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Survival Analysis

Paul D. Allison

Survival analysis is a collection of statistical methods that are used to describe, explain, or predict the
occurrence and timing of events. The name survival analysis stems from the fact that these methods
were originally developed by biostatisticians to analyze the occurrence of deaths. However, these same
methods are perfectly appropriate for a vast array of social phenomena including births, marriages,
divorces, job terminations, promotions, arrests, migrations, and revolutions. Other names for sur-
vival analysis include event history analysis, failure time analysis, hazard analysis, transition analysis,
and duration analysis. Although some methods of survival analysis are purely descriptive (e.g.,
Kaplan-Meier estimation of survival functions), most applications involve estimation of regression
models, which come in a wide variety of forms. These models are typically very similar to linear or
logistic regression models, except that the dependent variable is a measure of the timing or rate of
event occurrence. A key feature of all methods of survival analysis is the ability to handle right censor-
ing, a phenomenon that is almost always present in longitudinal data. Right censoring occurs when
some individuals do not experience any events, implying that an event time cannot be measured.
Introductory treatments of survival analysis for social scientists can be found in Teachman (1983),
Allison (1984, 1995), Tuma and Hannan (1984), Kiefer (1988), Blossfeld and Rohwer (2001), and
Box-Steffensmeier and Jones (2004). For a biostatistical point of view, see Collett (2003), Hosmer and
Lemeshow (2003), Kleinbaum and Klein (2005), or Klein and Moeschberger (2003). Specific desider-
ata for applied studies that use survival analysis are presented in Table 31.1 and later explained in
detail. 

1. Definition of the Event

The first step in any application of survival analysis is to define, operationally, the event that is to be
modeled. Ideally, an event is a qualitative change that occurs at some specific, observed point in time.
Classic examples include a death, a marriage, or a promotion. In such cases, where there is little ambi-
guity, there may be no need to explicitly define the event. Other applications may not be so clear cut,
however. Some changes (e.g., menopause) take a while to “occur,” so it is necessary to make decisions
about criteria for determining the timing of the event. It is also possible to define events with respect
to quantitative variables, especially if they undergo sharp, sudden changes. For instance, a “stock 
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market crash” could be said to occur if a particular market index falls more than 30% during a single
week. Clearly, this definition involves some arbitrary choices that must be carefully considered and
justified. A person could be said to “fall into poverty” if his income falls below some specified thresh-
old. But this demands a rationale for choosing that threshold. 

Another decision that must be made is whether to treat all events the same or to distinguish 
different types of events. If the event is an arrest, for example, one could either treat all arrests the 
same or distinguish between arrests for misdemeanors and arrests for felonies. All deaths could 
be treated alike, or one could distinguish between different kinds of deaths according to reported
causes. Of course, such distinctions are only possible if data are available to differentiate the event
types. Why do it? Usually, it is done because there are reasons to believe that predictor variables have
different effects on different event types. In such cases, the prevailing strategy is to estimate competing
risks models (see Desideratum 9). The downside of distinguishing different event types is that fewer
events are available to estimate each set of parameters, which might substantially reduce statistical
power. 

Lastly, when events are repeatable for each individual, one must decide whether to focus on a single
(usually the first) event for each individual, or to use a method that incorporates all the repeated
events. If the average number of events per individual is small, say, less than two, it is usually better to
restrict attention to the first event. 

Table 31.1 Desiderata for Survival Analysis

Desideratum Manuscript

Section(s)*

1. The event is defined in a clear and unambiguous way. I

2. The observation period is specified with careful consideration of origin time and possible late entry. M

3. Censoring is discussed, with indications of amount, type and reasons for censoring. M

4. An appropriate choice is made between a discrete versus a continuous time method. M

5. An appropriate choice is made between a parametric versus a semi-parametric method. M

6. Choice of covariates is discussed and justified. Possible omitted covariates are considered. M, D

7. Any time-varying covariates are appropriately defined, and a method for handling them is chosen. M

8. If there are multiple events per individual, an appropriate method is chosen to handle the possible M

dependence among those events.

9. If there are competing risks, an appropriate method is chosen and appropriate tests are reported. M

10. Sampling method and sample size are explained and justified. M

11. The treatment of missing data is addressed. M, R

12. The name and version of the software package is reported. M,R

13. Summary statistics of measured variables are presented; information on how to gain access to the R

data is provided.

14. Graphs of the survivor function(s) are presented. R

15. The proportional hazards (or equivalent) assumption is evaluated. R

16. For competing models, comparisons are made using statistical tests (for nested models) or R

information criteria (for non-nested models). 

17. Coefficients (or hazard ratios) are reported, together with standard errors, confidence intervals and R

p-values.

18. Conditional survivor and/or hazard functions may be presented. R

19. Potential methodological limitations are discussed. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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2. Observation Period

Survival analysis requires that each individual be observed over some defined interval of time; if events
occurred during that interval, their times are recorded. If events are not repeatable, observation is
often terminated at the occurrence of an event. Decisions about the starting and stopping times for the
observation period should be reported and justified. 

Most methods of survival analysis (e.g., Cox regression) require that the event time be measured
with respect to some origin time. The choice of origin time is substantively important because it
implies that the risk of the event varies as a function of time since that origin. In many cases, the choice
of origin is obvious. If the event is a divorce, the natural origin time is the date of the marriage. In other
cases, the choice is not so clear cut. If the event is a retirement, do you model age at retirement or time
in the labor force? 

Ideally, the origin time is the same as the time at which observation begins, and most software pro-
grams for survival analysis presume that this is the case. Frequently, however, observation does not
begin until some time after the origin time. For example, although we may use date of marriage as the
origin time in a study of divorce, couples may not be recruited into the study until years later. This is
called late entry or left truncation. Because individuals are not at risk of an observed event until obser-
vation begins, special methods are necessary to take this into account. For more details, see Allison
(1995, pp. 161–165)

3. Censoring

Censoring is endemic to survival analysis data, and any report of a survival analysis should discuss the
types, causes, and treatment of censoring. By far the most common type of censoring is right censoring,
which occurs when observation is terminated before an individual experiences an event. For example,
in a study of divorce, couples that do not divorce during the observation period are right censored. All
survival analysis software is designed to handle right censoring, and it is essential to include the right
censored observations in the analysis. 

Standard methods for dealing with right censoring presume that such censoring is non-informative.
Roughly speaking, that means that the fact that an individual is censored at particular point in time
does not tell us anything about that individual’s risk of the event. That assumption is necessarily satis-
fied if the censoring time (or potential censoring time) is the same for everyone in the sample.
However, the censoring could be informative if it occurs at varying times because individuals drop out
of the study, which could lead to biased estimates of the parameters. Unfortunately, there is no test for
the non-informative assumption and little that can be done to correct for bias due to violation of this
assumption. But the lesson is that survival studies should be designed and executed so as to minimize
censoring due to drop outs. In any case, the proportion of censoring cases due to drop outs should be
reported. 

A slightly less common type of censoring is interval censoring, which means that an individual is
known to have an event between two points in time, but the exact time is unknown. For example, if a
person reports being unmarried at wave 1 of a panel study but married at wave 2, then the marriage
time is interval censored. If the censoring times are regularly spaced, interval censoring can often be
handled by discrete-time methods (see the next section). However, most survival analysis software
cannot handle irregular patterns of interval censoring. 

The least common type of censoring is left censoring, which happens when an event is known to have
occurred before some particular time, but the exact time is unknown. For example, in a study of first
marriage, if a person is known only to have married before age 20, that person’s marriage age is left
censored. Note that the term left censoring is often used with a quite different meaning in the social
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science literature. In this alternative meaning, left censoring is said to occur when we begin observing
an individual at some arbitrary point in time, but we do not know the origin time (i.e., how long it has
been since the individual has been at risk of the event). 

4. Discrete-Time vs. Continuous-Time Methods

If you know the exact times at which events occur, it is appropriate to use methods that treat time as
continuous. If, on the other hand, you know only the month or the year of the event, you might be bet-
ter off using discrete-time methods. One of the best indications of the need for discrete-time methods
is the presence of large numbers of ties. A tie is said to occur if two individuals experience an event at
the same recorded time. Occasionally, time is truly discrete in the sense that events can only occur at
certain discrete points in time. For example, in most universities, faculty can only be promoted at the
end of an academic year. 

Most survival analysis software is designed for continuous-time data. If you want to go the discrete-
time route, you must choose between a logit model and a complementary log-log model. Logit is more
appropriate for event times that are truly discrete, while complementary log-log is more appropriate
for events that can happen at any time but are only observed to occur in discrete intervals. In practice,
the choice is usually not consequential. 

Having chosen a model, you must then choose an estimation method. Some Cox regression programs
(e.g., SAS, Stata, S-Plus) have options for estimating either of the two models using partial likelihood
estimation. But partial likelihood can be very computationally intensive for large samples with lots of
ties. The alternative is to do maximum likelihood using conventional binary regression software. The
trick is to break up each individual’s event history into a set of distinct records, one for each unit of time
in which the individual is observed, with a dependent variable coded 1 if an event occurred in that time
unit, otherwise 0. One can then estimate the logit model using standard logistic regression software
(Allison 1982, 1995). Many packages also have options for estimating the complementary log-log model. 

5. Parametric vs. Semi-parametric Methods

By far, the most popular method for regression analysis of survival data is Cox regression, which com-
bines the proportional hazards model with the partial likelihood method of estimation. Cox regres-
sion is sometimes described as semi-parametric because, although it is based on a parametric
regression model, it does not make specific assumptions about the probability distribution of event
times. By contrast, parametric regression models assume particular families of probability distribu-
tions, such as exponential, Weibull, Gompertz, lognormal, log-logistic, or gamma. 

Although Cox regression is probably the better default method, there are two goals that are easily
accomplished with parametric methods but difficult or impossible with Cox regression. First, para-
metric methods are much better at handling left censoring or interval censoring (especially if the inter-
vals differ across individuals). Second, it is easy to generate predicted times to events with parametric
methods, but awkward (and sometimes impossible) to do so with Cox regression. Sometimes people
choose parametric methods because they worry that their data do not satisfy the proportional hazards
assumption (see Desideratum 15). However, parametric models typically make assumptions that are
at least as restrictive as the proportional hazards assumption. 

6. Covariates

Issues regarding covariates (also known as predictor variables, independent variables, regressors) are
mostly the same in survival analysis as in linear regression and logistic regression (with the important



Survival Analysis • 417

exception described in Desideratum 7). Although it is desirable to provide a rationale for the inclusion
of each covariate in the regression model, it is not essential. The consequences of including a variable
that actually has no effect are minimal. The real danger, as with any regression analysis of observa-
tional data, comes from omitting variables that really have an effect on the outcome. This can lead to
severe bias, especially if the omitted variable is moderately to strongly correlated with included vari-
ables. So any report of a survival regression should discuss the possibility of important variables that
have not been included. 

As with other kinds of regression, it is important to consider whether the covariates have nonlinear
effects on the outcome and whether there are interactions among the covariates in their effects on the
outcome. Strategies for testing and including such nonlinearities and interactions are basically the
same as in linear regression, except that there are some special graphical diagnostics available for non-
linearities in Cox regression (Therneau & Grambsch, 2001). Multicollinearity is also a potential prob-
lem. Although survival analysis programs typically don’t provide collinearity diagnostics, one can
simply do a preliminary check with a linear regression program, while specifying the event time as the
dependent variable. Because multicollinearity is all about linear relations among the covariates, it is
not necessary to evaluate it within the context of a survival analysis. 

7. Time-Dependent Covariates

One major difference between survival regression and conventional linear regression is the possibility
of time-dependent (time-varying) covariates. These are predictor variables whose values may change
over the course of observation. For example, suppose that over a five-year period, information is
recorded on any changes in marital status. Then, marital status (updated on a daily basis) could be
used as a time-varying predictor of some other event, such as an arrest. 

Not all survival analysis methods and/or software can handle time-dependent covariates. For exam-
ple, most programs for parametric survival models do not allow for time-dependent covariates
(although that feature is available in recent releases of Stata). On the other hand, such variables are usu-
ally easy to incorporate into discrete-time methods based on logistic (or complementary log-log) regres-
sion. That is because each discrete time point is treated as a separate observation, so that any
time-dependent covariates can be updated for each observation. 

Cox regression is also well known for its ability to handle time-dependent covariates. However,
there are two quite different approaches for implementing this capability in software packages. The
“episode splitting” method requires that the data be configured so that there is a separate record for
each interval of time during which all the covariates remain constant. The “programming statements”
method expects one record per individual, with the time-varying covariates appearing as separate
variables for each time at which the variables are measured. The time-dependent covariates are then
defined in programming statements prior to model specification. Properly implemented, these two
methods will give identical results. 

One potential issue with time-dependent covariates is that the frequency with which they are 
measured may not correspond to the precision with which event times are measured. For example, 
we may know the exact day on which person died of a heart attack. Ideally, a time-dependent 
covariate, like smoking status, would also be measured on a daily basis. Instead, we may only 
have annual reports. Some form of imputation is necessary in such cases. The simplest and most 
common form of imputation is “last value carried forward,” although other methods should be 
considered. 

One should also keep in mind that there may be several plausible ways of representing a time-
dependent covariate. For example, smoking status could be coded as “person smoked on this day,”
“number of days out of the last 30 in which the person smoked,” or “number of years of smoking prior
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to the current day,” and so forth. Decisions among the alternatives should be carefully considered, and
may be based on empirical performance. 

8. Repeated Events

If the data contain information on more than one event for each individual, special methods are
needed to take advantage of this additional information and to deal with the problems that may arise.
If repeated events are observed for an individual, the standard strategy is to reset the clock to 0 each
time an event occurs and treat the intervals between events as distinct observations. Thus, if a person
is observed to have three arrests over a five-year interval, four observations would be created. The last
observation would be a right-censored interval, extending from the third arrest until the end of the
observation period. 

Repeated events provide more statistical power, and also make it possible to control or adjust for
unobservable variables that are constant over time. However, whenever there are multiple observa-
tions per individual, there is also likely to be statistical dependence among those observations. Unless
some correction is made for this dependence, standard errors and p-values will be too low. There are
four widely available methods for repeated events that provide appropriate corrections for depend-
ence. 

1. Robust standard errors (also known as Huber-White or sandwich estimates) yield accurate
standard errors and p-values, but leave coefficient estimates unchanged. 

2. The method of generalized estimating equations (GEE) also gives corrected standard errors
and p-values but, in addition, produces more efficient coefficient estimates. 

3. Random effects (mixed) models provide the same benefits as GEE, but also correct the coeffi-
cients for “heterogeneity shrinkage.” This is the tendency of coefficient estimates to be atten-
uated toward zero because of unobserved heterogeneity. 

4. Fixed effects methods also correct for dependence and heterogeneity shrinkage. In addition,
they actually control for all stable characteristics of the individual.

For more details, see Allison (1995). 
Some of these methods may not be available for some survival regression models or software. For

example, Stata will estimate random effects models for Cox regression but SAS will not. Also, note that
while fixed effects methods seem to offer the most advantages, they also come with important disad-
vantages. First, one cannot estimate the effects of variables that are constant over time, like sex or race,
although such variables are implicitly controlled. Second, standard errors may be substantially larger
because the estimates are based only on variation within individuals. 

9. Competing Risks

If a decision has been made to distinguish different kinds of events, an appropriate method must be
chosen to handle the different event types. In the competing risks approach, a separate model is spec-
ified for the timing of each type of event. These could be any of the models already discussed. If one has
continuous time data, each of these models can be estimated separately using standard software for
single kinds of events. The trick is that events other than the focal event type are treated as though the
individual is censored at that point in time. For example, suppose you want to estimate Cox regression
models for job terminations, while distinguishing between quittings and firings. You would estimate
one model for quittings, treating firings as censored observations. Then you would estimate a model
for firings, treating the quittings as censored observations. 
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Test statistics are available for testing whether coefficients for a particular variable are the same
across event types (Allison, 1995). There are also statistics for testing whether all variables have the
same coefficients across event types. These statistics can be helpful in determining whether it is really
necessary to distinguish the event types. As noted earlier, one disadvantage of distinguishing event
types is that the number of events may be small for each event type, leading to a loss of statistical power. 

If event times are discrete, maximum likelihood estimation requires that models for competing
risks be estimated simultaneously rather than separately. An attractive model that can be estimated
with conventional software is the multinomial logit model, also known as the generalized logit 
model. Unfortunately, there is no comparable multinomial model for the complementary log-log
specification. 

In some situations with multiple event types, a “conditional” approach may make more sense than
competing risks (Allison, 1984). In this approach, the first step is to estimate a model for event timing
without distinguishing the different event types. Then, restricting the sample to those individuals who
experienced events, the second step is to estimate a binary or multinomial logit model predicting the
type of event. This approach is attractive when the event types represent alternative means for achiev-
ing a single goal. For example, the event might be the purchase of a computer, and computers are dis-
tinguished by whether the operating system is Windows, Linux, or Macintosh. 

10. Sampling Issues

There are three questions about sampling that should be addressed: What kind of sample is used? Are
the analysis methods appropriate for the sampling method? Is the sample big enough? With regard to
the first question, the ideal is a well-designed and executed probability sample. Nevertheless, many
survival analyses are carried out on a complete population (e.g., the 50 states in the U.S.) or on con-
venience samples (e.g., students who volunteered to participate). Although others may disagree, I take
the position that survival analysis—including the calculation of confidence intervals and hypothesis
tests—is perfectly appropriate for analyzing a complete population. The statistical models that under-
lie such analyses are based on a hypothesis of inherent randomness in the phenomenon itself, and they
do not require any randomization in the study design to justify the application of inferential tech-
niques. The same argument could be made about convenience samples, although any conclusions
might only apply to the sample at hand. 

Regarding analysis, most survival analysis packages presume, by default, that the sample is a simple
random sample. For many samples, however, there will be a need to adjust for clustering, stratifica-
tion, and/or weighting. Although some packages are explicitly designed for survival analysis with
complex samples (e.g., SUDAAN), conventional software can often do the job. Clustering can be
accommodated by the methods described above for dependence with repeated events (although it
might be difficult to adjust for both repeated events and cluster sampling). Stratification can usually
be handled by including the stratification variables as covariates. Finally, most packages allow for dif-
ferential weighting of observations. However, even if the sampling design involved disproportionate
weights, it may not be necessary or desirable to incorporate those weights into the analysis (Winship
& Radbill, 1994). This is most likely to be the case if the goal is to estimate an underlying causal model
rather than some population regression function. 

With regard to sample size, the most important thing to keep in mind is that censored observations
contribute much less information than uncensored observations (events). Conventional wisdom has
it that there should be at least five (some say 10) events for each parameter in the model, in order for
maximum likelihood (or partial likelihood) estimates to have reasonably good properties. As for
power considerations, there are numerous software packages and applets that will calculate power 
and sample size for a single dichotomous covariate. Vaeth and Skovlund (2004) showed how these
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programs can be easily extended to handle more complex regression problems. Some packages (e.g.,
Stata, PASS) have routines that will do power calculations for Cox regression analyses. 

11. Missing Data

Reports of survival analysis should say something about the extent of missing data and the methods
used to handle it. Of course, the default in virtually all survival packages is to do listwise deletion (com-
plete case analysis). And if the proportion of cases lost to missing data is small (say, 10% or less), list-
wise deletion is probably the best choice. Other conventional methods, like (single) imputation or
dummy variable adjustment, typically lead to biased parameter estimates, biased standard error esti-
mates, or both.

For larger fractions of missing data, much better results can be obtained with multiple imputation
(Allison, 2001). In this method, imputed values are random draws from the predictive distribution of
the missing values given the observed values. Several data sets are created (typically five or more), each
with slightly different imputed values. The analysis is performed on each data set using standard soft-
ware. Then, using a few simple rules, the results are combined into a single set of parameter estimates,
standard errors, and test statistics. Multiple imputation uses all the data to produce parameter esti-
mates that are approximately unbiased and efficient. In calculating standard errors and test statistics,
multiple imputation, unlike conventional imputation, also incorporates the inherent uncertainty
about the values of the missing observations. 

Although there are many stand-alone packages for doing multiple imputation, the process is much
easier if the imputation is done within the same package used to do the analysis. Software for doing this
is available for Stata, SAS, and S-Plus. These also happen to be great packages for survival analysis.
Nearly all standard multiple imputation routines are based on the assumption that data are missing at
random. This means, roughly, that the probability of missingness may depend on variables that are
observed but does not depend on the values of the variables that are missing. Multiple imputation can
be done under other assumptions, but the implementation is tricky and must be carefully tailored to
each application. 

For survival analysis, multiple imputation should only be done for missing values on the predictor
variables. Cases that have missing values on the dependent variable should simply be deleted because
conventional imputation software is not suited for missing data on event timing and censoring. In set-
ting up the imputation model, however, it is generally a good idea to include both the (logged) event
time and the censoring indicator variable so that the relations between these variables and the predic-
tors are adequately reproduced for the imputed variables. 

12. Software

Nearly all the major statistical packages have programs for doing Cox regression and Kaplan-
Meier estimation of survivor functions. And all can do discrete-time maximum likelihood estimation
via logistic regression. Not all can estimate parametric regression models, however, and those that 
do may vary widely in their capabilities. For example, SAS can estimate parametric models with 
left and interval censoring but cannot handle time-dependent covariates. With Stata, it is just 
the reverse. Cox regression programs may also vary widely in their features and capabilities. SPSS, 
for instance, can handle time-dependent covariates, but its programming functions for defining 
those covariates are rather limited compared with SAS. As of this writing, I would rate SAS, Stata, 
and S-Plus as the three best packages for doing survival analysis. Although they vary to some degree 
in their capabilities, all three have a wide array of programs, functions and options for survival 
analysis. 
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Some survival regression programs allow for the incorporation of unobserved heterogeneity 
into the model. In my judgment, this is a useful feature if individuals have repeated events because 
it allows for dependence among the multiple observations. However, I would caution against using
this option in the more typical case of non-repeated events. In that situation, unobserved heterogene-
ity models are only weakly identified, and results may depend too critically on the particular 
specification. 

13. Summary Statistics and Data Accessibility

As with other regression methods, it is good practice to report summary statistics for the predictor vari-
ables, usually their means and standard deviations. There is a potential complication, however, with
time-dependent covariates. If you are using a method that requires multiple records per individual, like
discrete-time maximum likelihood or Cox regression using the episode splitting method, you can sim-
ply calculate the means and standard deviations over the multiple records. On the other hand, if you are
doing Cox regression with programming statements, the time-dependent covariates are created during
the estimation process and are not available for calculating descriptive statistics. In that case, I would
simply report such statistics for the baseline measurements of the variables. 

14. Survivor and Hazard Functions

Although not essential, it is commonplace and informative to present a graph of the survivor function,
usually estimated via the Kaplan-Meier method. Such graphs are helpful in giving the reader a sense of
the rates of event occurrence and censoring, and how those change over time. In some fields, a cumu-
lative failure graph is preferred over a survivor graph. The two graphs give the same information, how-
ever, because the failure probability is just 1 minus the survivor probability. 

Even more informative than the survivor function is a graph of the estimated hazard function
because it more directly quantifies the rate of event occurrence and how that rate changes over time.
But the problem with the hazard function is that non-parametric estimates based on Kaplan-Meier
require smoothing, and different smoothing algorithms can yield markedly different graphs.
Therefore, if hazard graphs are to be presented, I recommend using the actuarial (life table) method.
Although this requires an arbitrary choice of time intervals, results tend to be more stable than those
produced by smoothing methods. 

15. Proportional Hazards Assumption

Cox regression is based on the proportional hazards model. The proportional hazards assumption
says, in essence, that the dependence of the hazard on time has the same basic shape for everyone, even
as the magnitude of the hazard varies across individuals as a function of their predictor values. A cru-
cial implication of this assumption is that predictor variables have the same effects at all points in time,
that is, there are no interactions with time.

Although many researchers get very concerned about whether their data satisfy this assumption, I
believe that those concerns are often unwarranted. If the assumption is violated for a particular pre-
dictor variable, it simply means that the coefficient for this variable represents a kind of “average”
effect over the period of observation. For many applications, this may be sufficient. In some cases,
however, the violations may be so severe that they lead to biases in the effects of other variables. In
other cases, there may be direct interest in how the effect of a variable on the hazard changes over time. 

A quick check of the proportional hazards assumption can be obtained by computing correlations
between time (or some function of time) and “Schoenfeld residuals” which are calculated separately
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for each predictor. Non-zero correlations are evidence against the proportionality assumption.
Several Cox regression software packages have an option to compute these statistics. 

A more definitive check is to directly include interactions between predictors and time, which are
specified as time-dependent covariates. Significant interactions indicate violation of the assumption.
However, in this case the method of diagnosis is also the cure. By including the interactions, the Cox
model is extended to allow for non-proportional hazards. 

Another way to allow for non-proportional hazards is the method of stratification, which allows for
different hazard functions for different categories of a categorical variable (like sex or marital status).
This is a good method for controlling for a variable without imposing the proportional hazards
assumption. But it does not yield any estimates of the effect of that variable, nor does it give a test of
the proportional hazards assumption. 

16. Model Comparisons

Researchers typically want to know how well their statistical models fit the data. Unfortunately, 
global or absolute measures of fit are generally not available for survival analysis models. Usually, 
the best we can do is to compare the relative fit of different models. If the models are nested (i.e., 
one model can be obtained from another by imposing restrictions on the parameters), likelihood 
ratio tests can be calculated by taking twice the positive difference in the log-likelihoods for the 
two models. Such tests can tell you whether the more complicated model is significantly “better” than
the simpler model. These tests are especially useful when estimating parametric models because 
some of the better-known parametric distributions are nested within the generalized gamma 
distribution. 

If two models are not nested, informal comparisons can be accomplished with Akaike’s informa-
tion criterion (AIC) or Schwarz’s Bayesian Information Criterion (SBC or BIC). These statistics
“penalize” the log-likelihood for the number of covariates in the model, enabling one to validly com-
pare models with different sets of covariates. Many software packages report one or both of these sta-
tistics, both for parametric models and for Cox regression models. Preference is given to models with
lower values of these statistics, although no p-values can be calculated. 

17. Reports of Coefficients and Associated Statistics

Results for Cox regression may be reported as either beta (β ) coefficients or hazard ratios (a few
authors report both). Beta coefficients are more easily interpreted with respect to sign (positive, 
negative, or zero). However, their numerical magnitudes are difficult to interpret. Hazard ratios
(which are always positive) may confuse some readers because a value of 1 means no effect. But 
the numerical magnitude has a more straightforward meaning: if HR denotes the hazard ratio,
100(HR–1)% is the percentage change in the hazard for a one-unit increase in the predictor. In this
respect, they behave just like odds ratios in logistic regression. In the biomedical sciences, there is a
clear preference for reporting hazard ratios, and this preference seems to be spreading to other fields as
well. 

If you report β coefficients, you should also report either standard errors or 95% confidence inter-
vals. Because hazard ratios have asymmetric distributions, standard errors are not generally reported.
Instead, the convention is to report 95% confidence intervals. It is optional but desirable to report 
p-values for testing the null hypothesis of no effect for each coefficient. Also desirable is a chi-square
test for the null hypothesis that all coefficients are zero. Many authors ritualistically report the log-
likelihood for each model, but this is usually not informative (unless it can be used to compare nested
models). 
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18. Conditional Survivor or Hazard Functions

In Desideratum 14, I discussed the use of survivor or hazard functions as a descriptive device. After
estimating a regression model, it is often desirable to illustrate its implications by displaying a model-
based survivor function or hazard function. For example, if interest centers on the effect of some treat-
ment, one could plot survivor functions for the treated vs. control groups in such a way that the plots
embody any model assumptions (e.g., proportional hazards) and also control for any covariates in the
model. If the variable of interest is quantitative, one can produce plots for several selected values of
that variable, again while adjusting for any covariates.

19. Potential Methodological Limitations

Any application of statistical methods to real-world data is vulnerable to errors of one sort or another.
Researchers need to be acutely aware of potential problems with their data and with the analytic meth-
ods they apply to those data. They also need to be upfront with their readers regarding any problems
that they suspect could compromise their conclusions. 

As noted in Desideratum 6, the most serious potential problem with survival analysis regression
methods is the same as that for any other regression method applied to observational (non-
experimental) data: the omission of variables (confounders) that affect the outcome and that are also
correlated with the included variables. The omission of confounders can produce biases so severe that
they lead to conclusions that are the exact opposite of the true state of affairs. 

A problem peculiar to survival analysis is informative censoring (see Desideratum 3). Once the data
are in hand, there is not much that can be done about this. But, if the number of randomly censored
cases is substantial, research reports should discuss their potential impact. A sensitivity analysis can
help to discern the potential direction of biases resulting from informative censoring. 

Another potential danger comes from fitting an incorrect model. Some of the comparative
statistics discussed in Desideratum 16 can be helpful in finding a good model. But it is also 

desirable to fit rather different models to the data and see if the results are consistent across 
models. For example, there is no good way to compare the fit of a Cox regression model with para-
metric gamma model. But it can be quite useful to fit both models to see if they lead to the same con-
clusions. If they do, well and good. If not, then your confidence in the results should be appropriately
reduced. 
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