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Abstract 
 
One approach to doing fixed-effects regression analysis is simply to include dummy variables in 
the model for all the individuals (less one).  Greene (2001) has recently introduced algorithms 
that make this computationally feasible even for nonlinear models with thousands of dummy 
variables. The dummy variable approach works well for linear regression and Poisson regression, 
but may suffer severe “incidental parameters bias” for logistic regression.  The performance of 
the dummy variable method for Cox regression with repeated event data is unknown.  I show by 
simulation that incidental parameters bias for Cox regression may be nearly as severe as that 
with logistic regression.  Fortunately, as is well known, fixed-effects analysis of repeated event 
data is conveniently done by Cox regression combined with stratification on individuals, thereby 
eliminating the nuisance parameters.  
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 A major attraction of longitudinal data is the ability to control for all stable covariates, 

without actually including them in a regression equation.  In general, this is accomplished by 

using only within-individual variation to estimate the parameters, and then averaging the 

estimates over individuals.  Regression models for accomplishing this are often called fixed-

effects models.  Fixed-effects models have been developed for a variety of different data types 

and models, including linear models for quantitative data (Mundlak 1978), logistic regression 

models for categorical data (Chamberlain 1980), and Poisson or negative binomial regression 

models for count data (Palmgren 1981). 

 One approach to fixed-effects regression is simply to include dummy variables for all the 

individuals in the sample (less one).  For linear models, Poisson regression models (Cameron and 

Trivedi 1998) and negative binomial regression models (Allison and Waterman 2002), this 

method works very well.  For logistic regression, on the other hand, the inclusion of dummy 

variables for many individuals can lead to severe “incidental parameters” bias (Kalbfleisch and 

Sprott 1970).  The usual asymptotic justification for maximum likelihood estimation depends on 

the presumption that the number of parameters remains constant as the sample gets larger.  For 

longitudinal data, that works just fine if the number of individuals remains constant but the 

number of observations per individual gets larger.  But if the number of individuals is getting 

larger while the number of time points remains constant, then the number of parameters in a 

fixed-effects model (including coefficients of the dummy variables) is increasing at the same rate 

as the sample size.  This tends to produce an inflation of the coefficient magnitudes.  When there 

are exactly two observations for each individual, logistic regression coefficients will be twice as 

large as they should be (Abrevaya 1997).  
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 The solution to the incidental parameters problem for logistic regression is to do conditional 

maximum likelihood, conditioning on the number of 1’s and 0’s for each individual 

(Chamberlain 1980).  This removes the dummy variable coefficients from the likelihood function 

and yields coefficient estimates that are consistent.  

  In this paper, I investigate the use of the dummy variable method applied to Cox 

regression models for repeated event data.  To my knowledge, there is no literature addressing 

the presence or absence of incidental parameters bias for Cox regression.  Previous attempts at 

fixed-effects analysis for Cox regression have used stratification on individuals to remove the 

dummy variable coefficients from the partial likelihood function (Chamberlain 1985, Yamaguchi 

1986), an approach quite similar to conditional maximum likelihood for logistic regression.  

Elsewhere I have shown by simulation (Allison 1996) that this method produces approximately 

unbiased estimates under a wide variety of conditions.  However, Chamberlain (1979) raised 

some questions about the validity of the likelihood function, and my own simulations suggest 

that there may be bias when the regression model includes variables describing the previous 

event history.   

 Given the possible limitations of the stratification method, it’s reasonable to consider the 

dummy variable method as an alternative.  One possible disadvantage of the dummy variable 

method is the sheer computational difficulty of estimating models with hundreds, perhaps 

thousands of dummy variables.  Standard Cox regression programs require repeated inversion of 

of a K × K matrix, where K is the number of covariates.  When K is large, this becomes very 

computationally intensive.  Greene (2001), however, has recently shown that for a large class of 

nonlinear fixed-effects models, the coefficients for the dummy variables may be estimated 

without the necessity of inverting a large matrix.  Although Greene’s method would require 
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modification of conventional software, it does raise the possibility that the dummy variable 

method could be a convenient way to estimate the Cox regression model in a wide variety of 

situations.  However, before we take the trouble to rewrite existing Cox regression programs, it is 

essential to determine whether these models are subject to incidental parameters bias.  In the 

simulations that follow, I show that such bias is quite severe when the number of events per 

individual is small. 

 Repeated event data generally take two forms, ordered and unordered.  With ordered data, 

the more common form, we begin observing an individual at some time t=0, and then observe a 

sequence of events that occur at times t1, t2, ….  Usually, the focus of the modeling is on the gap 

times:  
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Observation is terminated at some point τ, so the last gap time is censored.  

 With unordered data, for each individual we simply observe one or more event times, each 

of which may be censored or uncensored, and there is no sequence to these event times.  This 

kind of data would arise if the “individuals” were families and the goal was to model death times 

for all siblings in the family.    

 For either ordered or unordered data, we begin with the following proportional hazards 

model 

 iikik xtth δβα ++= )()(log  (1) 
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where hik(t) is the hazard of the k’th event for the i’th individual at time t, xik is a column vector 

of covariates for the k’th interval for the i’th individual, β is a row vector of coefficients, α(t) is 

an unspecified function of time, and δi is a set of fixed-effects.   

 For generating simulated data, I used a special case of this model 

 iikik xtth δβα ++= log)(log  (2) 

which gives rise to a Weibull distribution for event times, conditional on x and δ.   In the 

simulations, I specified that x and δ were drawn from a bivariate normal distribution, with 0 

means for both variables, standard deviations of 1 for x and σ for δ, and a correlation ρ.    

The first set of simulations is for ordered data.  For each scenario, I constructed 100 

samples, each with 100 individuals.  For each individual, I generated a sequence of intervals 

between events until the sum of those intervals exceeded a censoring time c.  Hence, the last 

interval for each individual was censored, while all the earlier intervals were uncensored.   The 

baseline scenario set α=1, β=1, σ=1, ρ=0, and c=2.  I then estimated Cox regressions for each 

sample using the SAS procedure PHREG with dummy variables to estimate δi.  The results for 

the 100 samples are shown in line 1 of Table 1.  For the baseline scenario, with approximately 

three intervals per individual and 33 percent of the intervals censored, the mean coefficient for x 

was 1.27, that is, 27 percent above the true value.   

I then proceeded to vary the parameter values one at a time, with results shown in later 

lines of Table 1. In all cases but one (when β=0), the coefficients are biased away from 0, with 

percentages varying between 11 and 73.  It appears that the percentage increase is primarily a 

function of the mean number of intervals contributed by each individual, which would be 

consistent with incidental parameters bias in logistic regression.  However, in this data set up, the 

average number of intervals is completely confounded with the percent censored (the latter is just 
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the reciprocal of the former) because every individual has exactly one censored interval.  So, it’s 

possible that the degree of parameter inflation is essentially a function of the percentage 

censored.   

Table 1.  Estimates for Cox Regression Model with Dummy Variables, Ordered Data 

 
Model 

Mean Intervals 
per Individual 

 
%Censored 

 
Mean Coefficient 

 
Standard Error 

1.  Baseline 3.06 33 1.270 .017 

2.  α=1.5 2.91 34 1.358 .018 

3.  α=0.5 3.29 30 1.226 .015 

4.  α=0.0 3.71 27 1.157 .013 

5.  α=-0.5 4.73 21 1.107 .009 

6.  σ=1.5 3.41 29 1.230 .013 

7.  σ=0.5 2.85 35 1.347 .020 

8.  σ=0.0 2.82 35 1.371 .022 

9.  β=1.5 2.96 34 1.932 .019 

10.  β=0.5 3.13 32 0.611 .014 

11.  β=0.0 3.16 32 -0.018 .014 

12.  ρ=.50 3.46 29 1.183 .014 

13. ρ=-.50 2.87 35 1.342 .021 

14.  c=4 5.33 19 1.145 .009 

15.  c=1 1.95 51 1.511 .041 

16.  c=.75 1.64 61 1.727 .061 
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 The influence of these two factors can be distinguished by considering simulations for 

unordered data.  In this setup, each individual has a fixed number of intervals.  Each interval may 

be censored or uncensored, depending on whether it exceeds a censoring time c.  As before, I 

generated data based on equation (2) with baseline parameter values α=1, β=1, σ=1, and ρ=0.  

Table 2 presents results for five different numbers of intervals per individual (all with 24 percent 

censoring) and five different levels of censoring (all with three interval per individual).  The 

inflation due to number intervals ranges from 7 percent (for 10 intervals) to 80 percent (for two 

intervals).  The inflation due to censoring ranges from 35 percent (with no censoring) to 57 

percent (with 88 percent of the cases censored).  Clearly, both factors play a role, but number of 

intervals seems to have the larger effect.   

Table 2.  Estimates for Cox Regression Model with Dummy Variables, Unordered Data 

 
Censoring Time 

Number Intervals 
per Individual 

 
%Censored 

 
Mean Coefficient 

 
Standard Error 

1.  c=1.5 10 24 1.073 .006 

2.  c=1.5 5 24 1.185 .010 

3.  c=1.5 4 24 1.237 .010 

4.  c=1.5 3 23 1.378 .018 

5.  c=1.5 2 23 1.796 .031 

6.  c=∞ 3 0 1.347 .014 

7.  c=2 3 15 1.373 .014 

8.  c=1 3 40 1.387 .019 

9.  c=0.5 3 68 1.505 .027 

10.  c=0.25 3 88 1.570 .058 
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 These simulation results demonstrate that fixed-effects Cox regression with dummy 

variables is prone to serious inflation of parameter estimates when the number of intervals per 

individual is low and the percentage of censored cases is high.  Both conditions are likely to 

occur with ordered event data when the observation period is short.  Fortunately, the 

implementation of fixed-effects Cox regression via stratification on individuals is readily 

available and easily employed alternative.  Elsewhere (Allison 1996) I have shown that this 

method shows very little bias in simulations that are very similar to those used here.  
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