Measurement error in independent variables produces biased estimates of the coeffi-
cients in linear models. These biases can be reduced by obtaining repeated measurements
of the variables and then estimating structural equation models with multiple indicators
of latent variables. Remeasurement is usually costly, however, raising the question of
whether the same benefits can be obtained by remeasuring only a fraction of the sample.
Although this strategy has been tried previously, there were no appropriate statistical
methods for combining the data in the remeasured subsample and the single measure-
ment subsample. We demonstrate here how recently developed methods for incomplete
data provide an attractive solution to this estimation problem. The methodology is
illustrated by a reanalysis of Bielby, Hauser, and Featherman’s (1977a) study of the
OCG-II data.

Reducing Bias in Estimates of Linear Models
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t is well known that random error in the measurement of inde-

pendent variables in a linear regression model leads to bias in
least-squares estimates of the coefficients (e.g., Intriligator 1978, p. 190).
The bias may be substantial and may be either positive or negative,
depending in complex ways on the true coefficients, the degree of
measurement error in each variable, and the pattern of intercorrel-
ations among the independent variables.

In the last fifteen years, there have been major advances in the
development of methods for correcting such biases (Joreskog and
Sorbom 1979; Bentler and Weeks 1980). These methods typically
require two or more indicators for each variable that is measured with
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error. The indicators are postulated to be linear functions of a smaller
set of latent variables that are error-free, plus random error compo-
nents. Other linear equations may describe structural relationships
among the latent variables and other variables measured without error.
The entire system of equations is usually estimated by maximum
likelihood under the assumption of multivariate normality, although
estimation under less restrictive assumptions is now possible (Shapiro
and Browne 1987; Bentler and Berkane 1985; Bentler 1989, ch. 10).

While this approach can produce major improvements in the esti-
mation of linear models, the need for multiple indicators can substan-
tially increase the cost of data collection. Ideally, the multiple indica-
tors for a single latent variable should be close replications of one
another. To avoid mutual contamination, the replicate measurements
are best made at distinct points in time. But this usually means costly
and time-consuming reinterviews. Under a fixed budget, the increased
cost per case may require a large reduction in sample size. Hence the
reduction in bias may be purchased at the cost of greatly increased
sampling error.

In this article we describe a method that may improve the terms of
this trade-off. The basic idea is to take single measurements for a large
sample and repeated measurements for a smaller, random subsample.
The small subsample provides the necessary information to eliminate
the bias, while the large sample provides for adequate precision.

The idea is not novel. Bielby, Hauser, and Featherman (1977a) used
this approach to estimate a linear model for the attainment of occupa-
tional status by American males. For a sample of 25,223 nonblack
males, Bielby, Hauser, and Featherman (hereafter referred to as BHF)
had data on age, education, current occupation, first occupation,
father’s occupation, father’s education, and parents’ income. Repeated
measurements on these variables were obtained in reinterviews for a
random subsample of 578. Using the remeasurement data, they were
able to correct for bias due to measurement error in the coefficients of
their linear model.

As BHF recognized, however, their estimation method left much to
be desired. In a two-step procedure, they first obtained maximum
likelihood estimates of the measurement error variances, using the
subsample of 578. This step was unproblematic. In the second step,
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these estimates were used to correct the variances for the full sample
of 25,223. Ordinary least-squares (OLS) estimates of the coefficients
were then obtained from the corrected covariance matrix. These
estimates were presumably consistent, but their efficiency is un-
known and there is no known way to obtain consistent estimates of
the standard errors. Thus, although the idea of combining a small
remeasurement subsample with a larger sample is attractive, it must
be judged unsatisfactory until efficient estimation procedures are
available.

We show here how these statistical problems can be solved by
simultaneously estimating a model for both the large and small sub-
samples. This model incorporates both the equations for the depen-
dence of the observed variables on error-free latent variables and the
structural equations for the relationships among the error-free vari-
ables. Estimation is by maximum likelihood under the assumption of
multivariate normality, although less restrictive estimation procedures
may also be used. The estimates may be obtained by applying the
methods proposed by Allison (1987) and Muthén, Kaplan, and Hollis
(1987) for estimation of linear models with incomplete data. We shall
use this procedure to obtain efficient estimates for the BHF data using
the EQS 3.0 program (Bentler 1989). Allison (1987) used LISREL 6,
which required a rather convoluted procedure to incorporate data and
models with structured means. This is radically simplified in EQS 3.0,
which can directly model mean structures. Such simplified analyses
can also be done with LISREL 7 (Jéreskog and S6rbom 1988), using
the most recent version (7.17).!

THE BIELBY, HAUSER, AND FEATHERMAN STUDY

A detailed description of the data used by BHF can be found in their
(1977a, 1977b) articles. Here we give only the highlights. As part of
the U.S. Current Population Survey (CPS) in March 1973, household
interviews produced data on age, years of schooling, and current
occupation for more than 27,000 male members of the experienced
civilian labor force. These data were supplemented with a mail-out,
mail-back questionnaire distributed in the fall of that year. Additional
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TABLE 1: Variables in the BHF Study

Occasion
March 1973 Fall 1973
Household Fall 1973 Remeasurement

Variable Interview Questionnaire Interview
1. Father’s occupational status (FO) - X1 X3
2. Father’s educational attainment (FE) - %51 X
3. Parent’s income (PI) - X31 X35
4. Educational attainment (ED) X43 X41 X42
5. Occupational status of first job (01) - Xs51 Xsp
6. Current occupational status (OC) X63 - Xe2
7. Age (AGE) X73 - -
8. Age squared (AGE2) Xg3 - —

variables in this second questionnaire included first occupation, fa-
ther’s education, father’s occupation, and parents’ income when the
respondent was 16 years old. Finally, for a random subsample of about
1,000 respondents (600 nonblack and 400 black), a third interview was
conducted by telephone (or in person) about three weeks after the
return of the mail questionnaire. This final interview produced re-
peated measurements of the variables already described.

Table 1 contains a list of the variables, the occasions on which they
were obtained, and the symbols and acronyms used to refer to them in
this article. Note that each of the occupation reports was scaled using
the Duncan (1961) SEI scores to measure socioeconomic status. Educa-
tional attainment is coded in exact years of schooling completed, and
parents’ income is coded as the logarithm of price-adjusted dollars.
Age is expressed in years divided by ten, and a quadratic transforma-
tion, AGE2, is defined as (years — 40)?/10.

The analysis in BHF (1977a) was restricted to nonblacks, and we
shall maintain that restriction here. (For an examination of blacks, see
BHF [1977b].) Table 2 gives correlations, standard deviations, and
means for 24,645 males who were not remeasured and for 578 males
who were remeasured. The matrix for the remeasurement subsample
is exactly as it appears in BHF (1977a). BHF also reported correla-
tions, standard deviations, and means for the full sample of 25,223.
We have corrected these statistics to approximately what they would
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be if the 578 remeasured cases were excluded. As might be expected,
these corrections were very small, affecting only the third decimal
place.’

Assuming no measurement error, the model of interest was a fully
recursive system of linear equations in which education, first occupa-
tion, and current occupation were endogenous (dependent) variables,
and father’s education, father’s occupation, parental income, and age
were exogenous (predetermined) variables:

ED =, AGE + B, AGE2 + 3, FO + B, FE + 5 PI + ¢, (€))
O1 = B, AGE + B, AGE2 + B3 FO + 8, FE + B, PI + B,; ED + ¢, 2
OC = B,, AGE + B,; AGE2 + B, FO + ;5 FE + B¢ PI 3)

+ B, ED + B3 O1 + ¢,

The disturbance terms, €,, €,, and €, were assumed to be independent
of each other and of all the independent variables. All variables are
assumed to be measured as deviations from means, which eliminates
intercept terms from the equations.

Using the covariance matrix (not shown) for the entire sample of
25,223, OLS estimates were computed for the coefficients in equations
(1)-(3). These are presented in Column 1 of Table 3, together with their
estimated standard errors. These estimates, which are presumably
biased as a result of measurement error, will serve as a basis for
comparison with estimates that correct for measurement error. The
estimates reported in Table 3 differ slightly from those reported by
BHF because they constrained B, £, B,5, and s to be zero. This made
sense for By, B;s, and P,c because those coefficients were not signifi-
cantly different from zero at the .05 level. The justification for setting
B, equal to zero was that (a) a negative effect of parental income on
occupational status is implausible, and (b) the coefficient was not
significantly different from zero in a model for the subsample of 578
(to be discussed in the next section). As we see here, however, the
estimate for this coefficient is more than eight times its standard error.
Moreover, in later sections we will show that the negative effect
becomes even stronger when measurement error bias is corrected.
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For BHF, the first step in getting corrected estimates was to estimate
a measurement model for the subsample of 578 with repeated mea-
surements. They tried several different models, all special cases of the
confirmatory factor model (Joreskog 1969) that postulates a set of
“true scores” or latent variables underlying the observed variables.
Each set of replicate measurements is assumed to depend linearly on
a single latent variable plus random error components. The class of
models BHF considered can be expressed as

X, =M FO + ¢4
X =AM, FO + ¢,
X, =M, FE + ey
X2 =My FE + €5,
X3 = A3y PI + €5,
X3 =As, Pl + €5,
X4 = Ay ED + ¢4y 4)
X4 =My ED + €4,
X3 =My ED + €45
Xs; = As; O1 + €5,
X5, = hs; O1 + €5,
Xg2 = Mgz OC + €,
Xg3 = Ag3 OC + ¢,

where FO, FE, PI, ED, O1, and OC now refer to error-free latent
variables. AGE and its quadratic transform AGE2 are assumed to be
measured without error. Correlations among the latent variables are
not restricted in any way. The random error terms are assumed to be
independent of one another and of the true-score latent variables.

Metrics for the latent variables are established by constraining A, =
My = Ay; = Mgy = A, = Ay = 1.0. Normalization of this kind is necessary
because the metric of a latent variable is arbitrary; consequently the
slope coefficients are identified only relative to each other. Although
not necessary for identification, we also constrain all the other As equal
to 1.0. This is a plausible restriction because the observed indicators
of each latent variable were designed to have the same metric. In fact,
unconstrained estimates of these coefficients show only small depar-
tures from unity.

The measurement model was estimated using the computer pro-
gram LISREL 6, which does maximum likelihood estimation of
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TABLE 4: Error Variance and Reliability Estimates

Remeasurement Subsample Full Sample
Variable Error Variance  Reliability ~ Error Variance  Reliability
FO X1 87.76 .85 70.99 .84
X125 63.43 .89 75.87 .83
FE X1 1.25 .92 1.14 93
X2 .87 .95 97 .94
PI X31 .021 .88 .020 .88
X32 .007 95 .008 .94
ED X41 3.15 73 3.15 n
X42 45 95 .49 94
X43 .87 .89 .82 .90
01 Xs51 97.35 .84 80.11 .84
Xs2 85.57 .85 96.36 .82
oC X6 136.17 .78 148.39 74
Xg3 117.92 .81 98.94 .81

confirmatory factor models under the assumption of multivariate
normality. Estimates of the error variances and derived reliabilities of
the observed variables are given in Table 4. The estimation procedure
also produces a likelihood ratio chi-square test of the model against
the alternative model that imposes no restrictions on the variance/
covariance matrix. This test yielded a chi-square value of 60.1 with
57 degrees of freedom, indicating that the model fits the data reason-
ably well.

BHF used the error variance estimates to “correct” the variance/
covariance matrix for the full sample of 25,223. The correction con-
sisted simply of subtracting the estimated error variance from the
observed variance of the corresponding variable. The covariances —
which should not be affected by uncorrelated measurement errors —
were left unchanged. This corrected matrix was then used as though
it were an ordinary covariance matrix to generate pseudo-OLS esti-
mates. The estimates we report in column 2 of Table 3 differ slightly
from those given by BHF because BHF forced B, B9, B1s, and B, to
be zero for the reasons given above.

Comparing the corrected with the uncorrected estimates, BHF
concluded that biases resulting from measurement error are not as



476  SOCIOLOGICAL METHODS & RESEARCH

large as some others have previously suggested (Bowles 1972; Bowles
and Nelson 1974). The largest discrepancy they found was for B,
whose uncorrected estimate was 22% lower than the corrected esti-
mate. Because they forced B,, to equal zero, however, they failed to
observe that the uncorrected estimate for (3, is less than half as large
as the corrected estimate, a result that holds up with the improved
estimation methods discussed in the next two sections.

Because the error variance estimates produced by BHF were con-
sistent, it seems quite likely that the coefficient estimates produced by
their two-stage procedure are also consistent. However, the efficiency
of these estimates is not known. There is also no theory to indicate
how one might estimate standard errors, hence none are reported. In
the remaining sections we show how to remedy these statistical
deficiencies.

COMBINING THE STRUCTURAL AND MEASUREMENT MODELS

In this section we discuss how equations (1)-(4) may be combined
into a single model to be estimated by EQS 3.0. The structural
equations for the latent variables are specified as

N=PM+TE+T )

where n is a vector of endogenous variables, £ is a vector of exogenous
variables, and C is a vector of unobserved disturbances. & and T are
assumed to be uncorrelated. § and I' are matrices of coefficients. For
the BHF data, ) = (ED, OC1, OC)' and § = (FO, FE, PI, AGE, AGE2)".
Because this is a recursive model, f is assumed to be lower triangular
and var(C) is assumed to be diagonal.

We also have equations relating the latent variables to the observed
indicators:

y=Am+e
x=AE+d ©)

Here x and y are vectors of observed variables and € and 8 are vectors
representing random measurement error. We let y = (X41, X435 X435 Xs1
X525 X625 Xe3)' and X = (Xy5, X125 X315 X35 X315 X325 X33, xsa)'- Ay and A, are
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matrices of coefficients. Both € and & are assumed to be uncorrelated
with each other and with m, &, and C. We also assume that both var(e)
and var(9) are diagonal matrices. The lambda matrices are given by

~10000—
~100 10000
igg 01000
01000

A= 1010 A= 1 90100
010 00100

001 | 00010
-001 00001

To reflect the fact that age and its quadratic transform are assumed to
be measured without error, we fix var(d,) = var(§;) = 0.

When the data consist of a complete covariance matrix, estimation
of such models is a routine task for LISREL or EQS. The standard
method is maximum likelihood, under the assumption that the data
come from a multivariate normal distribution. Unfortunately, neither
of the correlation matrices given in Table 2 is complete, so standard
methods are not appropriate. The matrix for the large subsample is
highly incomplete, lacking any of the correlations pertaining to the
remeasurement interview. This, of course, will be typical of the
research designs we are advocating. More unusual is the fact that the
matrix for the small subsample lacks correlations and standard devi-
ations for AGE and AGE2. While these moments could have been
computed from the original data, they were not reported by BHF.
Nevertheless, the method we propose can accommodate such missing
moments.

To illustrate methods for complete data and to provide an additional
standard of comparison, we eliminated AGE and AGE2 from the
model and estimated it using only the moments for the small subsam-
ple. Although corrected for bias due to measurement error, these
estimates may suffer some additional bias due to the exclusion of AGE
and AGE2 from the three structural equations. Maximum likelihood
estimates of the coefficients in equations (1)-(3) are given in Column
3 of Table 3. With a few exceptions, the estimates are very similar to
those obtained by BHF with their two-stage procedure. The exceptions
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generally occur for those coefficients that had large standard errors in
both Columns 1 and 2, and are probably a result of sampling error. A
noteworthy exception is 3,5, which is very much smaller in Column 3
than in either Column 1 or Column 2.

The chi-square goodness-of-fit statistic for this model was 60.1
with 57 degrees of freedom, exactly what was reported earlier for the
measurement model alone. This is to be expected because equations
(1)-(3) impose no further restrictions on the covariance matrix.

ESTIMATION WITH INCOMPLETE DATA

As seen in the previous section, the type of research design we are
considering produces incomplete data as a matter of course. There will
usually be complete data for the remeasurement subsample (although
not for the example considered here), but the single-measurement
subsample will always lack data for all the remeasurements. In this
section we show how to combine the complete and incomplete data to
produce efficient estimates.

The method we will use was first proposed for confirmatory factor
models by Werts, Rock, and Grandy (1979) and later generalized by
Allison (1987) and Muthén, Kaplan, and Hollis (1987) to all models
of the sort described in the previous section. It is a general method for
maximum likelihood estimation of linear models with incomplete
data, under the assumptions that the data are missing at random (Rubin
1976) and come from a multivariate normal distribution. Unlike more
conventional methods for incomplete data, this method produces
direct estimates of the parameters of overidentified models as well as
standard errors of those estimates. The missing-at-random assump-
tion is necessarily satisfied when the remeasurement sample is ran-
domly chosen from the larger sample. Although the assumption of
multivariate normality may be problematic, the method we will de-
scribe can be easily adapted for estimation methods with less restric-
tive assumptions.

The method makes use of the fact that later versions of LISREL (4
through 7) and EQS 3.0 can simultaneously estimate the same model
for two or more independent samples. Individual parameters can be
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either constrained equal or allowed to vary across samples. For incom-
plete data problems, the basic idea is to divide the sample into subsam-
ples, each having a distinct subset of variables present and missing.
The model is then fit simultaneously to all subsamples, constraining
corresponding parameters to be equal across subsamples.

That simple idea has two complications. First, to correctly maxi-
mize the likelihood function it is necessary to incorporate sample
means into the analysis and to constrain the corresponding population
means to be equal across samples. Some previous attempts to model
incomplete data structures failed to recognize the need to structure the
means (Hauser and Sewell 1986). In LISRELSG, the analysis of struc-
tured means required an awkward reformulation of the model. Cur-
rent versions of both programs allow for direct specification of mean
structures. The second complication is specific to LISREL in all
versions through 7. Because LISREL is designed to estimate the same
model with the same number of variables in each sample, some special
tricks are needed both to read in the data and specify the model (see
Allison 1987). These techniques are unnecessary in EQS 3.0.

We now apply the method to the published data of BHF to get
efficient estimates of the status attainment model of equations (1)-(3).
For each of the two subsamples, the data were read into EQS 3.0 as
they appear in Table 2. Zeros were substituted for missing correla-
tions and ones were substituted for missing standard deviations, but
any other numbers would have done as well. The only reason for in-
cluding missing rows and columns is to keep the variable numbering
consistent across the two samples.

For the remeasurement subsample, the model was specified to
correspond to equations (1)-(4), with all the As fixed at 1.0. To incor-
porate the observed means, an intercept term was included in each of
the measurement equations. In addition, AGE and AGE2 were speci-
fied as latent variables without any indicators. (A complete program
listing is given in the Appendix.)

For the single-measurement subsample, the equations for the latent
variables were exactly the same as in the remeasurement sample.
Measurement equations were specified only for those variables that
were actually observed, including AGE and AGE2. For these latter
two variables, no error term was included in the equation to reflect
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that these variables are assumed to be measured without error. Again,
all A parameters were fixed at 1.0. All parameters that were common
to the two samples were constrained to be equal across samples.

Maximum likelihood estimates of the coefficients in equations
(1)-(3) are reported in Column 4 of Table 3, together with their
standard error estimates. All the estimates are reasonably close to those
in Column 2, which were produced by the ad hoc procedure of BHF.
In addition, the standard errors are considerably smaller than those in
Column 3, which are based solely on the remeasurement subsample.
They tend to be somewhat larger, however, than the standard errors in
Column 1, which came from the uncorrected least-squares estimates.

For some of the coefficients in Table 3, the new estimates might
lead to different conclusions. For example, B, is not significantly
different from zero in Columns 1 and 3, but is significant (at the .01
level) in Column 4. Similarly, B, is not significant in Column 1 but is
in Column 4. We have previously mentioned the inconsistent findings
in Columns 1-3 for B,,, the effect of parental income on the status of
the first occupation; in Column 4, the efficient estimate for this
coefficient is strongly negative and highly significant (¢ = 11.38).
Clearly this unexpected result cannot be easily dismissed, but the
interpretation is problematic. Although the estimates in Table 4 indi-
cate that this variable is reliably measured, other research casts doubt
on its validity. Featherman (1980) reports that an identical measure of
parental income at age 16 had a correlation of only .28 with total
personal income of the respondent’s father in the census nearest the
son’s 16th birthday.

The reported value of the chi-square goodness-of-fit statistic for
this model was 137.9 with 84 degrees of freedom, for a p value less
than .001. (Unlike LISREL, EQS reports the correct degrees of free-
dom for incomplete data applications because it only operates on
sample moments that are actually observed. With LISREL it is neces-
sary to read in dummy values for missing variances and covariances,
which increases the reported degrees of freedom [Allison 1987].)
While this suggests rejection of the model, one must recall that the
incomplete subsample has over 24,000 cases. Hence any restrictions
on the covariance matrix are likely to be rejected at conventional
levels. Moreover, the Bentler-Bonnett normed fit index is .998, indi-
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cating that the fitted moments correspond quite closely to the observed
moments.

There is a more compelling reason for not rejecting the model on
the basis of this test. The chi-square statistic can be decomposed into
two parts: (a) a part measuring the fit of the model within the two
subsamples and (b) a part measuring departures from the constraints
imposed across the two subsamples. For this application, part (a) ap-
plies only to the smaller subsample because the model is under-
identified for the larger subsample. We have already reported a chi-
square of 60.1 with 57 degrees of freedom for fitting the measurement
model to the smaller subsample, and this corresponds to part (a). Part
(b) may be found by subtracting part (a) from the values for the com-
bined model.’ Thus the null hypothesis that all the cross-subsample
constraints are true yields a chi-square of 77.8 with 27 degrees of
freedom. Again the p value is less than .001. This test may be inter-
preted as a test of the null hypothesis that the data are missing com-
pletely at random, against the alternative that they are merely missing
at random.* For an explanation of the subtleties of this distinction, see
Little and Rubin (1987, pp. 14-17). Rejection of the null hypothesis
does not impugn the structural model or the parameter estimates be-
cause the portion of the likelihood function that varies between the null
and the alternative hypothesis is not a function of the unknown parame-
ters. Neither does rejection imply that the cross-subsample equality
constraints should be relaxed (doing so would lead to biased parameter
estimates). What it does suggest is that the remeasurement subsample
may not be a true random subsample from the original sample.

Finally, we note that estimates of the error variances (and the
derived reliability coefficients) change slightly when the model is fit
to the entire sample. The new estimates are reported in Table 4.

OPTIMAL ALLOCATION OF CASES

We have demonstrated that a subsample with repeated measure-
ments can be combined with a subsample lacking repeated measure-
ments to produce efficient estimates of linear models. We now con-
sider whether such designs offer any advantages over designs in which
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all cases are remeasured. More precisely, what is the optimum alloca-
tion of cases between the remeasurement subsample and the subsam-
ple without remeasurement? As yet, we have no general, rigorous
answer to this question. What we will do in this section is explore the
question as it applies to the BHF data. The answer appears to be that,
yes, it is more cost-effective to remeasure only a fraction of the sample;
but, for this example, the fraction should be substantially higher than
578/25,223.

An obvious factor in determining the optimum allocation of cases
is the cost of remeasurement. Let p denote the ratio of the cost of a
remeasured case (including the initial measurement) to an unremea-
sured case. Clearly when p = 1 (i.e., when there is no additional cost
to remeasurement) the best design is to remeasure the entire sample.
As p gets larger, however, we might expect that a smaller fraction of
the cases should be remeasured. For the BHF study, the initial mea-
surements were made by mail questionnaire while the remeasurements
were done by telephone or personal interview, suggesting that p should
be greater than 2.0. On the other hand, the cost of the initial measure-
ments should include the cost of developing the sample itself, a cost
that may well have been less for the remeasurement interview. As a
rough approximation, then, we shall assume that p = 2.0.

Assuming that there is a fixed amount of money for data collection,
we shall examine the effect on the standard errors of varying the num-
ber of cases allocated to the remeasurement and single-measurement
subsamples. Letting # and m be, respectively, the number of cases in
the remeasurement subsample and the single-measurement subsam-
ple, the constant-cost constraint requires that pn + m be held constant.
Thus in the BHF study, we require than » and m be chosen so that

21+ m = 2(578) + 24,645 = 25,801. )

If all cases were remeasured, then, an equally costly study would have
12,900.5 cases. '

Another factor that should affect the allocation of cases is the degree
of measurement of error in the independent variables. In the extreme,
when there is no measurement error, there is no advantage to remea-
surement. Thus in the case of AGE and AGE2, which are assumed to
be error-free, the standard errors of the coefficients should be mini-
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mized when no cases are remeasured. On the other hand, variables
with lower reliability (i.e., a high ratio of error variance to total variance)
might be expected to require a greater proportion of the cases allocated
to the remeasurement subsample.

Our method for exploring the effect of differential allocation schemes
on the standard errors is somewhat unusual. When the data are read
into EQS, the number of cases must be specified for each of the two
covariance matrices. Without changing the covariance matrices, we
simply varied the number of cases specified for each subsample,
subject to the restriction in equation (7), and then examined the
estimated standard errors. Of course, this approach has obvious defi-
ciencies. It only gives estimated standard errors, and it does not allow
for the fact that observed covariance matrices would change if these
hypothetical allocation schemes were actually implemented. Never-
theless, the covariance matrix for the large subsample of 24,645 is
practically equivalent to the population matrix. Even the small sub-
sample of 578 is large enough that the estimated covariance matrix
should not be too far off from the population matrix. Thus we expect
that this method should give a roughly accurate picture.

In Table 5, we present the standard errors calculated for each of the
eighteen coefficients under ten different allocation schemes. For each
coefficient, the minimum standard error is printed in boldface. For the
coefficients of AGE and AGE2 in each of the three equations, the
pattern is essentially what was expected: With the exception of a few
coefficients in the first column, the standard errors are lowest when
the fewest cases are assigned to be remeasured. Actually, this pattern
is probably exaggerated in the present study, because AGE and AGE2
were missing in the correlation matrices reported by BHF for the
remeasurement subsample. Consequently, the remeasured cases con-
tributed no information at all about these two variables.

Although the minimum point varies for the other coefficients, it is
generally in the range of 3,000 to 6,000 cases in the remeasurement
subsample. This is well above the 578 that were actually remeasured.
For many of the coefficients, however, the curve is relatively flat in
the middle of the range, rising only at the two extremes. For example,
the standard error of §,, is a constant .063 in the range of 4,000 to
7,000. With only a few exceptions, the standard errors for the 578
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remeasured cases are only slightly larger than the minima. We do not
discern any relationship between the minimum point and the degree
of measurement error, possibly because there is not that much varia-
tion in the degree of measurement error. It must be stressed that the
picture might change if p were to change substantially; a different
value of p would mean that different allocation schemes would be
permissible.

Although this method of investigating allocation is certainly not
rigorous, in the absence of better methods it might be useful as a
practical guide for research design. Using available data and making
reasonable guesses, one could construct covariance matrices for the
two subsamples. Then, using EQS as we have done here, one could
get a rough estimate of the optimum allocation of cases.

CONCLUSION

In this article we have provided a nearly optimal solution to the
estimation problem posed by BHF: how to combine data from a single-
measurement subsample and a remeasurement subsample to esti-
mate the coefficients of a linear model. Our method produces efficient
coefficient estimates and consistent estimates of their standard errors.
It does so without introducing any assumptions beyond those made by
BHEF, and it can be implemented with widely available computer pro-
grams, EQS or LISREL.

We believe that the method described here should make remeasure-
ment more attractive. No longer is it necessary, or even desirable, to
remeasure the entire sample; a small subsample will suffice. True, the
exploratory results in the previous section suggest that optimal designs
may require the remeasurement subsample to be a substantial fraction
of the total. Nonetheless, those who merely wish to explore the impact
of measurement error on their estimates may be content with subopti-
mal designs in which the remeasurement subsample is small. They can
now proceed with the confidence that good statistical procedures are
available.

The principal limitation of this technique as a method for bias
reduction lies in the plausibility (or lack thereof) of the measurement
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error model. Measurement error is assumed to be random and un-
correlated across time for the same variable. In cases where these
assumptions are not met, the strategy of remeasurement will only
partially correct for measurement error. Although it is possible to
estimate models with correlated errors (BHF), such models usually
require additional restrictions of dubious validity.

APPENDIX

Following is a listing of the EQS 3.0 control statements which produced the
estimates in Table 3, Column 4. Variables labeled V are observed variables,
and their numbering follows the same order as in Table 4. The Fs are latent
variables, and the Es and Ds are random disturbances. V999 is a vector of
ones, used to specify intercepts in the measurement equations. Numbers
followed by asterisks are starting values for free parameters. Starting values
were obtained by approximating the estimates in Table 3, Column 3. A file
containing these control cards can be obtained from the first author either by
electronic mail (ALLISON@PENNDRLS.BITNET) or on diskette by regu-
lar mail (Department of Sociology, University of Pennsylvania, 3718 Locust
Walk, Philadelphia, PA 19104-6299).

/TITLE
OCG REMEASURED SUBSAMPLE

/SPECIFICATIONS
VARIABLES=15; CASES=578; ANALYSIS=MOM; GROUPS=2;
MATRIX=COR;

/EQUATIONS
V1=33*V999 + F1 + El;
V2 =33*V999 + F1 + E2;
V3 =9*V999 + F2 + E3;
V4 =9*V999 + F2 + E4;
V5 =4*V999 + F3 + ES;
V6 = 4*V999 + F3 + E6;
V7=12*V999 + F4 + E7,
V8 =12*V999 + F4 + ES;
V9 =12*V999 + F4 + E9;

V10 = 33*V999 + F5 + E10;

V11 =33*V999 + F5 + E11;
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V12 = 40*V999 + F6 + E12;

V13 =40*V999 + F6 + E13;

F4 = 2.25*F3 + .152*F2 + .024*F1 - .03*F7 - .02*F8 + D1,

F5 = 0*F3 + 0*F2 + .200*F1 + 2.0*F7 - .12* F8 + 5.8*F4 + D2;

F6 = 0*F3 + 0*F2 + .050*F1+ 2.7*F7 - .13*F8 + 2.4*F4 + .52*F5+ D3;

/VARIANCES

F1 =500*; F2 = 16*; F3 = .15%;

F7 = 1.5625*; F8 = 214.037%;

El = 87*; E2 = 64*; E3 = 1.22*; E4 = .90*; E5 = .02*; E6 = .01*; E7=3.1%;
E8 = .3%;

E9 = .93*; E10 = 92*; E11 = 90*; E12 = 150*; E13 = 101*;

D1 =4.5%; D2 = 231*; D3 = 221%;

/COVARIANCES
F1,F2 = 60*%;
F1,F3 = 4%;
F1,F7 = —4.5%;
F1,F8 = 4.3%;
F2,F3 = .8%;
F2,F7 = -1.4%;
F2,F8 = 1.5%;
F3,F7 = -.124*%;
F3,F8 = —.15%;
F7,F8 = 2.6334*;

/MATRIX
1.0

.869 1.0

.585.589 1.0

.597 .599 .939 1.0

422 437 .477 467 1.0

426 .450 .486 .478 913 1.0

428 430 .448 445 426 .4391.0

445 443 .483 .492 485 .502 .838 1.0

419 419 .467 .467 .486 .501 .801 .921 1.0

.398 .410 .290 .300 .370 .358 .581 .644 .637 1.0

409 .409 .325 .322 .363 .348 .578 .642 .631 .847 1.0

.340 .369 .280 .284 .291 .296 .504 .563 .534 .585 .599 1.0

.364 .390 .291 .308 .307 .301 .519 .603 .566 .618 .620 .797 1.0
0000000000000 10
00000000000000 1.0
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/STANDARD DEVIATIONS
24.2723.73 4.194.14 41.393.422.93 2.87 24.71 24.15 24.8125.211.01.0

/MEANS
32.96 33.6 8.97 8.96 3.78 3.8 11.98 12.12 12.18 34.6 32.1 39.5741.3400

/END

[TITLE
OCG SINGLE MEASURE SUBSAMPLE

/SPECIFICATIONS
VARIABLES = 15; CASES= 24645; ANALYSIS=MOM; MATRIX=COR;

/EQUATIONS
V1 =33*V999 + F1 + E1;
V3 =9*V999 + F2 + E3;
V5 =4*V999 + F3 + ES;
V9 =12*V999 + F4 + E9;
V10 = 33*V999 + F5 + E10;
V13 =40*V999 + F6 + E13;
V14 = 3.97*V999 + F7,
V15 =16.04*V999 + F8;
F4 =225*F3 +.152*F2 + .024*F1 - .03*F7 - .02*F8 + D1;
F5 =0*F3 + 0*F2 + .200*F1 + 2.0*F7 - .12* F8 + 5.8*F4 + D2;
F6 =0*F3+ 0*F2 + .050*F1+ 2.7*F7 - .13* F8 + 2.4*F4 + .52*F5+ D3;

/VARIANCES

F1 = 500%; F2 = 16*; F3 = .15*;
F7 = 1.5625*; F8 = 214.037*;

E1 = 87*; E3 = 1.22*%; ES = .02%;
E9 = .93*; E10 = 92*; E13 = 101*;
D1 = 4.5%; D2 = 231*; D3 = 221%;

/COVARIANCES
F1,F2 = 60*;
F1,F3 = 4%,
F1,F7 = -4.5%;
F1,F8 = 4.3%;
F2,F3 = 8%;
F2,F7 = -1.4%,
F2,F8 = 1.5%;
F3,F7 = -.124%;
F3,F8 = -.15%;
F7,F8 = 2.6334*;

2
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/MATRIX
1.0

5360 1.0
0 0 0
399 0 466
0 0
0 0
0 0
410 0 470
10
0
0

=

o
=
cocoo

1.0
1.

—

0
0 0
483 0 01.0
331 291 0 0 .636 1.0
0 00 0 0 0 10
0 00 0
3250 .275 256 0 0
~174 0 -297 0 -248 0 0
0 0

014 0 .026 0 -.027

/STANDARD DEVIATIONS
20.901.03.881.0.401.01.01.02.91 22.48 1.0 1.0 22.78 1.25 14.63

/MEANS
31.0908.7803.77000 12.07 33.81 0 0 41.11 3.97 16.04

JCONSTRAINTS
(1,V1,V999)
(1,V3,V999)
(1,V5,V999

0 0 0 10
S71 6170 0 1.0
-210 -0670 0 .025 1.0
-095 -114 0 0 -.142 144 1.0

cCooocooO0ooOoo

cooocooo oo

(2,V1,V999);
(2,V3,V999);
(2,V5,V999);
(1,V9,V999) = (2,V9,V999);
(1,V10,V999) = (2,V10,V999);
(1,V13,V999) = (2,V13,V999);
(1,F1,F1) = (2,F1,F1);

(1,F1,F2) = (2,F1,F2);

(1,F1,F3) = (2,F1,F3);

(LF1,F7) = (2,F1,F7);

(1,F1,F8) = (2,F1,F8);

(1,F2,F2) = (2,F2,F2);

(1,F2,F3) = (2,F2,F3);

(1F2,F7) = (2,F2,F7);

(1,F2,F8) = (2,F2,F8);

(1,F3,F3) = (2,F3,F3);

(1,F3,F7) = (2,F3,F7);

(1,F3,F8) = (2,F3,F8);
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(1,F6,F1) = (2,F6,F1);
(1,F6,F2) = (2,F6,F2);
(1,F6,F3) = (2,F6,F3);
(1,F6,F4) = (2,F6,F4);
(1,F6,F5) = (2,F6,F5);
(1,F6,F7) = (2,F6,F7);
(1,F6,F8) = (2,F6,F8);
(1,F5,F1) = (2,F5,F1);
(1,F5,F2) = (2,F5,F2);
(1F5,F3) = (2,F5,F3);
(1,F5,F4) = (2,F5,F4);
(1,F5,F7) = (2,F5,F7);
(1,F5,F8) = (2,F5,F8);
(1,F4,F1) = (2,F4,F1);
(1,F4,F2) = (2,F4,F2);
(1,F4,F3) = (2,F4,F3);
(1,F4,F7) = (2,F4,F7);
(1,F4,F8) = (2,F4,F8);
(1,D1,D1) = (2,D1,D1);
(1,D2,D2) = (2,D2,D2);
(1,D3,D3) = (2,D3,D3);
(1,E1,E1) = (2,ELE1);
(1,E3,E3) = (2,E3,E3);
(1,ES,ES) = (2,ES,ES);
(1,E9,E9) = (2,E9,E9);
(1,E10,E10) = (2,E10,E10);
(1,E13,E13) = (2,E13,E13);
(1,F7,F7) = (2, F1,F7);
(1,F8,F8) = (2,F8,F8);
(1,F7,F8) = (2,F7,F8);

/PRINT
DIG=S;

/END

NOTES

1. In Versions 7.16 and earlier, convergence could not be obtained when structured means
were incorporated into the model, due to program bugs.
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2. The corrections consisted of (a) converting the reported correlations and standard devia-
tions into sums of squares and cross-products, (b) subtracting the sums for the remeasurement
subsample from those for the full sample, and (c) recalculating the correlations and standard
deviations. These corrections are only approximate because the matrices reported in BHF are
actually pairwise-present matrices, so that different correlations may be based on different
numbers of cases. Our correction formulas assumed that all correlations were based on either
25,223 or 578 cases.

3. An alternative way of calculating part (b) is to fit the model to both subsamples in such a
way that the only constraints are those across subsamples.

4. If the data are missing completely at random, the two subsamples can be regarded as
distinct random samples from the same population. Hence all corresponding parameters should
be equal. On the other hand, the assumption that the data are missing at random but not observed
at random is compatible with any cross-group differences in parameters (Rubin 1976). In other
words, the missing-at-random assumption imposes no restrictions on the observed moments.
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