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Introduction

Panel data have two big attractions for making causal infer-
ences with non-experimental data:

•• the ability to control for unobserved, time-invariant 
confounders

•• the ability to model the direction of causal 
relationships.

Controlling for unobservables can be accomplished with 
fixed effects methods that are now well known and widely 
used (Allison 2005b, 2009; Firebaugh, Warner, and Massoglia 
2013; Halaby 2004). For examining causal direction, the 
most popular approach has long been the cross-lagged panel 
model, originating with the two-wave, two-variable model 
proposed by Duncan (1969) and elaborated by many others 
(e.g., Finkel 1995; Hamaker, Kuiper, and Grasman 2015; 
Kenny and Judd 1996; Kessler and Greenberg 1981; Markus 
1979; McArdle and Nesselroade 2014). In these models, x 
and y at time t affect both x and y at time t + 1.

Unfortunately, attempting to combine fixed effects mod-
els with cross-lagged panel models leads to serious estima-
tion problems that are well known in the econometric 
literature. Economists typically refer to such models as 

dynamic panel models because of the lagged effect of the 
dependent variable on itself. The estimation difficulties 
include error terms that are correlated with predictors, the 
so-called incidental parameters problem, and uncertainties 
about the treatment of initial conditions. For reviews of the 
extensive literature on dynamic panel data models, see 
Wooldridge (2010), Baltagi (2013), or Hsiao (2014).

The most popular econometric method for estimating 
dynamic panel models has long been the generalized method 
of moments (GMM) that relies on lagged variables as instru-
ments. This method been incorporated into several widely 
available software packages, including SAS, Stata, LIMDEP, 
RATS, and plm (an R package), usually under the name of 
Arellano-Bond (AB) estimators. While the AB approach pro-
vides consistent estimators of the coefficients, there is evi-
dence that the estimators are not fully efficient, have 
considerable small-sample bias, and often perform poorly 
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when the autoregressive parameter (the effect of a variable 
on itself at a later point in time) is near 1.0.

In recent years, econometricians have explored maximum 
likelihood (ML) estimation as a way to overcome some of 
the limitations of the GMM methodology. These efforts have 
culminated in the work of Moral-Benito (2013), who devel-
oped an ML method that effectively addresses the key prob-
lems of dynamic panel data models. Unfortunately, there is 
currently little software available to implement his method. 
In this article, we show that the model and method of Moral-
Benito falls within the framework of linear structural equa-
tion models (SEM) and that it can therefore be estimated in a 
straightforward way with widely available SEM packages. 
Using simulated data, we show that the ML-SEM method 
outperforms the AB method with respect to bias and effi-
ciency under most conditions. ML-SEM also has several 
other advantages over the AB method:

•• Error variances can easily be allowed to vary with 
time.

•• The unobserved, time-invariant factor can have differ-
ent effects at different times.

•• Missing values on predictors can easily be handled by 
full information maximum likelihood (FIML).

•• Many goodness-of-fit measures are available to assess 
the over-identifying restrictions of the model.

•• There is no need to choose among many possible 
instrumental variables.

•• Latent variables with multiple indicators can be incor-
porated into the model.

•• Time-invariant variables can be included in the model.

ML-SEM does have a few downsides, however:

•• Programming can be complex and tedious (although 
this problem has essentially been solved with the new 
xtdpdml command for Stata).

•• Convergence failures sometimes occur.
•• Computation may be noticeably slower than with AB, 

especially when using FIML to handle unbalanced or 
other forms of missing data.

In this article, we:

•• explore the relationship between the dynamic panel 
data models of econometrics and the cross-lagged 
panel models used in other social sciences,

•• review GMM estimation of dynamic panel data mod-
els and examine its limitations,

•• review the development of ML methods for dynamic 
panel data models,

•• show how the ML method of Moral-Benito can be 
implemented in the SEM framework,

•• present an empirical example,

•• present results from a Monte Carlo study comparing 
the AB method and the ML-SEM method,

•• conclude with a discussion.

Cross-lagged Panel Models versus 
Dynamic Panel Data Models

Cross-lagged Panel Models

We begin with a cross-lagged panel model that is specified in 
a way that facilitates comparisons with the dynamic panel 
models of econometrics. The data consist of a sample of N 
individuals, each of whom is observed at T points in time (t 
= 1, . . . , T). Thus, the data set is “balanced,” having the same 
number of observations for each individual. Although the 
methods to be considered can be extended to unbalanced 
data, the initial development is simpler if we exclude that 
possibility. We also presume that the number of time points 
is substantially smaller than the number of individuals.

At each time point, we observe two quantitative variables, 
xit and yit, and we want to allow for the possibility that they 
have a lagged, reciprocal causal relationship. We may also 
observe a column vector of control variables wit that varies 
over both individuals and time (possibly including lagged 
values) and another column vector of control variables zi that 
varies over individuals but not over time.

Consider the following equation for y, with i = 1, . . . , N 
and t = 2, . . . , T:

y x y w zit t it it it i i it= + + + + + +− −µ β β δ γ α ε1 1 2 1 1 1 ,  (1)

where μt is an intercept that varies with time, β1 and β2 are 
scalar coefficients, δ1 and γ1 are row vectors of coefficients, 
εit is a random disturbance, and αi represents the combined 
effects on y of all unmeasured variables that are both con-
stant over time and have constant effects. The lags for x and 
y are shown here as lags of one time unit, but the lags could 
be greater and could be different for each variable.

We also specify an analogous equation for x:

x x y w zit t it it it i i it= + + + + + +− −τ β β δ γ η υ3 1 4 1 2 2  (2)

where τt is an intercept that varies with time, β3, and β4 are 
scalar coefficients, δ2 and γ2 are row vectors of coefficients, υit 
is a random disturbance, and ηi is a set of individual effects 
analogous to αi in Equation 1. Equations 1 and 2 do not allow 
for simultaneous causation, which would require problematic 
assumptions in order to estimate and interpret the causal effects.

These two equations differ from the classic cross-lagged 
panel model in two ways: (1) by the introduction of the unob-
served individual effects, αi and ηi and (2) by the presump-
tion that the coefficients for all variables are constant over 
time. The constancy assumption can easily be relaxed, but 
we retain it now for simplicity.
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The individual effects αi and ηi may be specified either as 
random variables or sets of fixed parameters. Outside of eco-
nomics, they are usually treated as random variables that are 
independent of all other exogenous variables (e.g., Hamaker 
et al. 2015).

More needs to be said about the random disturbance 
terms, εit and υit. We assume that they are independent of 
each other (both within and between time points) and nor-
mally distributed with means of 0 and constant variance (at 
least across individuals, although we will allow for variances 
that change over time). We also assume that wit and zi are 
strictly exogenous, meaning that for any t and any s, wit and 
zi are independent of εis and υis. With respect to x and y, we 
cannot assume strict exogeneity because both variables 
appear as dependent variables. In fact, Equations 1 and 2 
together imply that εit and υit are correlated with all future 
values of x and y.

Dynamic panel data models

The basic dynamic panel data model found in the economet-
ric literature is essentially the same as Equation 1 but with a 
few changes in meaning:

•• x is typically a vector rather than a scalar,
•• x is usually not lagged,
•• αi is treated as a set of fixed constants rather than as a 

set of random variables.

The first two differences are relatively unimportant, but the 
third is crucial. Treating α as a set of fixed constants (“fixed 
effects”) is equivalent to allowing for unrestricted correla-
tions between α and all the time-varying predictors, both x 
and w. Allowing these correlations supports a claim that 
these models control for all time-invariant confounders, 
either observed or unobserved.

As in the cross-lagged panel model, wit and zi are assumed 
to be strictly exogenous. But xit is assumed to be predeter-
mined (Arellano 2003) or equivalently, sequentially exoge-
nous (Wooldridge 2010). This means that for all s > t, xit is 
independent of εis. That is, the x variables are independent of 
all future values of ε but may be correlated with past values 
of ε.

The assumption that xit is predetermined allows for the 
existence of Equation 2, but it also allows for a much wider 
range of possibilities. In particular, Equation 2 could be mod-
ified to have multiple lags of y, or it could be a nonlinear 
equation. For example, if x is dichotomous (as in the exam-
ple in we present later), a logistic regression equation could 
substitute for Equation 2.

It should now be fairly clear that the cross-lagged panel 
model can be regarded as a special case of the dynamic 
panel data model. You can get from the latter to the former 
by (a) lagging x and reducing it from a vector to a scalar, (b) 
converting fixed effects into random effects, and (c) 

imposing the structure of Equation 2 on the dependence of x 
on prior ys.

We agree with economists that the less restricted model is 
a better way to go. The ability to control for unmeasured con-
founders is a huge advantage in making claims of causality. 
And not having to specify the functional form of the depen-
dence of x on y both simplifies the estimation problem and 
reduces the danger of misspecification. If you are interested 
in the dependence of x on y, you can always specify a second 
dynamic panel data model for y and estimate that separately.

On the other hand, we believe that those working in the 
cross-lagged panel tradition have chosen the better approach 
to estimation. Except in the simple case of two-wave data, 
most cross-lagged models are formulated as structural equa-
tion models and estimated by maximum likelihood using 
standard SEM packages. Economists have taken a rather dif-
ferent path, one that has led to possibly inferior estimators 
and a few dead ends.

GMM Estimation

Estimation of the dynamic panel data model represented by 
Equation 1 is not straightforward for reasons that are well 
known in the econometric literature. First, the presence of 
the lagged dependent variable as a predictor implies that con-
ventional fixed effects methods will yield biased estimates of 
the β coefficients (Arellano 2003). Second, even if the lagged 
dependent variable is excluded, the fact that the xs are merely 
predetermined, not strictly exogenous, implies that conven-
tional fixed effects methods will yield biased estimates of the 
coefficients whenever T > 3 (Wooldridge 2010).

Until recently, econometricians focused almost exclu-
sively on instrumental variable methods. The dominant 
method is usually attributed to Arellano and Bond (1991), 
although there were important earlier precedents (Anderson 
and Hsiao 1981; Holtz-Eaken, Newey, and Rosen 1988). To 
remove the fixed effects (α) from the equations, the model is 
reformulated in terms of first differences: Δyit = yit – yit–1, Δxit 
= xit – xit–1 and Δwit = wit – wit–1. Note that first differencing 
not only removes α from the equation but also z, the vector of 
time-invariant predictors. Lagged difference scores for y, x, 
and w are then used as instrumental variables for Δy and Δx, 
and the resulting system of equations is estimated by the gen-
eralized method of moments (GMM).

Models with instrumental variables imply multiple 
restrictions on the moments in the data, specifically, that 
covariances between instruments and certain error terms are 
0. GMM chooses parameter estimates that minimize the cor-
responding observed moments. Since there are multiple 
moment restrictions, the method requires a weight matrix 
that optimally combines the observed moments into a unidi-
mensional criterion. In many settings, GMM requires itera-
tion to minimize that criterion. But for the moments used in 
the AB method, minimization is accomplished by solving a 
linear equation that requires no iteration.
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AB estimators come in two forms, the one-step method 
(the usual default in software) and the two-step method. The 
latter uses results from the first step to reconstruct the weight 
matrix, but there is little evidence that its performance is any 
better than the one-step method (Judson and Owen 1999). 
Another extension is the GMM system estimator of Blundell 
and Bond (1998), which uses both levels and first differences 
of the lagged variables as instruments. This method produces 
more efficient estimators but at the cost of making the rather 
unrealistic assumption that the initial observations reflect 
stationarity of the process generating the data.

AB estimators are believed to suffer from three 
problems:

1. Small sample bias. AB estimators are consistent, that 
is, they converge in probability to the true values as 
sample size increases. However, simulation evidence 
indicates that they are prone to bias in small samples, 
especially when the autoregressive parameter (the 
effect of yt–1 on yt) is near 1.0 (Blundell and Bond 
1998; Kiviet, Pleus, and Poldermans 2014).

2. Inefficiency. AB estimators do not make use of all the 
moment restrictions implied by the model. As a con-
sequence, they are not fully efficient. Ahn and 
Schmidt (1995) proposed an efficient GMM estima-
tor that does make use of all restrictions, but its non-
linear form makes it more difficult to implement. In 
any case, their method is not generally available in 
commercial software packages.

3. Uncertainty about the choice of instruments. Anyone 
who has attempted to use the AB method knows that 
there are many choices to be made regarding what 
variables to use as instruments and whether they are 
to be entered as levels or first differences. In princi-
ple, it would make sense to use all possible instru-
ments that are consistent with the model. But 
available evidence suggests that “too many” instru-
ments can be just as bad as too few, leading to addi-
tional small-sample bias (Roodman 2009). This 
problem is especially acute when T is large, in which 
case the number of potential instruments is also large.

ML Estimation of Dynamic Panel 
Models

In an effort to solve some of these problems, there has been 
quite a bit of work in the econometric literature on ML esti-
mation of dynamic panel models. However, that work has yet 
to have a significant impact on empirical applications. 
Bhargava and Sargan (1983) considered ML estimation of 
dynamic panel models, but they assumed that the time-vary-
ing predictors were uncorrelated with the fixed effects, which 
is precisely what we do not want do. The seminal paper of 
Hsiao, Pesaran, and Tahmiscioglu (2002) proposed a ML 

estimator that does allow the predictors in each equation to 
be correlated with the fixed effects. In their view, accom-
plishing this was difficult for two reasons:

There are two issues involved in the estimation of the fixed 
effects dynamic panel data model when the time-series dimension 
is short. One is the introduction of individual-specific effects that 
increase with the number of observations in the cross-section 
dimension. The other is the initial value problem. Both lead to the 
violation of the conventional regularity conditions for the MLE 
of the structural parameters to be consistent because of the 
presence of “incidental parameters.” (P. 139)

The issue of incidental parameters is a well-known problem 
in maximum likelihood estimation. It’s what happens when 
the number of parameters increases with the sample size, 
thereby invalidating the usual asymptotic arguments for con-
sistency and efficiency of ML estimators (Nickell 1981).

Hsiao et al. (2002) dealt with the incidental parameters 
problem by using the same device as Arellano and Bond 
(1991)—taking first differences of the time-varying vari-
ables, thereby eliminating the individual-specific fixed 
effects. The likelihood was then formulated in terms of the 
difference scores. To deal with the initial value problem, they 
introduced assumptions of stationarity for the generation of 
the initial values from some prior, unobserved process, 
assumptions that they admitted may be “controversial.” They 
also presented simulation evidence indicating that the perfor-
mance of their ML estimator was somewhat better than that 
of several different GMM estimators.

Although the use of first differences solves the incidental 
parameters problem for the fixed effects, it greatly compli-
cates the subsequent development of the method. Moreover, 
Han and Phillips (2013) argued that the first-difference like-
lihood is not a true likelihood function and that consequently, 
it may behave in pathological ways, especially when the 
autoregressive coefficients have values near 1.0.

For many years, there was no readily available software to 
implement the ML method of Hsiao et al. (2002). However, 
Grassetti (2011) showed that implementation is possible with 
conventional random effects software by working with vari-
ables that are differences from initial values instead of differ-
ences between adjacent time points. Recently, Kripfganz 
(2016) introduced a Stata command, xtdpdqml, that imple-
ments both the method of Hsiao et al. and the “random 
effects” model of Bhargava and Sargan (1983). However, 
Kripfganz also pointed out that that the method of Hsiao 
et al. does not yield consistent estimators for models with 
predetermined variables.

In contrast to Hsiao et al. (2002), Moral-Benito (2013) 
showed that parameters in Equations 1 or 2 can be directly 
estimated by maximum likelihood without first differencing 
and without any assumptions about initial conditions. The 
key insight is that αi and ηi do not have to be treated as fixed 
parameters. As pointed out long ago by Mundlak (1978) and 
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further elaborated by Chamberlain (1982, 1984), the fixed 
effects model is equivalent to a random effects model that 
allows for unrestricted correlations between the individual-
specific effects (αi and ηi) and the time-varying predictors. 
Once that approach is adopted, there is no longer any need to 
impose arbitrary assumptions on the initial observations, y1 
and x1. They can be treated as strictly exogenous, which is 
entirely appropriate given the lack of knowledge about what 
precedes those observations.

ML Estimation Via SEM

In this section, we show how Moral-Benito’s (2013) method 
can be implemented with SEM software. The essential fea-
tures of the ML-SEM method for cross-lagged panel models 
with fixed effects were previously described by Allison 
(2000, 2005a, 2005b, 2009), but his approach was largely 
pragmatic and computational. Moral-Benito provided a rig-
orous theoretical foundation for this method.

The justification for using SEM software rests on the fact 
that Equations 1 and 2 are a special case of the linear struc-
tural equation model proposed by Jöreskog (1978) and gen-
eralized by Bentler and Weeks (1980). In its most general 
form, the model may be compactly specified as

y y x= + +µµ ΒΒ ΓΓ ,  (3)

where y is a p × 1 vector of endogenous variables that may 
be either observed or latent; x is a k × 1 vector of exogenous 
variables that, again, may be either observed or latent (includ-
ing any disturbance terms in the model); μ is a vector of 
intercepts, and B and Γ are matrices of coefficients. The 
endogenous vector y and any latent variables in x are assumed 
to have a multivariate normal distribution conditional on the 
observed exogenous variables. The B matrix has zeros on the 
main diagonal, and both B and Γ may have many additional 
restrictions. Most commonly, these restrictions take the form 
of setting certain parameters equal to 0, but there may also be 
equality restrictions. The remaining parameter Ө is the vari-
ance matrix for x, which usually has many elements set to 0.

There are several widely available software packages that 
will estimate any special case of this model via maximum 
likelihood. These include LISREL, EQS, Amos, Mplus, 
PROC CALIS (in SAS), sem (in Stata), lavaan (for R), and 
OpenMx (for R). Remarkably, the earliest version of 
LISREL, introduced in 1973, could probably have estimated 
the dynamic panel models considered here, albeit with con-
siderably more programming effort than with contemporary 
packages.

How does this model relate to the cross-lagged Equations 
1 and 2? Although Equations 1 and 2 can be estimated simul-
taneously, we follow the econometric tradition of focusing 
only on Equation 1 while allowing Equation 2 to determine 
certain constraints (or lack thereof) on Ө, the variance matrix 
for the exogenous variables.

Equation 1 is a special case of Equation 3 in the following 
sense. Without loss of generality, we treat wit and zi as scalars 
rather than vectors. We then have, y′ = (yi2, . . . , yiT), x′ = (αi, 
zi, yi1, xi1, . . . , xi(T–1), wi2, . . . , wiT, εi2, . . . , εiT) and μ′ = (μ2, 
. . . , μT). For Γ, we have

ΓΓ =

1 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0 0 0

1 2 1 1

1 1 1

1

γ β β δ
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For Ө, the following covariances are set to 0:

•• α with z
•• α with all ε
•• z with all ε
•• all w with all ε
•• all ε with each other
•• xit with εis whenever s ≥ t.

All other elements of Ө are left unrestricted. Note that α 
is allowed to correlate with both w and x. And x is allowed to 
correlate with all prior realizations of ε, as a consequence of 
Equation 2. The restriction that cov(α, z) = 0, while perhaps 
undesirable, is essential for identification. That is, we must 
assume that the fixed effects are uncorrelated with any time-
invariant variables.1

Figure 1 displays a path diagram of this model for the case 
in which T = 4, with no w variables and no z variables.2 That 
is, we only have the endogenous y variables and the predeter-
mined x variables. Notice that all the x variables are allowed 
to freely correlate with each other, as well as with y1, which 
is treated like any other exogenous variable. Similarly, the 
latent variable alpha (enclosed in a circle) is allowed to 
correlate with all the exogenous variables, including y1. 
Alpha affects each y variable (with a coefficient of 1, not 
shown). The coefficients for the effects of the xs on the ys are 
constrained to be the same at all three time points, but this 
constraint can be easily relaxed.

1For an alternative parameterization and a derivation of the likeli-
hood function, see Moral-Benito, Allison, and Williams (2017).
2The path diagrams in Figures 1 and 3 were produced by Mplus, 
version 7.4.
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What makes x predetermined in this diagram is the cor-
relation between x3 and ε2. If this correlation were omitted, x 
would be strictly exogenous rather than predetermined. 
Again, the rule is that for any predetermined variable, x at 
time t is allowed to correlate with the error term for y at any 
prior time point.

How do the assumptions of ML-SEM differ from those of 
AB? ML-SEM makes stronger assumptions in three respects. 
First, and most importantly, ML-SEM assumes multivariate 
normality for all endogenous variables while AB makes no 
distributional assumptions. However, ML-SEM produces 
consistent estimators even when the normality assumption is 
violated (Moral-Benito 2013). And if there is concern about 
normality, robust standard errors can be used for construct-
ing confidence intervals and hypothesis tests. Second, to 
identify the effects of time-invariant variables, we introduced 
the assumption that cov(ε, z) = 0. But if you have any reason 
to doubt that assumption, you can just exclude time-invariant 
variables from the model. They will still be controlled as part 
of the α term. Lastly, ML-SEM makes use of the moment 
restrictions implied by the assumption that there is no serial 
correlation in the error terms in Equation 1. Although the use 
of these restrictions was recommended by Ahn and Schmidt 
(1995) to improve efficiency, they have generally not been 
incorporated into AB estimation because they imply nonlin-
ear estimating equations.

On the other hand, ML-SEM makes it possible to relax 
many assumptions that are built into AB. Most notably, the 
default in ML-SEM is to allow for an unrestricted effect of 
time itself and for different error variances at each time point. 
It is also possible to allow α, the latent variable for the indi-
vidual effects, to have different coefficients at different time 
points.

Empirical Example

As an example of how to implement ML-SEM for dynamic 
panel models, we reanalyze data described by Cornwell and 
Rupert (1988) for 595 household heads who reported a non-
zero wage in each of 7 years from 1976 to 1982. For pur-
poses of illustration, we use only the following variables 
from that data set:

y = WKS = number of weeks employed in each year

x = UNION = 1 if wage set by union contract, else 0, in each 
year

w = LWAGE = ln(wage) in each year

z = ED = years of education in 1976.

Let’s suppose that our principal goal is to estimate the effect 
of UNION at time t on WKS at time t + 1. However, we also 
want to allow for the possibility that UNION is itself affected 
by earlier values of WKS. That is, we want to treat UNION 
as a predetermined variable. We also want to control for 
LWAGE, a time-varying variable, and we want to estimate 
the effect of ED, a time-invariant variable, on WKS. If we 
suspected that LWAGE was affected by earlier values of 
WKS, we could also treat it as predetermined. But for sim-
plicity we will assume that it is strictly exogenous.

Our goal, then, is to estimate Equation 1, reproduced here

y x y w zit t i t i t it i i it= + + + + + +− −µ β β δ γ α ε1 1 2 1 1 1, , ,  (1)

with x treated as predetermined and w and z treated as strictly 
exogenous. By specifying UNION as predetermined, we 
allow for the possibility that number of weeks worked at 
time t could affect union status at time t + 1 or, indeed, at any 
future time. However, we don’t have to specify the func-
tional form of that relationship. Since UNION is dichoto-
mous, a logistic regression model might be a natural first 
choice for this dependence. But we don’t have to make that 
choice because the model is agnostic regarding the depen-
dence of x on y.

Note that although we have lagged the effect of x in 
Equation 1 to be consistent with the cross-lagged panel 
approach, the ML-SEM method does not require x to be 
lagged. We could have written xt rather than xt–1, and the esti-
mation would have been equally straightforward. On the 
other hand, if we choose not to lag x, it would then be prob-
lematic to estimate another model in which x depends on 
unlagged y. That would imply a model with simultaneous, 
reciprocal causation, which would not be identified without 
additional instrumental variables.

We use PROC CALIS in SAS to illustrate the estimation 
of Equation 1 because CALIS has a syntax and default set-
tings that are particularly well suited to dynamic panel 

Figure 1. Path diagram for 4-period dynamic panel model. 
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models. Like most SEM packages, CALIS requires that the 
data be in the “wide form” rather than the “long form.”3 For 
our example, the wide-form data set has one record per per-
son, with seven variables corresponding to each conceptual 
variable at the seven time points. Thus, we have WKS1, 
WKS2, . . . . , WKS7, and LWAGE1, LWAGE2, . . . , 
LWAGE7, and so on. Of course, there is only one variable for 
ED, which did not vary over time. In contrast, most software 
packages for the analysis of panel data (including those for 
the AB method) expect the data to be in the long form, with 
separate records for each individual at each point in time.

Because the setup for this kind of model will be unfamiliar 
to most readers, it’s worth examining it in some detail. Figure 
2 shows the CALIS program for estimating the model. 
(Equivalent code for Stata, Mplus, and lavaan can be found in 
Appendix B). Line 1 invokes the CALIS procedure for the 
data set MY.WAGEWIDE. Line 2 begins the PATH state-
ment, which continues until the end of Line 13. Lines 3 
through 8 specify an equation for each of the six time points. 
Note that there is no equation specified for WKS1 because at 
Time 1 we do not observe the lagged values of the predictor 
variables.

The variable ALPHA refers to the “fixed effects” vari-
able αi that is common to all equations. When CALIS 
encounters a variable name like ALPHA that is not on the 
input data set, it presumes that the name refers to a latent 
variable. After the equals sign on each line, there is a list of 
coefficient names or values corresponding to the predictor 
variables in the equation. Because the coefficient names are 
the same for each equation, the corresponding coefficients 
are also constrained to be the same. The coefficient of 
ALPHA is constrained to have a value of 1.0 in each equa-
tion, consistent with Equation 1.

By default in PROC CALIS, latent exogenous variables 
like ALPHA are allowed to covary with all observed exoge-
nous variables, including WKS1 and all the LWAGE and 
UNION variables. This is exactly what we want to achieve 
for ALPHA to truly behave as a set of fixed effects (Allison 
and Bollen 1997; Bollen and Brand 2010; Teachman et al. 
2001). However, because ED does not vary over time, the 
correlation between ALPHA and ED is not identified, so it is 
constrained be 0 in Line 9. Lines 10 through 13 allow the 
error term ε in each equation to be correlated with future val-
ues of UNION. This is the key device that allows UNION to 
be a predetermined (sequentially exogenous) variable.4

By default, CALIS allows the intercept to differ for each 
equation, which is equivalent to treating time as a set of 
dummy variables. It is easy to constrain the intercepts to be 
the same if desired. With a little more difficulty, one can 
impose constraints that correspond to a linear or quadratic 
effect of time.

Also by default, the error variances are allowed to differ 
across equations, which is not the case for most AB software. 
Line 14 constrains the error variances to be the same for each 
equation to produce results that can be directly compared 
with AB estimates. This line assigns names to the error vari-
ances for each variable. Because they are given the same 
name (v), the corresponding parameter estimates are con-
strained to be the same. In most applications, however, it is 
probably better to leave the variances unconstrained.

Figure 3 is a path diagram for the model. Here are a few 
key points to note about this diagram:

•• There is no correlation between ALPHA and ED.
•• All other observed exogenous variables are freely cor-

related with one another.
•• All error terms are correlated with future values for 

UNION. This implicitly allows for the possibility that 
y affects future x, with no restrictions on that 
relationship.

Table 1 displays the numerical results in the first four col-
umns. Not surprisingly, there is a highly significant effect of 
WKS(t – 1) on WKS(t), although the magnitude of the effect 
is not large. There is also a significant negative effect (at the 
.05 level) of UNION(t – 1) on WKS(t) and a not quite signifi-
cant negative effect of ED on WKS(t). By constraint, these 
coefficient estimates are the same for all six equations.

This is only a small portion of the output from PROC 
CALIS. The full output also contains estimates of the vari-
ances and covariances for all the exogenous variables, includ-
ing ALPHA and the error terms for each equation. As with all 
SEM software, there is also a likelihood ratio chi-square 

  1   proc calis data=my.wagewide;
  2   path
  3   wks2 <- wks1 union1 lwage1 ed alpha = a b c d 1,
  4   wks3 <- wks2 union2 lwage2 ed alpha = a b c d 1,
  5   wks4 <- wks3 union3 lwage3 ed alpha = a b c d 1,
  6   wks5 <- wks4 union4 lwage4 ed alpha = a b c d 1,
  7   wks6 <- wks5 union5 lwage5 ed alpha = a b c d 1,
  8   wks7 <- wks6 union6 lwage6 ed alpha = a b c d 1,
  9   alpha <-> ed = 0,
10   wks2 <-> union3 union4 union5 union6,
11   wks3 <-> union4 union5 union6,
12   wks4 <-> union5 union6,
13   wks5 <-> union6,
14   <-> wks2 wks3 wks4 wks5 wks6 wks7 = v v v v v v;

15   run;

Figure 2. SAS program for estimating dynamic panel model with 
fixed effects.

3Mplus can analyze “long form” data using a multilevel add-on, 
but its multilevel mode is currently not suitable for the dynamic 
panel models considered here. However, the forthcoming version 8 
of Mplus may allow for dynamic panel analysis in long form.

4An equivalent method is to specify five additional regressions for 
UNION2 through UNION6 as dependent variables, with predictor 
variables that include all values of LWAGE, prior values of WKS, 
prior values of UNION, and ALPHA.
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statistic comparing the fitted model with a “saturated” or 
“just-identified” model that perfectly reproduces the covari-
ance matrix for all the variables. For this example, it has a 
value of 138.48 with 76 degrees of freedom, yielding a p 
value less than .0001. The 76 degrees of freedom correspond 
to 76 over-identifying restrictions on the covariance matrix of 
the observed variables that are implied by the model.

Because this is a goodness-of-fit statistic, higher p values 
indicate a better fitting model. So by conventional signifi-
cance standards, the model does not fit the data. However, 
the consensus in the SEM literature is that with large sample 
sizes, it may be hard to find any reasonably parsimonious 
model that yields a p value greater than .05. There are 
numerous alternative measures of fit that are relatively 
insensitive to sample size, and many of these are reported by 
PROC CALIS. For example, Bentler’s Comparative Fit 
Index is .995 while Bentler and Bonnet’s Non-Normed 

Index (also known as the Tucker-Lewis Index) is .987.5 
Values near 1.0 are desirable, so these measures suggest a 
very good fit to the data. One of the most popular measures 
of fit is the root mean square error of approximation 
(RMSEA). For this example, it has a value of .037. Anything 
less than .05 is considered to be a good fit.

For comparison, we also estimated the same model using 
the standard AB method, as implemented with the Stata com-
mand xtdpd. The last three columns of Table 1 display the 
results. Note that this method—because it is based on differ-
ence scores—cannot produce any estimates for the effect of 
ED, which does not change over time.6 The lagged effects of 
UNION and WKS (on itself) are similar to the estimates pro-
duced by PROC CALIS. However, the coefficient for the 
lagged effect of LWAGE is dramatically different from the 
ML estimate. This naturally raises the question of which 
method performs better, in general.

Monte Carlo Study

To evaluate the performance of the ML-SEM method and 
compare it with the AB method, we generated observations 
from the following cross-lagged panel model:

Figure 3. Path diagram for empirical example.

Table 1. Alternative Estimates for Dynamic Model with Fixed 
and Lagged Effects.

Maximum Likelihood 
Structural Equation 

Modeling Arellano-Bond

Predictor Estimate SE z Estimate SE z

wks(t – 1) .188 .020 9.59 .163 .039 4.18
lwage(t – 1) .588 .488 1.20 −1.276 .462 −2.76
union(t – 1) −1.206 .522 −2.31 −1.175 .513 −2.29
ed −.107 .056 −1.89  

5Stata, Mplus, and lavaan report somewhat lower values of these 
measures because they define the baseline model in a different way.
6The xtdpd model also included dummy variables for time to 
ensure comparability with the maximum likelihood structural equa-
tion modeling (ML-SEM) estimates.
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for i = 1, . . . , N and t = 2, . . . T. The time-invariant “fixed 
effects,” αi and ηi, were generated as bivariate standard nor-
mal variates with correlation ρ. The time-specific distur-
bances uit and vit were each standard normal and independent 
of all other exogenous variables. Parameters and data struc-
tures were varied as shown in Table 2.

The numbers in bold are the values for the baseline model. 
Each parameter was varied in turn while keeping all others at 
their baseline values. For each condition, 1,000 samples 
were generated. There were a total of 30 different 
conditions.

For each sample, we estimated the parameters in the equa-
tion for y as the dependent variable using both ML-SEM and 
AB. We used Stata both to generate the data and estimate the 
models. The sem command7 was used for ML-SEM, and the 
xtdpd command was used for AB. For the latter, we used the 
default one-step method with all available instruments.8 
Program code for the Monte Carlo simulations is available in 
an online appendix.

We will focus on the estimates for β1, the cross-lagged 
effect of x on y, and β2, the autoregressive effect of y on itself. 
For each of those parameters and for each condition, 
Appendix Table A.1 reports the mean and the standard devia-
tion of the estimates for β1 across the 1,000 samples as well 

as the “coverage”—the proportion of nominal 95 percent 
confidence intervals (calculated in each sample using the 
conventional normal approximation) that actually included 
the true values. If a method is performing well, the coverage 
should be close to .95.

Unlike AB, ML-SEM requires an iterative algorithm, and 
that algorithm sometimes fails to converge, especially with 
small samples and more extreme parameter values. Of the 30 
conditions in the simulation, 12 had convergence failures for 
at least one of the 1,000 samples. For each condition, 
Appendix Table A.1 gives the number of convergence fail-
ures. Of those conditions that had convergence failures, the 
number of failures ranged from 1 to 23 (out of 1,000 sam-
ples). Thus, in the worst case, only about 2 percent of the 
samples suffered convergence failures.

Samples with convergence failures are likely to be more 
extreme or unusual than those without such failures, and the 
exclusion of those samples could give an unfair advantage to 
ML-SEM. To avoid that possibility, we also excluded the 
same nonconvergent samples from the AB estimation.

In Appendix Table A.1, both ML-SEM and AB estimators 
appear at first glance to produce approximately unbiased 
point estimates of β1 (the cross-lagged effect of x on y) under 
all 30 conditions. However, the AB estimator actually shows 
a small downward bias under many conditions. Specifically, 
for AB, 11 of the thirty 95 percent Monte Carlo confidence 
intervals (not shown) do not include the true value because 
the upper confidence limit is less than the true value. For 
ML-SEM, on the other hand, every 95 percent Monte Carlo 
confidence interval includes the true value. Despite the 
downward bias in AB, the two estimators did about equally 
well for interval estimation. For both ML-SEM and AB, the 
median coverage over the 30 conditions was .949. ML-SEM 
coverage ranged from .934 to .957. For AB, the coverage 
ranged from .937 to .958.

For β2 (the lagged effect of y on itself), AB does substan-
tially worse than ML-SEM, as shown in Table A.2. Again, 
ML-SEM produces approximately unbiased estimates of β2 
under all conditions. Every 95 percent Monte Carlo confi-
dence interval included the true value. On the other hand, AB 
estimates are persistently smaller than the true values, and 
only one of the 95 percent Monte Carlo confidence intervals 
included the true value. This downward bias is generally 
small, however, except for the smaller sample sizes of N = 50 
and N = 100, where it’s quite apparent. Somewhat surpris-
ingly, given earlier literature, the bias is small even when β2 
is at or close to 1.0.

The bias in AB for β2 translates into slightly worse cover-
age for interval estimates. For ML-SEM, the median cover-
age over the 30 conditions was .951 with a range from .937 
to .965. For AB, the median coverage was .941, ranging from 
.890 (for N = 50) to .961.

Next, we examine the relative efficiency of ML-SEM and 
AB. We calculate relative efficiency as the ratio of the 

Table 2. Parameter Values for Monte Carlo Simulation.

N 50, 100, 400, 1,600
T 4, 5, 7, 10
ρ 0, .25, .50, .75, .90
β1 0, .25, .50, .75, 1.00
β2 0, .25, .50, .75, 1.00, 1.25
β4 –.25, 0, .25
g .75, 1.00, 1.50, 2.00
c .50, 1.00, 1.50, 2.00

Note: The numbers in bold are the values for the baseline model.

7We actually used the user-written command, xtdpdml, which 
serves as a simplifying shell for the sem command. For details, see 
Williams, Allison, and Moral-Benito (2016)
8The ML models were less restrictive than the Arellano-Bond (AB) 
models. Specifically, the ML-SEM models allowed for a differ-
ent intercept and a different error variance at each point in time, 
while the AB models constrained those estimates to be the same for 
all time points. Since the data-generating process embodied those 
constraints, both AB and ML-SEM should produce consistent esti-
mates. However, the fact that AB estimated fewer parameters may 
have given it some advantage in assessing the relative efficiency of 
the two estimators.

http://journals.sagepub.com/doi/suppl/10.1177/2378023117710578
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estimated mean square error for ML-SEM to the estimated 
mean square error for AB. Mean square error is the sampling 
variance plus the square of the bias. Across 30 different con-
ditions, the relative efficiency of AB compared with 
ML-SEM for estimating β1 ranged from .83 (AB did 17 per-
cent worse) to 1.12 (AB did 12 percent better), with a median 
of .96. So there was no clear winner for the cross-lagged 
effect. For β2, however, the relative efficiency ranged from 
.34 (AB did 66 percent worse) to .87 (AB did 13 percent 
worse) with a median of .68. To put this in perspective, if the 
relative efficiency is .50, then using AB rather than ML 
would be equivalent to discarding half of the sample.

What affects relative efficiency? Although the relative 
efficiencies for all conditions are shown in the last column of 
Tables A.1 and A.2, we also present some of them here to 
highlight key results. Table 3 gives the relative efficiencies 
of the estimators for β1 and β2 as a function of the number of 
time points.

For both β1 and β2, the relative efficiency of AB declines 
with the number of time points, although the decline is much 
more precipitous for β2, the autoregressive coefficient. These 
declines are consistent with the literature suggesting that 
when there are many time points—and therefore many 
instruments—AB is vulnerable to overfitting.

Unfortunately, there is a potential problem with the results 
in Table 3. Because our data-generating model was not con-
strained to be stationary, the variances and covariances at 
later time points may have differed from those at earlier time 
points. So the declines in efficiency observed in Table 3 
could reflect not the number of time points but rather changes 
over time in the pattern of variances and covariances. To 
avoid this possible confounding, we first produced approxi-
mate stationarity by generating data from 1,000 time points. 
Then, for the T = 4 condition, we used the data from the next 
four time points to estimate the model. The same strategy 
was used for T = 5, 7, and 10. Results in Table 4 show that the 
ML and AB estimators do about equally well for β1 regard-
less of the number of time points. For β2, however, the effi-
ciency of AB is quite low at all time points and declines 
noticeably as the number of time points grows larger. In this 
case, the inferiority of AB stems both from downward bias in 
the coefficients and from larger standard errors.

Previous work (Kiviet 2005) has suggested that the ratio of 
the fixed effects variance to the error variance may be an 
important factor in the efficiency of AB. Table 5 confirms this 

for β2 but not for β1. When the standard deviations of α and η 
are held constant at 1.0, increases in the standard deviations 
of ε and υ are associated with declines in the relative effi-
ciency of AB for β2 but not for β1. The direction is reversed 
when the standard deviation of ε is held constant and the stan-
dard deviation of α is varied—higher standard deviations of α 
result in higher relative efficiency of AB for β2.

Table 6 shows how relative efficiency is affected by the 
value of ρ, the correlation between the two fixed effects, α 
and η. For β1, there is no apparent trend. For β2, however, the 
relative efficiency of AB increases substantially as the cor-
relation goes from 0 to .90.

Finally, Table 7 shows how relative efficiency is affected 
by the magnitude of β1, the cross-lagged coefficient. As in 
the last two tables, the relative efficiencies of AB estimates 
for β1 are virtually unaffected. For β2, relative efficiency 
increases substantially as β1 gets larger.

There were three other factors that had no apparent effect 
on relative efficiency: the sign of β4 (the cross-lagged effect 
of y on x), sample size, and the magnitude of β2 (the autore-
gressive coefficient). The absence of a relationship with 
sample size and β2 is somewhat surprising. We expected 
ML-SEM to do better in smaller samples, and we expected 
AB to perform more poorly when β2 was close or equal to 
1.0. In fact, AB did quite well when β2 = 1, both in absolute 
terms and relative to ML-SEM.

Because ML-SEM is based on the assumption of multi-
variate normality, it has been suggested that it may do worse 
than AB when distributions are not normal. To check this out, 
for the baseline set of parameter values, all the random draws 
were made from a chi-square distribution with two degrees 
of freedom, a distribution that is highly skewed to the right. 

Table 3. How Number of Time Points Affects Relative Efficiency 
of the Arellano-Bond Method.

β1 β2

T = 4 1.040 .827
T = 5 .944 .708
T = 7 .939 .505
T = 10 .832 .337

Table 4. Number of Time Points and Relative Efficiency under 
Approximate Stationarity.

β1 β2

T = 4 .982 .562
T = 5 .989 .527
T = 7 1.038 .371
T = 10 1.029 .305

Table 5. How Relative Efficiency Depends on the Variance of ε 
and α.

β1 β2

SD(ε) = .25 .924 .716
SD(ε) = 1.0 .944 .708
SD(ε) = 1.5 .974 .640
SD(ε) = 2.0 .964 .570
SD(α) = .5 .981 .629
SD(α) = 1.0 .944 .708
SD(α) = 1.5 .989 .814
SD(α) = 2.0 .974 .863
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The last rows of Tables A.1 and A.2 show that both estima-
tors did well under this condition, but ML-SEM did better. 
The relative efficiency of AB was .908 for β1 and .619 for β2.

Discussion and Conclusion

Panel data have a lot of potential for improving our ability to 
make causal inferences from non-experimental data. But 
appropriate methods are needed take advantage of such data. 
The linear dynamic panel model of econometrics protects 
against two major threats to valid causal inference: unmea-
sured confounders and reverse causation. The Arellano-Bond 
method can produce approximately unbiased estimates of the 
parameters of that model under a wide range of conditions. 
One of our goals was to show that cross-lagged panel models 
can be estimated within this econometric framework by esti-
mating each side of the cross-lagged model separately. 
Compared with simultaneous estimation, this approach has 
the advantage producing estimates that are robust to mis-
specification of the lag structure or the functional form of the 
other side.

Unfortunately, the AB method is reputed to be problem-
atic when the autoregressive parameter is near 1.0, and its 
efficiency has also been questioned. Maximum likelihood 
methods based on first differences have been offered as an 
alternative, but they rely on questionable assumptions about 
the initial conditions.

In this article, we have shown that the linear dynamic panel 
model with predetermined regressors is a special case of the 
well-known linear structural equation model. Instead of relying 
on difference scores to eliminate the fixed effects, maximum 
likelihood estimation of this model is accomplished by allowing 
the fixed effects to have unrestricted correlations with the time-
varying predictors. The initial observations of the dependent 
variable are treated just like any other exogenous variables. 

Cross-lagged causation is accommodated by allowing the error 
term in each equation to correlate with future values of the time-
dependent predictors. Many different statistical packages, both 
freeware and commercial, can implement the ML-SEM method.

Monte Carlo simulations showed that ML-SEM produced 
approximately unbiased estimates under all the conditions 
studied. Confidence interval coverage was also excellent. 
The AB estimator also did very well for the cross-lagged 
parameter, although with some downward bias. For the 
autoregressive parameter, however, the downward bias in 
AB was much more substantial, and its efficiency (relative to 
ML-SEM) was poor under most conditions. For this param-
eter, the efficiency of AB relative to ML-SEM also declined 
markedly as the number of time points increased.

So one key conclusion from the simulations is that if you 
are primarily interested in the cross-lagged coefficients, AB 
and ML-SEM have statistical properties that are about 
equally good. Nevertheless, there are still plenty of reasons 
why one might prefer ML-SEM. As detailed by Bollen and 
Brand (2010), the ML-SEM method can be extended in sev-
eral ways. Although maximum likelihood is the default esti-
mator for all SEM packages, most packages offer alternative 
methods, including the asymptotic distribution free method 
of Browne (1984). Many packages also have options for 
robust standard errors. Many of the constraints that are 
implied by the linear dynamic panel model can be easily 
relaxed in the SEM setting. We already showed how the error 
variances can be allowed to vary with time. One could also 
allow the coefficients to vary with time.

It’s even possible to allow the coefficient of α, the fixed 
effect, to vary with time instead of being constrained to 1 for 
every time point. This option is attractive because it removes 
one of the principal limitations of the classic fixed effects 
estimator: that it does not control for unmeasured time-invari-
ant variables when their effects change over time. It is also 
possible to allow for individual-specific trends that are cor-
related with the time-varying predictors (Teachman 2014).

With regard to unbalanced samples and missing data more 
generally, most SEM packages have the option of handling 
missing data by FIML. Unlike AB, FIML can easily handle 
missing data on predictor variables.9

Although we have not considered models with simultane-
ous reciprocal effects, such effects can certainly be built into 
SEM models if appropriate instruments are available. Finally, 
some SEM packages (like Mplus or the gsem command in 
Stata) can estimate similar models for categorical dependent 
variables.

Are there any downsides to ML-SEM? As noted earlier, 
ML-SEM is not suitable when T is large relative to N. This is 
easily seen from the fact that ML-SEM operates on the full 
covariance matrix for all the variables at all points in time. 
For example, if the predictors in the model consist of nine 

Table 6. How Relative Efficiency Depends on ρ.

β1 β2

ρ = 0 .936 .378
ρ = .25 1.044 .467
ρ = .50 .881 .535
ρ = .75 .944 .708
ρ = .90 .942 .759

Table 7. How Relative Efficiency Depends on β1.

β1 β2

β1 = 0 .978 .483
β1 = .25 .944 .708
β1 = .50 .959 .750
β1 = .75 .875 .814
β1 = 1.00 .938 .779

9For examples of the use of FIML to handle missing data, see 
Williams et al. (2016) and Moral-Benito et al. (2017).
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time-varying variables and T = 11, then the covariance matrix 
will be 101 × 101. And unless N > 101, that matrix will not 
have full rank, causing the maximization algorithm to break 
down. As noted earlier, ML-SEM will sometimes fail to con-
verge. And even if it converges, computation time can be con-
siderably greater than for AB, especially when using FIML to 
handle missing data.

As can be seen from Figure 2 and Appendix B, program 
code for ML-SEM can be more complex than for the AB 
method. Not only are ML-SEM programs typically longer, 
but it can also be challenging for the analyst to figure out 
exactly how to specify the model so that the correct covari-
ances are either set to 0 or left unconstrained. This 

challenge is exacerbated by the fact that different packages 
have different defaults for the covariances and different 
ways of overriding those defaults.

Of course, this is just a programming issue, and it would 
certainly be feasible to write a Stata command, a SAS macro, 
or an R function that would automatically set up the correct 
model with minimal input from the user. As noted earlier, we 
have already developed a Stata command called xtdpdml 
that does exactly that (Williams, Allison, and Moral-Benito 
2016). This command radically reduces the programming 
needed for ML-SEM and is actually simpler to use than the 
built-in Stata commands for AB estimation (xtabond, xtdpd, 
or xtdpdsys).

Appendix

A. Results from Monte Carlo Simulations

Table A.1. Performance of Maximum Likelihood and Arellano-Bond Estimators of β1, the Lagged Effect of x on y.

Maximum Likelihood Arellano-Bond  

Condition Truea Nonconvergeb Meanc SDd Coveragee Meanc SDd Coveragee Relative Efficiency

N = 50 .25 19 .256 .0975 .934 .240 .0918 .939 1.121
N = 100 .25 23 .250 .0664 .946 .242 .0664 .943 .985
N = 400 .25 .250 .0314 .949 .249 .0323 .952 .944
N = 1,600 .25 .250 .0161 .947 .250 .0164 .952 .964
β2 = 0 .25 .250 .0325 .950 .252 .0324 .955 1.004
β2 = .25 .25 .251 .0322 .947 .252 .0310 .954 1.076
β2 = .50 .25 .251 .0313 .950 .249 .0318 .949 .969
β2 = .75 .25 .250 .0314 .949 .249 .0323 .952 .944
β2 = .90 .25 .251 .0324 .953 .248 .0343 .943 .890
β2 = 1.0 .25 .249 .0328 .949 .249 .0346 .949 .900
β2 = 1.25 .25 .249 .0335 .957 .248 .0345 .941 .942
β1 = 0 .00 2 .000 .0331 .947 −.002 .0334 .947 .978
β1 = .25 .25 .250 .0314 .949 .249 .0323 .952 .944
β1 = .50 .50 .500 .0310 .953 .498 .0316 .958 .959
β1 = .75 .75 .750 .0304 .954 .749 .0325 .957 .875
β1 = 1.00 1.00 1.001 .0300 .948 1.000 .0310 .948 .938
β1 = –.25 .25 .250 .0314 .949 .249 .0323 .952 .944
β1 = 0 .25 4 .250 .0337 .948 .250 .0336 .949 1.007
β1 = .25 .25 23 .250 .0311 .950 .251 .0309 .949 1.014
ρ = 0 .25 4 .251 .0325 .947 .248 .0336 .941 .936
ρ = .25 .25 .250 .0337 .939 .248 .0329 .949 1.044
ρ = .50 .25 .250 .0315 .954 .247 .0334 .951 .881
ρ = .75 .25 .250 .0314 .949 .249 .0323 .952 .944
ρ = .90 .25 .252 .0321 .940 .249 .0331 .953 .942
SD(ε) = .25 .25 15 .251 .0305 .950 .249 .0317 .944 .924
SD(ε) = 1.0 .25 .250 .0314 .949 .249 .0323 .952 .944
SD(ε) = 1.5 .25 1 .250 .0325 .954 .247 .0328 .951 .974
SD(ε) = 2 .25 13 .250 .0318 .949 .247 .0322 .954 .964

 (continued)
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Maximum Likelihood Arellano-Bond  

Condition Truea Nonconvergeb Meanc SDd Coveragee Meanc SDd Coveragee Relative Efficiency

SD(α) = .5 .25 .250 .0336 .938 .247 .0338 .937 .981
SD(α) = 1.0 .25 21 .250 .0314 .949 .249 .0323 .952 .944
SD(α) = 1.5 .25 .251 .0315 .949 .250 .0318 .955 .989
SD(α) = 2.0 .25 2 .251 .0317 .945 .250 .0322 .941 .974
T = 4 .25 .250 .0402 .947 .249 .0394 .948 1.040
T = 5 .25 .250 .0314 .949 .249 .0323 .952 .944
T = 7 .25 8 .251 .0247 .952 .248 .0254 .949 .939
T = 10 .25 .250 .0188 .949 .246 .0203 .941 .832
Chi-square .25 .252 .0315 .941 .250 .0331 .947 .908

aTrue value of the coefficient in the model producing the data.
bNumber of nonconvergent samples for maximum likelihood.
cMean of 1,000 parameter estimates.
dStandard deviation of 1,000 parameter estimates.
dProportion of nominal 95 percent confidence intervals that include the true value.

Table A.2. Performance of Maximum Likelihood and Arellano-Bond Estimators of β2, the Lagged Effect of y on Itself.

Maximum Likelihood Arellano-Bond  

Condition Truea Meanb SDc Coveraged Meanb SDc Coveraged Relative Efficiency

N = 50 .75 .752 .0917 .953 .680 .1021 .890 .549
N = 100 .75 .752 .0675 .951 .716 .0760 .914 .657
N = 400 .75 .750 .0325 .953 .742 .0377 .950 .708
N = 1,600 .75 .750 .0159 .955 .748 .0195 .946 .656
β2 = 0 .00 .001 .0327 .948 −.005 .0377 .955 .738
β2 = .25 .25 .248 .0322 .964 .241 .0456 .951 .554
β2 = .50 .50 .499 .0378 .952 .488 .0492 .947 .554
β2 = .75 .75 .750 .0325 .953 .742 .0377 .950 .708
β2 = .90 .90 .901 .0257 .961 .895 .0289 .952 .769
β2 = 1.0 1.00 .999 .0219 .956 .996 .0243 .940 .798
β2 = 1.25 1.25 1.250 .0150 .947 1.249 .0160 .942 .867
β1 = 0 .25 .752 .0425 .960 .730 .0577 .936 .483
β1 = .25 .25 .750 .0325 .953 .742 .0377 .950 .708
β1 = .50 .75 .750 .0249 .953 .747 .0286 .952 .750
β1 = .75 .75 .750 .0208 .956 .748 .0229 .946 .814
β1 = 1.00 .75 .751 .0175 .948 .748 .0198 .933 .779
β4 = –.25 .75 .750 .0325 .953 .742 .0377 .950 .708
β4 = 0 .75 .751 .0303 .953 .743 .0344 .942 .749
β4 = .25 .75 .749 .0294 .938 .743 .0323 .938 .788
ρ = 0 .75 .753 .0418 .948 .727 .0640 .919 .378
ρ = .25 .75 .752 .0380 .948 .736 .0540 .929 .467
ρ = .50 .75 .750 .0352 .948 .737 .0464 .925 .535
ρ = .75 .75 .750 .0325 .953 .742 .0377 .950 .708
ρ = .90 .75 .751 .0305 .950 .742 .0343 .949 .759
SD(ε) = .25 .75 .751 .0254 .942 .745 .0296 .944 .716
SD(ε) = 1.0 .75 .750 .0325 .953 .742 .0377 .950 .708
SD(ε) = 1.5 .75 .751 .0455 .951 .731 .0536 .935 .640
SD(ε) = 2 .75 .750 .0519 .965 .723 .0632 .934 .570
SD(α) = .5 .75 .752 .0552 .948 .725 .0650 .919 .629
SD(α) = 1.0 .75 .750 .0325 .953 .742 .0377 .950 .708
SD(α) = 1.5 .75 .751 .0232 .946 .747 .0256 .943 .814

Table A1. (continued)

 (continued)
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B. Example Program Code for Other Software 
Packages
Stata

 1 use c:\wagewide.dta, clear
 2 sem (wks2 <- lwage1@a wks1@b union1@c ed@d 

Alpha@1 E2@1) ///
 3     (wks3 <- lwage2@a wks2@b union2@c ed@d 

Alpha@1 E3@1) ///
 4     (wks4 <- lwage3@a wks3@b union3@c ed@d 

Alpha@1 E4@1) ///
 5     (wks5 <- lwage4@a wks4@b union4@c ed@d 

Alpha@1 E5@1) ///
 6     (wks6 <- lwage5@a wks5@b union5@c ed@d 

Alpha@1 ) ///
 7     (wks7 <- lwage6@a wks6@b union6@c ed@d 

Alpha@1 ), ///
 8 var(e.wks2@0 e.wks3@0 e.wks4@0 e.wks5@0) ///
 9 cov(Alpha*(ed E*)@0) cov(_OEx*(E2 E3 E4 

E5)@0) ///
10 cov(E2*(E3 E4 E5)@0) cov(E3*(E4 E5)@0) 

cov(E4*(E5)@0) ///
11 cov(E2*(union3 union4 union5 union6)) ///
12 cov(E3*(union4 union5 union6)) ///
13 cov(E4*(union5 union6)) cov(E5*union6) noxcondi-

tional ///
14 var(E2-E5@f e.wks6@f e.wks7@f)

Explanation
•• Line 1 reads the wide-form data into memory.
•• Lines 2–14 are all one single sem command. The /// at 

the end of each line allows the command to be spread 
across multiple lines in a DO file.

•• Lines 2–7 specify the linear equations for years 2 
through 7.

•• The rule is that variable names (like lwage1) that 
begin with lower-case letters are observed variables, 
while variable names that begin with upper-case let-
ters (like Alpha) are latent.

Maximum Likelihood Arellano-Bond  

Condition Truea Meanb SDc Coveraged Meanb SDc Coveraged Relative Efficiency

SD(α) = 2.0 .75 .751 .0176 .951 .749 .0189 .961 .863
T = 4 .75 .752 .0483 .944 .744 .0529 .946 .827
T = 5 .75 .750 .0325 .953 .742 .0377 .950 .708
T = 7 .75 .750 .0224 .938 .739 .0295 .928 .505
T = 10 .75 .750 .0157 .950 .736 .0231 .898 .337
Chi-square .75 .750 .0317 .959 .744 .0398 .941 .619

aTrue value of the coefficient in the model producing the data.
bMean of 1,000 parameter estimates.
cStandard deviation of 1,000 parameter estimates.
dProportion of nominal 95 percent confidence intervals that include the true value.

Table A2. (continued)

•• @a assigns the name a to the coefficient for lwage1. 
Giving parameters the same name constrains them to 
be equal. Alpha@1 constrains the coefficient of Alpha 
to be 1.0.

•• An unfortunate limitation of the sem command is that 
it does not allow the error term in an equation to be 
correlated with observed, exogenous variables. But 
that’s exactly what we need to do for the dynamic 
panel model: allow error terms to be correlated with 
future values of the time-dependent predictors, in this 
case union. The workaround is to suppress the original 
error terms (by setting their variances equal to 0 in line 
8) and introducing new latent error terms E2-E5 in 
lines 2–5. There is no need to do that at times 6 and 7 
because there are no future values of union in the 
model.

•• In line 9, the first cov option sets to 0 the covariance 
between Alpha and the time-invariant predictor ed, as 
well as the covariances between Alpha and the new 
error terms. The second cov option sets to 0 the covari-
ances between the new error terms and all of the 
observed, exogenous variables ( _OEx).

•• Line 10 constrains the all the new error terms to be 
uncorrelated with each other.

•• Lines 11–13 allow the new error terms to be corre-
lated with future values of the predetermined predic-
tor, union.

•• The noxconditional option on line 13 requests that 
the means, variances, and covariances of the observed 
exogenous variables be included in the parameters. 
For unknown reasons, the model will not run correctly 
without this option.

•• Line 14 constrains the error variance to be the same at 
all time points. This is generally not advisable but was 
done here to ensure comparability with the AB 
method.

This model can also be estimated in Stata with the user-writ-
ten xtdpdml command, which acts as a simplifying shell for 
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the sem command (Williams Allison, and Moral-Benito 
2016). The code for this example is:

use c:\wages.dta, clear

xtset id t

xtdpdml wks L.lwage, pre(L.union) inv(ed) errorinv

Mplus
 1 data: file = ‘C:\wagewide.csv’;
 2 variable: names =
 3     id ed fem blk wks1 wks2 wks3 wks4 wks5 

wks6 wks7
 4     lwage1 lwage2 lwage3 lwage4 lwage5 

lwage6 lwage7
 5     union1 union2 union3 union4 union5 union6 

union7
 6    ms1 ms2 ms3 ms4 ms5 ms6 ms7;
 7 usevar=ed wks1 wks2 wks3 wks4 wks5 wks6 wks7
 8     lwage1 lwage2 lwage3 lwage4 lwage5 

lwage6
 9    union1 union2 union3 union4 union5 union6;
10 model:
11     alpha by wks2@1 wks3@1 wks4@1 wks5@1 

wks6@1 wks7@1;
12    wks2 on lwage1 (1)
13         wks1 (2)
14        union1 (3)
15           ed (4);
16    wks3 on lwage2 (1)
17          wks2 (2)
18        union2 (3)
19            ed (4);
20    wks4 on lwage3 (1)
21         wks3 (2)
22        union3 (3)
23          ed (4);
24    wks5 on lwage4 (1)
25         wks4 (2)
26          union4 (3)
27          ed (4);
28    wks6 on lwage5 (1)
29         wks5 (2)
30        union5 (3)
31          ed (4);
32    wks7 on lwage6 (1)
33          wks6 (2)
34        union6 (3)
35          ed (4);
36  alpha with wks1 lwage1-lwage6 union1-union6;
37  wks2 with union3-union6;
38  wks3 with union4-union6;
39  wks4 with union5 union6;
40  wks5 with union6;
41  ed on wks1 lwage1-lwage6 union1-union6;
42.  wks2-wks7 (5);

Explanation
•• Line 1 specifies the location of the data file. It must be 

a text file in free format: one record per person, no 
variable names, and spaces between values.

•• Lines 2–6 assign names to the variables in the order in 
which they appear on the data file.

•• Lines 7–9 restrict the variables to those that actually 
appear in the model.

•• Line 10 begins the model specification.
•• Line 11 defines the latent variable alpha by specifying 

its indicators, each of which has a “factor loading” 
constrained to be 1.0.

•• Lines 12–15 specify the first regression equation. In 
order to constrain coefficients to be the same across 
equations, the predictors must be on different lines, 
with a number in parentheses at the end of each line.

•• Lines 16–35 specify the regressions for the remaining 
time points. Coefficients for variables followed by the 
same numbers are constrained to be the same.

•• Line 36 allows the latent variable alpha to be corre-
lated with the predictor variables, except for ed.

•• Lines 37–40 allow the error term in each equation to 
be correlated with future values of the predetermined 
variable union.

•• Line 41 allows ed to be correlated with all the other 
exogenous variables. It accomplishes this by specify-
ing a regression with ed as the dependent variable.

•• Line 42 constrains the error variances to be the same at 
all time points. This is generally not advisable but was 
done here to ensure comparability with the AB method.

lavaan (R package)
 1 wage <- read.table(″C:/wagenames.txt″,header=T)
 2 wagemod <-’
 3 alpha =~ 1*wks2 + 1*wks3 + 1*wks4 + 1*wks5 + 

1*wks6 + 1*wks7
 4 wks2 ~ a*wks1 + b*union1 + c*lwage1 + d*ed
 5 wks3 ~ a*wks2 + b*union2 + c*lwage2 + d*ed
 6 wks4 ~ a*wks3 + b*union3 + c*lwage3 + d*ed
 7 wks5 ~ a*wks4 + b*union4 + c*lwage4 + d*ed
 8 wks6 ~ a*wks5 + b*union5 + c*lwage5 + d*ed
 9 wks7 ~ a*wks6 + b*union6 + c*lwage6 + d*ed
10 wks2 ~~ union3 + union4 + union5 + union6
11 wks3 ~~ union4 + union5 + union6
12 wks4 ~~ union5 + union6
13 wks5 ~~ union6
14 alpha ~ wks1+lwage1+lwage2+lwage3+lwage4 

+lwage5+lwage6+
15  union1+union2+union3+union4+union5+union6
16 union6 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4

+lwage5+lwage6+
17  union1+union2+union3+union4+union5
18 union5 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4

+lwage5+lwage6+
19  union1+union2+union3+union4
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20 union4 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4
+lwage5+lwage6+

21  union1+union2+union3
22 union3 ~ ed+wks1+lwage1+lwage2+lwage3+lwage4

+lwage5+lwage6+
23  union1+union2
24 wks2 ~~ f*wks2
25 wks3 ~~ f*wks3
26 wks4 ~~ f*wks4
27 wks5 ~~ f*wks5
28 wks6 ~~ f*wks6
29 wks7 ~~ f*wks7 ‘
30 wagefit <- sem(wagemod,data=wage)
31 summary(wagefit)

Explanation
•• Line 1 reads the data from a text file in free format 

with variable names in the first row. This data set is 
assigned the name wage.

•• Lines 2–23 specify the model, which is stored in the 
object wagemod. The model specification is a “lit-
eral” that is demarcated by single quotes.

•• Line 3 defines the latent variable alpha by naming its 
indicators, each with a “factor loading” of 1.0. The 
symbol =~ means “is measured by”.

•• Lines 4–9 specify the six regression equations. The sym-
bol ~ means “is regressed on.” The letters preceding each 
variable are the names of the coefficients. Coefficients 
with the same names are constrained to be equal.

•• Lines 10–13 allow the error terms in each of the equa-
tions to be correlated with future values of the predeter-
mined variable union. The symbol ~~ means “is 
correlated with.”

•• Lines 14–15 allow the latent variable alpha to be cor-
related with other exogenous variables, except for ed.

•• Lines 16–23 allow the union variables to be correlated 
with other exogenous variables. This is necessary 
because lines 10–13 caused the union variables to be 
treated as endogenous, and the default in lavaan is to 
presume that endogenous and exogenous variables are 
uncorrelated.

•• Lines 24–29 impose the constraint that error variances 
are the same at all time points. This is not generally 
advisable but was done here to ensure comparability 
with the AB method.

•• Line 30 calls the sem function, which actually fits the 
model, using the wage data and the wagemod model 
specification.

•• Line 31 reports the estimates and associated statistics.

Authors’ Note

These data are widely available on the Web. We downloaded them 
from http://people.stern.nyu.edu/wgreene/Econometrics/PanelData 
Sets.htm.
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