, the estimated probability
of surviving to time 450 is(1 —0.5548)
(1-0.2981)(1 - 0.2026) = 0.2492. Continuing
in this fashion, we get the survival probabili-
ties for the starting times for each interval.
These probabilities are graphed as a function
of time in Figure 16.1. Graphs of this sort are
often referred to as survival curves.

One problem with the life table method is
that the division of time into intervals is arbit-
rary. We can avoid this by using the
Kaplan — Meier method (Kaplan and Meier,
1958), which modifies the life table in two
ways. First, the time intervals are defined by
the smallest time units observed in the data
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Figure 16.2 Estimated survivor function using
Kaplan—Meier method

set. For the nursing home data, time is
measured in days, so each day is a separate
interval in the life table. (That can produce a
very long table, but attention is usually
focused on graphs). Second, the effective
sample size for each interval is just the number
of cases who have not yet had the event at
the beginning of the interval. Thus, we do not
subtract half the censored cases within the
interval. Since the intervals are small, this
usually makes little difference.

Figure 16.2 shows the Kaplain ~ Meier
graph for the nursing home discharge data.
The shape is essentially the same as the graph
in Figure 1, but the curve is considerably
smoother because many more points are
plotted. For those time points that are plotted
in Figure 16.1, the estimated survivor proba-
bilities are, in fact, very close to the corres-
ponding probabilities in Figure 16.2.

Survival curves get more interesting when
you compare them for different groups. For
the nursing home data, Figure 16.3 shows
separate curves for men and women (with
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Figure 16.3  Survival curves for men and women
using Kaplan—Meier method

men coded 1 and women coded 0). The curve
for women is always higher than that for
men, which tells us that at every point in
time women have a higher probability of still
being in the nursing home. Equivalently, for
whatever reason, men are being discharged
more rapidly-than women.

There are many different statistical tests for
the null hypothesis that two groups have the
same survivor function, the most common of
which is the log-rank test. For these data, the
log-rank statistic is 37.2 which (under the
null hypothesis) has a chi-square distribution
with 1 degree of freedom. This is highly sig-
nificant, so we reject the null hypothesis and
conclude that the survivor functions are dif-
ferent for males and females.

PARAMETRIC REGRESSION MODELS

Simple comparison of survival curves may be
informative but it is usually not sufficient.
Typically, researchers will want to adjust for
other variables via some kind of regression
model. A fairly simple regression model for
event history data is the accelerated failure
time (AFT) model, one member of the more
general class of parametric regression models.
Assume, for the moment, that there is no
censoring, and let T, be the event time for the
ith individual in the sample. Let x;y,...,x, be a
set of explanatory variables for individual i.
(These are not allowed to vary with time.)
The AFT model is

log T,=B,+ ﬁlxil + e+ ﬁlﬁik'*' O€,, (16.1)

where log is the natural logarithm, ¢, is a ran-
dom disturbance with a fixed variance, and ¢
is a scale parameter that controls the variance
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Table 16.2  Estimates of a lognormal regression model for nursing

home stays

Variable Estimate Standard error Chi-square p
intercept 4.689 0.637 54.16 <0.0001
Age 0.015 0.007 4.03 0.0446
Male -0.602 0.134 20.09 <0.0001
Married -0.153 0.160 0.91 0.3395
Treatment 0.190 0.11 2.92 0.0875
Health Status -0.312 0.060 26.73 <0.0001
Scale (o) 1.940 0.045

of the random component in the equation.
We further assume that ¢, is independent of
the x variables and of any other &. These
assumptions imply the usual assumptions of
the linear regression model. So, if there are no
censored data, we can get best linear unbi-
ased estimates of the B coefficients by ordi-
nary least squares (OLS), using log T as the
dependent variable.

Of course, most event history data have at
least some censoring and OLS just will not
work in that situation. Censoring is easily
handled by the method of maximum likeli-
hood (ML) which, under fairly broad condi-
tions, produces coefficient estimates that are
consistent, asymptotically efficient, and
asymptotically normal. Many software pack-
ages (e.g., SAS, Stata, SYSTAT, BMDP, S-
PLUS) have ML procedures for at least some
versions of the AFT model.

To implement ML, it is necessary to specify
the probability distribution of the random dis-
turbance term £ A standard normal distribution
would be the most familiar choice. But there
are three other distributions that are also com-
monly used for this kind of modeling: extreme
value, logistic, and log-gamma. Each of these
distributions has an implied distribution for the
event time T, as shown in the following table:

Distribution of & Distribution of T

Normal Lognormal
Logistic Log-logistic
Extreme value Weibull

(or exponential)
Log-gamma Gamma

Typically, we refer to the different submodels
by the distribution of T. The gamma model is
the most general model because it has both the
lognormal and Weibull models as special cases.

What is the point of considering different
distributions for £? Each of these distributions

has somewhat different implications for
hazard functions, an important concept in
event history analysis that we shall discuss in
the next section.

Table 16.2 shows the results from fitting a
lognormal regression model to the length-of-
stay data for nursing home. In addition to the
gender variable, the model includes variables
for age, marital status, health status and
‘treatment’. Health status was coded as inte-
ger values from 2 through 5, with higher
scores indicating worse health. The treatment
variable was a dummy variable for whether or
not the patient was admitted to one of 18
nursing homes (out of a total of 36) that
received special treatment: higher per-diem
payments for accepting more disabled
Medicaid patients, and bonuses for improving
patient’s health status and discharging
patients within 90 days.

In Table 16.2, we see a highly significant
effect of gender, with males having smaller
lengths of stay. This is consistent with the sur-
vival curve comparison, but now we are con-
trolling for several other variables. The
coefficient of — 0.602 is the effect of gender
on the logarithm of length of stay, which is
not readily interpretable. We can get an inter-
pretable number by exponentiating the coef-
ficient: exp(~ 0.602) = 0.55. This tells us that
the expected length of stay for men is only
55% of the expected length of stay for
women.

Older patients have somewhat longer
lengths of stay, an effect that is just barely sta-
tistically significant (at the 0.05 level). More
specifically, if we calculate 100[exp(0.015)-
1]=1.5, we can conclude that each addi-
tional year of age (at admission) is associated
with a 1.5% increase in expected length of
stay (controlling for other variables in the
model). Contrary to expectation, patients in
the treatment nursing homes had longer
lengths of stay (not statistically significant)
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and patients with poorer health status had
shorter lengths of stay (highly significant).

Although AFT models can be very useful,
there are a few limitations with this
approach. First, results can vary depending on
the distribution chosen for ¢, and it may be
difficult to determine which is the more
appropriate distribution. For example, if a
Weibull model is fitted to the nursing home
data, the p-value for treatment goes down to
0.04, which many would judge to be statisti-
cally significant. A second problem is that
most software for fitting these models does
not allow for time-varying explanatory vari-
ables (although some software for the
Weibull model can do this).

These problems do not occur with the
method of Cox regression, which will be dis-
cussed in the next section. Nevertheless, AFT
models (along with other parametric regres-
sion models) have some advantages over Cox
regression: they are much better at handling
left censoring and irregular interval censor-
ing; and they make it much easier to generate
predicted times to events.

COX REGRESSION

By far the most popular method for analyzing
event history data is Cox regression. First pro-
posed by the British statistician, Sir David
Cox, in 1972, this method has many attrac-
tive features: minimal assumptions about the
distribution of event times; ease of incorpo-
rating time-varying explanatory variables;
ability to handle both continuous- and discrete-
time data; capacity for semiparametric strati-
fication; and allowance for left truncation.
Cox (1972) actually did two things: he pro-
posed a new model called the proportional
hazards (PH) model, and he devised a new
estimation method now known as partial
likelihood.

In the PH model, the dependent variable is
h(t), the hazard of an event at time t.
Specifically, if there are no time-varying
explanatory variables, the PH model may be
written as

log h(t) = aft) + Byxy + -+ + fxy. (16.2)

Obviously, to understand this model, it is
essential to have a clear understanding of
what h(z) is. Roughly speaking, h(t) can be
interpreted as the instantaneous probability
that an event will occur at time ¢. That is not

quite accurate, however, because unlike a
probability, the hazard can be greater than
one (although it can never be less than zero).
Here is a formal definition. Let P(t, t + At)
be the conditional probability that an event
occurs in the time interval (t, t + Af), given
that it has not already occurred prior to t. To
get the hazard function, we divide this prob-
ability by the length of the interval At, and
take the limit as At goes to O:
. Plt+ A 163
(1) Altlino At ( )

The hazard is allowed to be different at
every point in time f, which is why we call it
a hazard function. In equation (16.2) the haz-
ard has an i subscript to indicate that it can
vary across individuals. If h(f) has a constant
value 7, it can be interpreted as the expected
number of events in a one-unit interval of
time. Alternatively, 1/r is the expected length
of time until the next event. Suppose, for
example, that the events are residence
changes, time is measured in years, and the
estimated hazard of a residence change is
0.20. That would imply that, for a given indi-
vidual, the expected number of changes in a
year is 0.20 and the expected length of time
between changes is 1/0.20 = 5 years.

Like a probability (from which it is
derived), the hazard is never directly
observed. Nevertheless, it governs both the
occurrence and timing of events, and models
formulated in terms of the hazard may be
estimated from observed data. Going back to
(16.2) for the PH model, notice that on the
right-hand side there is an unspecified func-
tion of time oft). We could make this more
specific by assuming, for example, that,
oft) = o + o4t, where @, and «; are constants
to be estimated. This would give us a para-
metric PH model known as the Gompertz
model. Alternatively, if we specified
oft) = o + o log t,we would get a Weibull
model (which also happens to be an AFT
model, although expressed in different form).
But the beauty of Cox’s PH model is that it is
not necessary to decide what o(t) is. We can
estimate the B coefficients for any function
oft) without restriction. The partial likeli-
hood method is what makes this possible.

Why is (16.2) called the proportional haz-
ards model? Because if we take the ratio of
the hazards for any two individuals at the
same time h,(t)/h(t), where i # j, that ratio is
a constant that does not depend on time. One
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Table 16.3  Estimates of a proportional hazards

regression model for nursing home stays

Variable Estimate Standard error Chi-square p

Age -0.006 0.004 1.79 0.1806
Male 0.362 0.075 23.52 <0.0001
Married 0.115 0.088 1.7 0.1905
Treatment -0.081 0.064 1.64 0.2005
Health status 0.166 0.035 22.62 <0.0001

implication of this property is that the ‘effect’
of any explanatory variable is invariant over
time. While this may seem restrictive, the PH
model is much more flexible than the para-
metric models we have already considered.
Furthermore, as we shall see, the model can
easily be extended to allow for nonpropor-
tional hazards.

Now let us consider the partial likelihood
estimation method, which is what makes it
possible estimate the fs without specifying
oft). The method is very much like maxi-
mum likelihood but instead of maximizing
the full likelihood function, one works with a
portion of the likelihood function that
depends on the Bs but not on aft). This part
of the likelihood depends only on the order in
which events occur, not on the exact times of
the events. Some information is lost in the
process, but what is gained is a great deal of
robustness. In practice, the partial likelihood
is treated almost exactly the same as if it were
an ordinary likelihood function. Nearly all
full-featured statistical packages (SAS, SPSS,
Stata, S-PLUS, SYSTAT, BMDP) include a
procedure for doing partial likelihood estima-
tion of the PH model.

Let us apply the method to our nursing
home discharge data. Table 16.3 shows results
of a Cox regression with the same explanatory
variables as in Table 16.2 for the lognormal
model. To specify the model, virtually all Cox
regression software requires that the depen-
dent variable be listed in two parts: a variable
containing the time of the event or censoring,
and a variable indicating whether or not that
time was a censoring time or an event time. A
list of independent variables is the only other
information that is required.

Comparing Table 16.3 with Table 16.2,
there are a couple of noteworthy differences.
First, unlike most regression methods, there is
no intercept reported in the computer out-
put. That is because the intercept (if there
really is one) is part of the a(f) function in
(16.2), which drops out of the estimation

process. The other big difference is that the
signs of the coefficients are all the opposite of
what they were in Table 16.2. Again, that is
no accident, and it stems from the fact that
the dependent variable in the AFT model is
the event time, while the dependent variable
in the PH model is the hazard for the event.
If the hazard for some event is low, then the
event is unlikely to occur and the expected
time until an event occurs will be large. On
the other hand, if the hazard is high, the
event is very likely to occur and the expected
time to the event will be small. So hazards
and event times are inversely related.

Despite these apparent differences, the
results in Tables 16.2 and 16.3 are reasonably
consistent. Both tables show highly signifi-
cant effects of gender and health status. For
the other variables, the p-values from the Cox
regression are a bit higher than those for the
AFT regression. One consequence is that
Age, which was marginally significant in the
AFT regression, is no longer significant in the
Cox regression.,

To interpret the magnitudes of the coeffi-
cients, it is helpful to first transform them
using the same formula as for the AFT models:
100[exp(B) —1]. This gives the percent change
in the hazard of an event for each one-unit
increase in a particular explanatory variable
(holding other variables constant). For Male,
we have 100[exp(0.362) ~ 1] = 44%. This says
that males have a hazard of discharge that is
44% higher than the hazard for females (after
adjusting for the other variables in the model).
For 'Health Status’, we have 100[exp(0.166) —
1]=18%. This says that for each one-unit
increase in the health status scale, the hazard
for discharge goes up by 18%.

TIME-DEPENDENT COVARIATES

There are no time-dependent covariates in
the nursing home discharge data — all the
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independent variables were measured at the
time of admission. In principle, however,
some of these variables, like health status,
could change during the nursing home stay. If
we had measurements on these changing
variables, how could we incorporate them
into the analysis? It is easy to build them into
the PH model. For example, suppose that
%, (t) denotes a patient’s health status at time
t, where t is the length of time since admis-
sion to the nursing home. Then we could
write the model:

logh(1) = oft) + Byx, (1)

+ Box, + o+ Bix,. (16.4)

This equation says that the hazard of dis-
charge at time t depends on the patient’s
health status at the same time t. According to
this model, any change in health status pro-
duces an immediate change in the hazard of
discharge.

While it is simple to modify the model to
allow for time-dependent covariates, it may
not be so easy to estimate that model. One of
the attractions of the partial likelihood
method is that it is relatively straightforward
to incorporate time-dependent covariates
into the estimation process. To do that, how-
ever, you need appropriate data. Ideally, one
should know the values of the time-depen-
dent covariates at every point during the
observation period. That may not be difficult
for some variables, like marital status. If we
know the dates of any changes in marital
status and we know the status before and
after the change, then we can assign a marital
status for every day of observation.

On the other hand, it may be difficult to
get daily measurements of health status.
Instead, we may only know health status at
weekly or monthly intervals. In such cases,
it is necessary to devise some plausible rule
for assigning values to the days in between.
One possible rule would be to presume that
each measured value remains in effect until
the next measurement. Another possibility
is to do some kind of linear interpolation.
Such choices must be made by the investi-
gator, often on the basis of substantive
considerations.

Once these issues have been resolved, the
next question is how to implement the esti-
mation process. It turns out that there are
two rather different computational roads that
lead to the same result. In the first approach -
let us call it the programming method — there
is a single record for each individual. The

changing values of the time-dependent
covariate are coded in multiple variables on
that record. For example, if health status is
measured monthly and patients are observed
for a maximum of three years, one would
need 36 variables to describe the health
status measurements.

To specify the model, it is necessary to
write a small program that assigns the appro-
priate value of health status to each time at
which a discharge occurs. This program must
be executed as part of the estimation process,
not before. The reason is subtle but extremely
important. If someone is discharged on day
125, that person is compared to all the other
persons who were still in the nursing home
125 days after admission — the ‘risk set’ for
day 125. In doing that comparison, it is nec-
essary to retrieve the values of health status
on day 125 for all the people at risk of dis-
charge. But many of those people might also
be in other risk sets. If a discharge occurred
on day 100, for example, the program must
retrieve the values of health status on day
100 for all the people in that risk set. But all
the people in the nursing home on day 125
will also have been there on day 100. So, for
a given individual, different values of the
time-dependent covariates are retrieved at
different points in time.

The other computational approach to
time-dependent covariates is known as
episode splitting (also called the counting
process method). In this method, each indi-
vidual may be represented in the data set by
more than one record. Each record corre-
sponds to an interval of time during which all
the covariates are constant. The records must
contain the following variables: the starting
time of the interval (measured as time since
admission), the stopping time (also measured
as time since admission), the values of all
independent variables (both time-constant
and time-dependent), and a censoring indica-
tor. Any record that does not end in an event
is treated as censored. Time-constant vari-
ables are replicated across the multiple
records for each individual. In doing the
analysis, one simply specifies the variables for
starting time, stopping time, censoring, and
the covariates. At the analysis stage, there
is no distinction between time-varying and
time-constant explanatory variables. That
is because, within each record, both are
constant.

The choice between these two computa-
tional approaches depends greatly on the
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Table 16.4  Estimates of a proportional hazards regression model for

nursing home stays, with treatment by time interaction

Variable Estimate Stan

dard error Chi-square p
Age -0.005 0.004 1.59 0.2066
Male 0.361 0.075 23.36 <0.0001
Married 0.109 0.088 1.52 0.2173
Treatment -0.240 0.085 7.94 0.0048
Health status 0.165 0.035 22.34 <0.0001
Treat. x Time 0.0013 0.0004 7.70 0.0055

software being used. Some programs (like
SPSS and BMDP) use only the programming
method. Other programs (like Stata) use only
the episode splitting method. And some (like
SAS) allow for both methods, either sepa-
rately or in combination. If correctly imple-
mented, both approaches should produce
exactly the same numerical output. I tend to
favor the episode splitting approach because
it makes it easier to avoid mistakes. After you
have created the multiple records, you can
examine them carefully to see if they con-
form to your intentions. And once you have
constructed the data set, you can specify the
models in a very simple form.

On the other hand, there are certain situa-
tions where the programming method is
much simpler. Here is one example. For the
model displayed in Table 16.3, an implicit
assumption is that each independent variable
has the same effect at all points in time. This
is a crucial implication of the proportional
hazards assumption. But what if that assump-
tion is not true? Perhaps there is a large effect
of the treatment on the hazard of discharge
when people are first admitted to the nursing
home, but the effect becomes progressively
smaller as time goes on. The Cox model can
be modified to express this idea by including
an interaction between treatment and time.
Specifically, if x, is the treatment variable, we
can include the product of x, and t:

logh(1) = (1) + Byxyy + - + By + Bey Xt

This model says that the ‘effect’ of x, is a lin-
ear function of t. Alternatively, letting
z(t) = x,t, we can write this model as

logh (1) = oft) + Bixy + -+ + Boey + By 1z (1).

In short, we now have a model with a time-
dependent covariate z. But the episode split-
ting method will not work for this model
because there are no intervals during which
z(t) is constant. Hence, we must use the pro-
gramming method. We will skip the details

because the implementation varies greatly
across software packages.

Table 16.4 shows the results of estimating
the interaction model using the program-
ming method. We see that the interaction
term is statistically significant beyond the
0.01 level, indicating that the effect of treat-
ment does vary with time since admission.
More specifically, the ‘main effect’ of treat-
ment represents the effect of treatment at
time 0, the date of admission. It is negative
(-0.240) and highly significant. Applying
the 100[exp(f) —1] transformation, we may
say that at the time of admission, the treated
group has a 21% lower hazard of discharge
than the control group. However, for each
additional day since admission, the effect of
treatment goes up by 0.0013, implying that
the effect is zero at 185 days. After that, the
treatment effect becomes steadily more pos-
itive. At one year, it is equal to the coefficient
at admission, only in the opposite direction.
This explains why, overall, we do not see
much effect of treatment in Table 16.3. The
early negative effect is balanced by the later
positive effect.

This example illustrates one way to test the
proportional hazards assumption in the Cox
regression model: check to see if variables
have significant interactions with time. In this
case, the method of diagnosis is also the cure.
By including interactions with time, we
extend the Cox model to allow for nonpro-
portional hazards.

STRATIFICATION

Another useful feature of Cox regression is
the ability to control for one or more vari-
ables in a completely nonparametric manner.
This is called stratification, although the
meaning of this term is somewhat different
than in other contexts. For example, in the
nursing home study, suppose that we want
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Table 16.5 Estimates of a proportional hazards regression
model for nursing home stays, with stratification by health

status

Variable Estimate Standard error Chi-square p
Age -0.006 0.004 21 0.1457
Male 0.356 0.075 22.64 <0.0001
Married 0.119 0.088 1.82 0.1768
Treatment -0.251 0.086 8.62 0.0033
Treat. x Time 0.0014 0.0005 8.91 0.0028

estimate the effect of the treatment controlling
for health status, but we do not want to
assume that the effect of health status satis-
fies the proportional hazards assumption. We
specify the following model:

loghy(1) = o4,(t) + Bix,

+o 4 By + Beyz(d). (16.5)
The only difference between this equation
and the one in the preceding section is that
the unspecified function of time ay,(t) is now
subscripted with an H. This indicates that
there may be a different unspecified function
of time for each value of the health status
variable. Consequently, the model allows for
differences in the discharge rate across the
four possible values of health status, but these
differences may vary with time. On the other
hand, the coefficients of the other variables
are assumed to be the same within each
health stratum.

Models with stratification can be easily
estimated using the partial likelihood
method. Table 16.5 shows the results of strat-
ifying by health status for the nursing home
data. Although, health status does not show
up in the table, it is being controlled, and in a
way that is less restrictive than in Table 16.4.
Nevertheless, the results for the other vari-
ables are only slightly different in Table 16.5
than in Table 16.4.

LEFT TRUNCATION AND LATE ENTRY

Conventional Cox regression programs pre-
sume that there is some common origin time
(time 0) at which everyone begins to be at
risk of an event. For the nursing home study,
the origin time was the day on which each
person was admitted to the nursing home,
The event time was then the number of days
between admission and discharge. The impli-
cation is that if a person was discharged on,

say, day 279, that person was at risk of a
discharge every day between 0 and 279.

That is not always a plausible assumption.
Suppose the nursing home study was con-
ducted in the following way. On a certain
date, all patients currently residing in the
nursing home were recruited into the study
and then followed forward until discharge or
censoring. One could set the origin time to be
the date of recruitment, and then the event
time would be the difference between
recruitment date and discharge date. But the
recruitment date is a purely arbitrary point in
time, and there is no reason to think the haz-
ard for discharge would depend on time since
that arbitrary point. Instead, one could, as
before, record discharge times as time since
admission. But that raises a new problem. By
design, it is not really possible for a person to
be discharged between the date of admission
and the date of recruitment. If the person had
been discharged during that interval, he or
she would not be available for recruitment
and would not have been in the study.

This problem is known as left truncation or
late entry to the risk set. The solution is to
continue to measure discharge times from
the date of admission, but remove individuals

from the risk set during the interval from

admission to recruitment. Most Cox regres-
sion programs cannot do this, but many now
have this capability. To implement these
procedures, all that is necessary is to specify
an entry time and an event time for each
individual.

COMPETING RISKS

All the techniques we have discussed so far
presume that events are indistinguishable: all
deaths are the same, all arrests are the same,
all nursing home discharges are the same. For
many applications, however, events can be
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Table 16.6 Estimates of a Cox regression model for exits

from power

Variable Estimate Standard error Chi-square p
Manner 0.250 0.124 4.07 0.0437
Year -0.018 0.008 4.83 0.0280
Age 0.023 0.005 18.33 <0.0001
Conflict 0.094 0.128 0.54 0.4608
Income -0.177 0.082 4.64 0.0312
Literacy 0.0007 0.003 0.05 0.8212

separated into different types, and the different
types may have potentially different causes.
For example, if the event is a job termina-
tion, we might expect that job performance
would have very different effects on the
hazard of quitting and the hazard of being
fired.

Here is a more detailed example. The data
consist of information on 438 principal lead-
ers of developing countries during the past 60
years (Bienen and van de Walle, 1991). (This
data set is available on the web at
www.ssc.upenn.edu/~allison under the name
leaders.dat.) For each leader, we have infor-
mation on the number of years in power, and
the manner in which he was removed from
power: constitutional means (146 cases),
nonconstitutional means (coup d’etat, assassi-
nation, etc.; 154 cases), or death from natural
causes (27 cases). Another 111 of the leaders
were still in power (censored) when the
study terminated in 1987. These three modes
of exit from office are appropriately regarded
as competing risks because the occurrence of
any one of them removes the individual from
risk of the other two.

The goal is to estimate the effects of several
explanatory variables on the hazard of leaving
office. The covariates we shall examine are:

Manner 1 = nonconstitutional entry to power,
0 = constitutional).

Year Year of entry into power.

Age Age on assuming power.

Conflict 1 =medium or high ethnic conflict,
otherwise 0.

Income Natural logarithm of GNP per
capita, 1973.

Literacy Literacy rate.

Region 0 =Middle East, 1 = Africa, 2 = Asia,

3 = Latin America.

Table 16.6 presents results from a Cox
regression predicting the hazard of leaving
office, without distinguishing the manner of

departure. (For a more detailed analysis of
these data, see Allison, 1995.) Age at entry
has a strong and unsurprising effect: leaders
who are older when they assumed power are
more likely to leave quickly. There is also
some evidence that higher rates of departure
are associated with lower country income,
earlier starting years, and the seizure of
power by nonconstitutional means.

But this analysis lumps together three differ-
ent kinds of events that may, in fact, be quite
different. To disaggregate these event types, we
first specify a separate hazard function for each
event type. Specifically, k(t) is the hazard for
person i experiencing an event of type j at time
t. Then we write a separate proportional
hazards equation for each event type:

logh,(1) = oi(1) + Byx;,
+...+ﬂij‘,k’ j=l,...,3~ (166)

Estimating these three equations is a simple
task that can be done with conventional soft-
ware for Cox regression. The basic rule is this:
estimate each equation separately by estimat-
ing a Cox model for that specific event type,
treating all other events as though the indi-
vidual was censored at the time of event
occurrence. In practice, this is easily accom-
plished by repeatedly estimating the same
model, each time specifying different sets of
events to be treated as censored.

Table 16.7 displays results from doing this
for the three modes of departure from office.
What is of interest here is that many variables
have quite different effects on the different
modes. Age, for example, is the only variable
that has a significant effect on the hazard of a
natural death. Age also affects exits by consti-
tutional means, but has no apparent effect on
nonconstitutional exits. On the other hand,
the hazard of a nonconstitutional exit
decreases with calendar time (year), but the
hazards for the other two modes are unaf-
fected. Increases in income appear to reduce
the hazard of nonconstitutional exit, but do
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Table 16.7  Estimates of Cox regression models

for three types of exit

Variable Estimate Standard error Chi-square p
Constitutional exits

Manner -0.336 0.217 2.39 0.1223
Year 0.003 0.012 0.06 0.8123
Age 0.025 0.008 8.66 0.0032
Conflict ~-0.023 0.194 0.01 0.9067
Income -0.119 0.116 1.06 0.3038
Literacy 0.014 0.005 6.21 0.0127
Nonconstitutional exits

Manner 0.686 0175 15.45 <0.0001
Year -0.036 0.012 8.85 0.0029
Age 0.009 0.008 1.19 0.2745
Conflict 0.437 0.201 4.73 0.0296
Income -0.435 0.144 9.17 0.0025
Literacy -0.006 0.005 1.49 0.2214
Death from natural causes

Manner 0.089 0.536 0.03 0.8679
Year -0.055 0.035 2.53 0.1117
Age 0.084 0.019 19.32 <0.0001
Conflict -0.474 0.494 0.92 0.3380
Income 014 0.271 0.27 0.6014
Literacy -0.010 0.013 0.66 0.4156

not affect constitutional exits. If a leader
gained power by nonconstitutional means, he
is far more likely to be ousted by nonconsti-
tutional means. In short, the factors affecting
an exit from power seem to depend rather
heavily on the type of exit.

UNOBSERVED HETEROGENEITY

If you look closely at equation (16.2) for
Cox’s PH model, you will notice that there is
no random disturbance term. That does not
mean that the model is deterministic because
the dependent variable — the hazard - repre-
sents only the propensity for events to occur.
Two people with the same hazard can end up
with very different event times. Nevertheless,
the model does say that all variations in the
hazard are completely explained by the
covariates that are included in the model, an
unlikely assumption for virtually any real
application.

Suppose we expand the model to include a
random disturbance term € which represents
unobserved heterogeneity:

logh(t) = oft) + Bix,, + - + Bx, + &,

As in conventional linear models, we might
further assume that ¢, has normal distribution
with mean 0 and constant variance, and is
uncorrelated with any of the xs. What would
such a model imply? There are two major
implications of unobserved heterogeneity:

1. There will be an artifactual tendency for
the observed hazard function to decrease
with time. Thus, it will appear that the
longer people survive, the lower their risk
of death.

2. Estimates of the B coefficients using con-
ventional methods will be biased toward
zero, a phenomenon known as hetero-
geneity shrinkage (Gail et al., 1984).
Fortunately, standard error estimates will
still be valid, as will tests of hypotheses
that coefficients are 0. Note that hetero-
geneity shrinkage is a potential problem
for many other nonlinear models, includ-
ing logistic regression (Allison, 1987).

Although there have been extensive efforts to
devise methods to overcome these problems
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Table 16.8 Cox regression for 395 jobs, with and without standard error corrections

Standard Robust standard Robust
Variable Estimate error Chi-square error Chi-square
Schooling 0.187 0.029 41.80 0.046 16.43
Prestige -0.079 0.006 154.30 0.006 163.40
Salary (logged) -0.597 0.114 27.21 0.142 17.55
Time 0.269 0.029 83.45 0.031 77.50

(Heckman and Singer, 1984; Elbers and
Ridder, 1982; Hougaard 1986), I believe that
the attempt is futile when no more than one
event is observed for each individual, as in
the case of death. There simply is not enough
information in the data to effectively distin-
guish between heterogeneity and time
dependence. On the other hand, when multi-
ple events are observed for each individual,
models with unobserved heterogeneity can
be reliably estimated (Yamaguchi, 1986).

REPEATED EVENTS

All the methods discussed so far presume
that each individual experiences no more
than one event. Yet most events that are
interesting to social scientists are repeatable:
births, marriages, divorces, arrests, job termi-
nations, residential moves, etc. Here is a
simple example. For 100 persons, we have
data on the lengths of 395 jobs they held over
a ten-year period (data set jobmult.dat, avail-
able at www.ssc.upenn.edu/~allison). The
number of jobs held by each person ranged
from 1 to 10. The goal is to estimate a model
in which the hazard of job termination
(which may be voluntary or involuntary)
depends on four explanatory variables: years
of schooling, occupational prestige, salary
(logged) at the beginning of each job, and
time at the start of each job (in years since
the beginning of the first job).

One simple approach is to treat each job as
a separate observation, and estimate a Cox
regression model for length of the job. The
first three columns of Table 16.8 report
results from such an analysis. All four vari-
ables have highly significant coefficients.
More schooling increases the hazard of ter-
mination, higher prestige and higher salary
reduce the hazard of termination, and the
rate of termination increases with time.

A major problem with this analysis, however,
is that it ignores the potential dependence

among the several jobs for the same person. If
a person’s first job is very short, we might
expect that later jobs would be short as well. If
job lengths are positively correlated, treating
them as if they were independent observations
will result in standard errors that are under-
estimated and test statistics that are too high.
There are several methods available to deal
with the problem of dependence. We will
consider two that are readily available: robust
standard errors and fixed effects models.

The method of robust standard errors does
not involve any changes in the coefficient
estimates, but modifies the standard errors to
correct for dependence. Based on work of
Huber (1967) and White (1980), the calcula-
tion of robust standard errors is sometimes
called the ‘sandwich’ method because of the
structure of the matrix formula. For Cox
regression, several major software packages
(SAS, Stata, S-PLUS) now provide robust
standard errors as an option. The last two
columns of Table 16.8 give robust standard
errors and the associated chi-squares (the
squared ratio of the coefficient to its standard
errors). The chi-squares for education and
salary are substantially smaller after the correc-
tion, although still highly significant.

The fixed-effects method is a rather differ-
ent approach to repeated events. First, it is
based on a model that explicitly allows for
unobserved heterogeneity across individuals,

loghij(t) =aft) + ﬂ]xij]
+ e+ ﬁl?‘ijk + sil (16-7)

where h,(t) is the hazard for event j for indi-
vidual i. The term g represents unobserved
heterogeneity that is specific to individual i
but constant across events j. Rather than
assuming that ¢ is a random variable, we
assume that it is just some constant value that
differs across individuals (hence the term
‘fixed effects”). To estimate this model with
conventional software, we must combine the
g, with (t) to get

loghij(t) = gff) + ﬁ]xijl + o+ By,
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Table 16.9  Fixed-effects Cox regression for 395 jobs

Variable Estimate Standard error Chi-square p
Schooling 0 . . .
Prestige -0.056 0.010 32.64 <.0001
Salary (logged) -0.866 0.174 24.66 <.0001
Time 0.021 0.039 0.28 0.5988

which says that each individual has a distinct
baseline hazard function. In this form, the
model is easily estimated using the method of
stratification described earlier (Allison, 1996).
Each individual constitutes a distinct stratum.

Results for a fixed-effects analysis of the
job termination data are shown in Table 16.9.
The most obvious feature of these results is
the null estimate for schooling, which illus-

_ trates a peculiar disadvantage of fixed effects

methods — you cannot estimate the effects of
any variables that are constant over time for
the individual. That is because the method
only uses information about within-individual
variation. In effect, we are asking the ques-
tion, ‘For each person, why are some jobs
longer and others shorter?’. Variables that do
not vary within persons cannot provide any
answers to this question.

That does not mean, however, that school-
ing is not controlled in this analysis. In fact,
fixed effects methods control for all variables
that are constant within individuals, whether
they can be measured or not. Hence, the
analysis reported in Table 16.9 controls for
race, sex, region of birth, family background,
stable personality characteristics, and so on.
For nonexperimental designs, where the con-
trol of such factors is a major issue, this is a
very attractive feature,

Because of the controls for unmeasured
factors, the fixed effects method often pro-
duces results that are markedly different
from a conventional analysis, even with
robust standard errors. That is not the case in
this example, where the coefficients for pres-
tige and salary are similar in Tables 16.8 and
16.9. On other hand, the coefficient for time
is markedly lower in Table 16.9 than in Table
8, and is no longer statistically significant. The
other thing to keep in mind about the fixed
effects method is that, when unobserved
factors are uncorrelated with the measured
variables, there may be a substantial loss of
power, that is the standard errors may be
appreciably higher than in a conventional
analysis. That is because the between-individual
variation contributes nothing to the analysis.

Two other approaches to repeated events
are generalized estimating equations (GEE)
and random effects (mixed) models. The
GEE method uses the robust standard errors
method, but also produces more efficient
estimates of the coefficients. Random-effects
models may be based on equation (16.7), but
€ is treated as a random variable with a spec-
itied probability distribution. Random effects
estimates are potentially more efficient than
those produced by the fixed effects method,
but they do not control for unobserved
factors that are correlated with the variables
in the model. These two methods are currently
only available in specialized packages, but
may see more widespread implementation in
the near future.

DISCRETE-TIME AND TIED DATA

So far we have assumed that events can occur
at any point in time and event times are mea-
sured with perfect precision. Under that
assumption, it is impossible for two events to
occur at exactly the same time. In practice,
however, event times are often measured
quite coarsely. We may only know the week,
month, or year in which an event occurred. In
such situations, many individuals may have
‘tied’ event times. That is, two or more indi-
viduals may have events at the same mea-
sured times.

The Cox regression method, in its classic
form, is not appropriate when the data con-
tain tied event times. When such data occur,
most Cox regression programs invoke an
approximate partial likelihood method pro-
posed by Peto (1972) and Breslow (1974).
However, this approximation may be poor
when there are lots of tied event times. A
much better approximation (Efron, 1977) is
available in some programs. Better still are
two exact methods, one that assumes that
event times are truly continuous (a reason-
able assumption for most applications) and
another that assumes that event times are
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truly discrete (which may be appropriate for
some special applications). Both of these
exact methods are computationally intensive,
however, and may be impractical for larger
data sets with many ties.

There is another approach to coarse event
times that is quite different in implementa-
tion but actually estimates the same underly-
ing models as the exact Cox regression
methods (Allison, 1982, 1984, 1995). The
basic idea is very simple. For each unit of time
that an individual is observed, create one
observational record. For each record, create
a dependent variable that is coded 1 if an
event occurred during this unit of time,
otherwise 0. Independent variables take on
whatever values were measured at the begin-
ning of that time unit. After pooling all the
records, do a logistic regression predicting the
dependent variable from the independent
variables. This will produce maximum likeli-
hood estimates of the ‘truly discrete’ model
that can also be estimated by some Cox
regression programs. Alternatively, to esti-
mate the ‘truly continuous’ model, one may
specify a complementary log-log link for the
binary regression model. Unlike the exact
partial likelihood methods, this maximum
likelihood approach can readily handle large
data sets with large number of tied event
times.

BIBLIOGRAPHIC NOTE

There are many textbooks on event history
(survival analysis) but the best tend to have a
biomedical orientation. Of these, my
favorites are Collett (1994) and Hosmer and
Lemeshow (1998). Other useful texts from
this perspective include Klein and
Moeschberger (1997) and Kleinbaum (1996),
the latter focusing exclusively on Cox regres-
sion. For texts by social scientists, see
Blossfeld et al. (1989) and Yamaguchi
(1991).
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