Logit and probit regression models for dichotomous data make no explicit
allowance for heterogeneity induced by omitted explanatory variables or by
random fluctuations. This article considers several alternative models for incor-
porating heterogeneity by the inclusion of a disturbance term. When all the
observations are independent, the presence of the disturbance has few empirical
consequences. In particular, the variance of the observed counts does not increase
and conventional estimators are still appropriate. For some models, however,
the disturbance variance may invalidate cross-population comparisons. Quite
different implications arise with grouped data when there is a single realization of
the disturbance for each group. The observed variance is increased and conven-
tional estimators are inefficient. Several alternative estimators are considered.
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egression models for dichotomous dependent variables
usually take the following form. Let Y be a random
variable with possible values of 0 and 1, and let x be a K X I vector
of explanatory variables.' Then

Pr(Y = 1) = F(Bx) (1]

where B is a 1 X K vector of unknown coefficients and F is some
function bounded by 0 and 1. Since the cumulative distribution
function (c.d.f.) for any random variable must satisfy these
bounds, it is common to choose F as some c.d.f. For example, the
logit (logistic) regression model (Cox, 1970) specifies F as the
c.d.f. for the standard logistic distribution,

F(z)=1/(1+¢"), (2]
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while the probit regression model (Finney, 1971) specifies F as the
c.d.f. for a standard normal variable.

While the model of equation 1 has proved useful in a wide vari-
ety of settings, it has been criticized for asserting that Pr(Y = 1) is
completely determined by x, with no explicit allowance for
heterogeneity induced by omitted explanatory variables or for
random fluctuations of the probability about some expected
value (Amemiya and Nold, 1975; Hanushek and Jackson, 1977).
These criticisms have been motivated both by the inherent implau-
sibility of this specification, and by the observation that, for
grouped data, the variation in the observed frequencies often
greatly exceeds that expected under the postulated model (Baker
and Nelder, 1978: §6.4).

To remedy this shortcoming, Amemiya and Nold (1975) intro-
duced an unobserved random disturbance into equation 1. They
argued that the presence of such a disturbance term implies that
the usual maximum likelihood (ML) or weighted least squares
(WLS) estimators for B are inefficient, and that estimated stan-
dard errors are biased downward. To avoid these difficulties, they
proposed a modification of the usual WLS estimator.

In this article I consider some alternative ways to introduce a
disturbance into equation 1, and I conclude that the consequences
differ markedly among the various specifications. I first demon-
strate that, for individual-level data with independent observa-
tions, the disturbance term has few if any consequences for
estimation but may invalidate cross-population comparisons.
For grouped data, I show that the results of Amemiya and Nold
are misleading because they failed to recognize that their model
implies dependence among the dichotomous observations in each
group. Finally, I survey alternative methods for models in which
the disturbance term induces dependence among the observations.

ALTERNATIVE MODELS FOR
INDIVIDUAL-LEVEL DATA

Amemiya and Nold (1975) proposed a model of the general
form
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Pr(Yi = 1]&) = F(Bxi + &), (3]

where the ¢ are unobserved random variables, independently dis-
tributed with E(e;) =0 fori=1, ..., n. This is equivalent to the
binomial trials model of Winship and Mare (1983). Amemiya and
Nold further assumed that F is the logistic function (equation 2)
and that var(e) = o°, a constant over i.

While equation 3 is certainly a plausible specification, another
approach is to position ¢ outside the function F so that

Pr(Yi = 1]&) = F(Bx) + €, [4]

again with E(e) = 0 for all i. To distinguish these alternatives, I shall
refer to equation 3 as an internal model and to equation 4 as an
external model. Note that the disturbance term in the external
model must satisfy

-F(Bxi) < & = 1 - F(Bx)). [5]

While this constraint may seem awkward, it is of course equivalent
to assuming that Pr(Y; = 1) is a random variable on the interval
[0, 1] with a mean of F(Bx;). Such an approach has along tradition
in Bayesian analysis (Wonnacott and Wonnacott, 1984: 524), and
is also well known for a special case of equation 4, the beta-
binomial model discussed below.

For ML estimation of either the internal or external models, it is
desirable to obtain the marginal distribution of Y (not conditioned
on €). This may be difficult for the internal model but is simple for
the external model. From equation 4 we have

Pr(Y = 1) = E[Pr(Y = 1]¢)]
= E[F(Bx) + €]
= F(Bx) + E(¢) = F(Bx). [6]

Thus the marginal distribution of Y does not depend at all on the
distribution of € and, in fact, is the same as the original model of
equation 1 that did not have a disturbance term. This implies that
the likelihood function for observations on Y and x is identical for
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equations 1 and 4 and, hence, no special estimation procedures
are needed. Note that this conclusion holds for any distribution
function F. It is also unnecessary to assume that var(e) is a
constant; in fact, the distribution of ¢ could have an entirely
different shape for each observation. Although this result sim-
plifies the problem considerably, it does mean that the data
contain no information about ¢ even though, in some situations,
the distribution of ¢ might be of substantive interest.

If one begins with the internal model of equation 3, on the other
hand, the situation is more difficult. The problem comes in eval-
uating the integral

Pr(Y = 1) = E[Pr(Y = 11e)] = ] " R + ©)g(e)de 7]

—o0

where g(.) is the density function for €. To proceed further, it is
necessary to specify the functions F and g.

Consider first the probit model in which F = ® where ® is the
standard normal c.d.f. Assume further that e has a normal distri-
bution with a mean of zero and a constant variance ¢*>. Under
these conditions, it has been shown (Finney, 1971: 196-197;
Muthén, 1979) that

Pr(Y = 1) = (B*x) (8]
where

B* = B/(a”+ 1)'/? [9]

Thus introducing an internal, normal random disturbance into
the probit model yields another probit model, but with the coeffi-
cient vector scaled downward by a factor that varies inversely
with the variance of the disturbance term.

Although the presence of the disturbance term is consequential
in this case, the fact that equation 8 has the same form as the
standard probit model means that the two models cannot be
empirically distinguished. More specifically, 8 and ¢’ are not
separately identifiable since for any change in ¢ there is a com-
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pensating change in B that leaves the likelihood unchanged. On
the other hand, B8* can be estimated using standard maximum
likelihood procedures with the usual asymptotic properties of
efficiency and consistent standard error estimates.

Although we cannot directly estimate 8 under this model, some
inferences about B for a single population are quite feasible. Since
B = 0 implies that B, = 0 (and vice versa) for any k, a test of the
former hypothesis is also a test of the latter. Inferences about
relative magnitudes of coefficients of different explanatory vari-
ables are also appropriate because Si*/ 8* = Bx/ B for allk and j. On
the other hand, comparisons of parameter estimates across popu-
lations or subpopulations will be meaningless unless the variance
of € is constant across the groups being compared.

For an internal logit model, evaluation of the integral in equa-
tion 7 is considerably more difficult. To be more specific, let us
suppose that

Pr(Y = 1]e) = F(Bx + o¢) [10]

where F is the logistic function (equation 2) and € has a standard
logistic distribution, that is, its c.d.f. is also given by equation 2.
Although Amemiya and Nold (1975) correctly observed that
there is no general closed-form solution to equation 7 in the
logistic case, Hakkert (1978) has obtained results for certain
values of 0. Foro =1,

Pr(Y = 1) = [1 - (Bx + De®]/[1 - e ®T. [11]
Foro =2,

e + eP(Bx + 1) - Yame" (e — 1)
(e# + 1)?

Pr(Y=1)= [12]

Thus the disturbance term clearly changes the form of the depen-
dence of Pr(Y = 1) on x. The fact that the likelihood function, in
this case, does depend on the magnitude of the disturbance vari-
ance suggests that it may be possible to draw inferences about o.
Nevertheless, for the general model of equation 3, Schoenberg
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(1985) has shown that the expected information matrix for 8 and
o is singular, implying that 8 and o are not separately identifiable.

Although equations 11 and 12 appear to be quite different from
the simple logistic function in equation 2, both equations can
actually be closely approximated by equation 2. Since the normal
and logistic distributions are so similar in shape (Cox, 1970), it
seems plausible that a result similar to equations 8 and 9 should
also hold approximately for the internal logit model. Specifically,
one might expect that under equation 10,

Pr(Y = 1) = F(B*x) [13]

where F is the logistic function and B* is given by equation 9.
I have carried out two studies to investigate the adequacy of this
approximation, and both support it strongly.” Moreover, the
closeness of the approximation does not seem to deteriorate with
increasing values of o. It thus appears that when an internal
logistic disturbance is introduced into a logit regression model,
the practical consequence is that the coefficient estimates are
scaled downward by the factor given in equation 9.

In sum, the presence of a random disturbance in logit and
probit regression models does not vitiate the use of standard
estimation procedures. Nevertheless, the ability to compare co-
efficient estimates across different populations (or the same popu-
lation at different points in time) depends critically on whether
an internal or external model applies. Under the external model,
such comparisons are perfectly legitimate. Under the internal
model, however, cross-population comparisons are valid only if
the populations have the same disturbance variance.

Unfortunately, there seems to be little basis for choosing
between these alternative approaches. Empirically, the internal
and external probit models are indistinguishable. While the ex-
ternal logitmodelis, in principle, distinguishable from the internal
logit model, the functional forms are so similar that it would take
extremely large samples to discriminate between them; even if
such samples were available, minor specification errors would
surely confound the discrimination.
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With regard to theoretical plausibility, there are some reasons
to prefer the internal model. For one thing, it avoids the con-
straints of expression 5 that some may find artificial. For another,
the internal model seems to capture better the notion of omitted
explanatory variables. These are hardly compelling arguments,
however.

ALTERNATIVE MODELS
FOR GROUPED DATA

We turn now to the case in which there are multiple observa-
tions on Y for each value of x. This can happen in one of two
ways: First, for a single unit of analysis with unchanging charac-
teristics represented by x, we may observe Y on multiple occa-
sions or for multiple components.’ Second, for a sample of cases,
we may group together those that have the same values on all the
explanatory variables. Although both of these designs are com-
monly referred to as grouped data, we shall see that different
models are needed to describe them. In fact, the main problem
with the work of Amemiya and Nold (1975) was their failure to
distinguish these two cases.

Suppose we have J groups (j=1,...,J), and for each group we
have a K X 1 vector of explanatory variables x;. For each j we also
have n; observations on Y;; that may take on values of 0 or 1. Let
R; = 3;Yj;, that is, the number of times that Y; = 1 within unit j.
Now suppose the aim is to formulate an external model for such
data. Assuming that each observation on Y has its own distur-
bance term, we can write

PI‘(Yij =1 |€ij) = F(ﬂxj) + €ij, [14]

where the ¢; are mutually independent with E(e;) = 0 for alliand j.
This model is fully equivalent to equation 4 for individual-level
data and, hence, the same conclusions apply. Specifically, the
marginal distribution of Y;;does not depend on the distribution of
eij, and reduces to equation 1. This implies that R; is binomially
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distributed with parameter m; = F(Bx;). It follows that standard
WLS or ML estimators for 8 are entirely appropriate.

The same reasoning applies when e; is placed internal to the
function F(.). In the case of the internal probit model, R; is
binomially distributed with m; = ®(B*x;) where B* is given by
equation 9. For the internal logit model, R; is again binomially
distributed with 7 given by the integral in equation 7 where F and
g are the c.d.f. and density, respectively, for the standard logistic
distribution. This can be approximated by F(B8*x;) where F is the
logistic c.d.f. and B* is given by equation 9. These are essentially
the conclusions reached in the previous section for individual-
level data.

Amemiya and Nold (1975), on the other hand, took an
approach that is not equivalent to the models for individual-level
data. They assumed that there is a single realization of the ran-
dom disturbance ¢ for all the observations in each group. For an
internal model, this can be expressed as

Pr(Y; = 1|g) = F(Bx; + ), [15]

where the ¢’s are mutually independent with means of 0. Under
this model, R; still has a binomial distribution conditional on e,
but unconditionally it is a mixture of binomials with a variance
exceeding that of the binomial variance (Kleinman, 1973). As a
result, conventional ML or WLS estimators for both logit and
probit models will, in general, be inefficient. Amemiya and Nold
also claimed that the estimated covariance matrix for the coeffi-
cients will be biased toward0.

The situation is virtually unchanged if we shift to an external
positioning of the disturbance term:

Pr(Y; = 1) = F(Bx) + &. [16]

Under this alternative specification, the distribution of R;is still a
mixture of binomials and the same conclusions apply: The vari-
ance of R; will exceed that of a binomial variate, and conventional
estimation procedures will be inefficient.
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What Amemiya and Nold failed to note is that the models in
equations 15 and 16 imply mutual dependence among the obser-
vations in each group. Conditional on ¢, the Y;; in each group are
independent, but unconditionally they are not. In the case of the
external model (equation 16), for example, it is easily shown that
cov (Y, Yy = var(g) for i 7 1. As discussed below, such depen-
dence may be quite appropriate for data in which multiple obser-
vations on Y;; are collected for a single physical or social unit. It is
not appropriate, however, for most applications of logit or probit
to grouped data. Typically, one starts with a sample of apparently
independent observations, then groups them by equality or prox-
imity of the values of the explanatory variables.

For example, Amemiya and Nold (1975) applied their model
to asample of 1,523 households for which the dependent variable
was whether or not consumer durables were purchased in the
previous year. The households were aggregated into 32 groups
formed by the cross-classification of income (with 16 intervals)
and whether or not a residence change occurred in the preceding
two years. Now if the households were independent to begin with
(and there was no reason to suspect otherwise), grouping them by
the values of the explanatory variables should not change that
fact. Parks (1977) also applied the model of Amemiya and Nold
to a set of data in which there was no apparent reason why
observations within each group should be dependent. For these
and most other applications, a more appropriate model would be
equation 14 that specifies a distinct disturbance variable for each
observation, withindependence among the disturbances. For this
and similar models, conventional estimators should be quite
satisfactory.*

There will, of course, be situations in which it is desirable to
allow for dependence among the observations in each group. In
much toxicological work, for example, the groups are animal
litters and there has been considerable interest in modeling depen-
dence due to litter effects (Haseman and Kupper, 1979). For
psychological tests consisting of a set of dichotomous items, it is
implausible that an individual’s responses to these items would be
independent (Lord and Novick, 1968). Heckman and Willis (1977)
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analyzed data in which the “groups” were individual women and
the response variables were whether or not a woman was in the
labor force in each year of a five-year interval. Clearly such
observations should not be treated as independent.

The data in Table 1 provide another example. The groups are
universities and the observations consist of all persons who
received a Ph.D. in biochemistry at each university in 1957-1958
or 1962-1963. The outcome variable (Y;) was whether or not the
person subsequently received postdoctoral training (at any uni-
versity). The single explanatory variable is the total amount of
NIH obligations to each university in 1964; the question to be
answered is whether universities with greater federal funding
produce Ph.Ds who are more likely to get postdoctoral training.
For a more detailed description of the data, see McGinnis,
Allison, and Long (1982).

For these data, it is reasonable to believe that there are un-
observed university effects, which might be represented by a
single random disturbance for each university. This, in turn,
would produce dependence among the Yjy’s. Evidence for this
possibility is the fact that an ordinary logit model (fitted by
maximum likelihood) gives a relatively poor fit. This chi-square
goodness-of-fit statistic was 64.16 with only 38 degrees of freedom.

In the next two sections, I survey alternative methods for
estimating the coefficients in equations 15 and 16 with grouped
data. One notable feature of all these methods is that 8 and the
disturbance variance are separately identified. With the exception
of the WLS estimator for equation 16, most of the results are
described elsewhere. Nevertheless, the range of alternatives and
the connections among them have not been generally appre-
ciated. Those methods that are computationally feasible will be
applied to the data in Table 1.

INTERNAL MODELS FOR
GROUPED, DEPENDENT DATA

In this section I examine estimation methods for two special
cases of equation 15, which postulates a single, internally posi-
tioned disturbance variable for each group.
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TABLE 1
NIH Funding, Doctorates in Biochemistry, and Proportions
with Postdoctoral Training for 40 Universities

NIH Obligations?  No. of Biochemistry No. (out of n) with Proportion
(x) Doctorates (n) Postdoc. Training (R) (R/n)
0.500 8 1 125
0.500 9 3 333
0.835 16 1 063
0.998 13 6 462
1.027 8 2 250
2.036 9 2 222
2.106 29 10 345
2.329 5 2 400
2.523 7 5 714
2.524 8 4 .500
2.874 7 4 571
3.898 7 5 714
4.118 10 4 400
4.130 5 1 200
4.145 6 3 .500
4.242 7 2 286
4.280 9 4 444
4.524 6 1 167
4.858 5 2 400
4.893 7 2 286
4.944 5 4 .800
5.279 5 1 .200
5.548 [ 3 .500
5.974 5 4 .800
6.733 6 5 .833
7.000 12 S 417
9.115 6 2 333
9.684 5 3 .600
12.154 8 5 625
13.059 5 3 600
13.111 10 8 .800
13.197 7 4 571
13.433 86 33 384
13.749 12 7 583
14.367 29 21 724
14.698 19 5 263
15.440 10 6 .600
17.417 10 8 .800
18.635 14 9 .642
21.524 18 16 .889

a. In millions of dollars, 1964.

A LOGIT MODEL

Suppose F(.) in equation 15 is the logistic function and assume
that var(e;) = o, a constant over j. For this model, Amemiya and
Nold proposed a modified WLS estimator. Their working depen-
dent variable is the empirical logit,” U; = In[R;/(n; — R;)]. The
approximate variance of Uj is o’ + 1/[nP{(1 - P;))] where P; is
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the conditional probability defined by equation 15. To correct
for heteroscedasticity, an estimate of this variance i§ needed.
Amemiya and Nold suggested that P; be estimated by P; = R;/n;.
As a consistent estimator for ¢, they used

&% = (1/3)(5(U; - bxy)’ - Z[nPy(1 - BT} [17]

where b is the ordinary least squares estimator of 8 obtained by
regressing Uj on x;. Substituting f’,- and 6” into the formula for the
variance of Uj and taking its reciprocal, we obtain the weights
w; = 1/{6* + [njf’j(l - f’j)]"l}. The final step is to do a weighted
regression of Uj on x;. An estimate of the covariance matrix® of the
coefficients is given by [Siwix;x;]". For alternative estimation
methods for the same model, based on quasi-likelihood theory,
see Williams (1982: 5).

I applied the Amemiya-Nold method to the data in Table 1,
with results shown in the third row of Table 2. These results may
be compared with those obtained with the conventional WLS
estimator (shown in the second row), that assumes that ¢° = 0.
With the modified method, both the coefficient estimates and
their estimated standard errors are increased slightly over those
obtained with the conventional estimator.

A PROBIT MODEL

Again we start with equation 15 but now suppose F = & the
standard normal c.d.f., and assume that ¢ has a normal distribu-
tion with mean zero and constant variance ¢°. Amemiya and
Nold (1975) suggested that a WLS estimator for the probit case
could be developed in much the same way as for the logit case, but
they did not pursue that suggestion. An obvious alternative is
maximum likelihood estimation. It turns out that the model
under consideration is a special case of multivariate probit models
described by Ashford and Sowden (1970) and Muthén (1979)
who also discussed ML estimation. Unfortunately, the compu-
tational difficulty of evaluating multinormal distribution func-
tions makes ML estimation prohibitively expensive at present,
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TABLE 2
Estimates of Logit Models for Data in Table 1

Intercept? Slope?
1. Conventional ML -7871 (.1748) .07292 (.01582)
2. Conventional WLS -.6786 (.1913) 06124 (.01764)
3. Internal WLS -.7008 (.2140) .07496 (.02077)
4. External WLS -.6543 (.2398) 07385 (.02418)
S. External ML, -.7460 (.2127) 08340 (.02109)

a. Standard errors in parentheses.

except in a few special cases, for example, n;= 2 for all j. However,
for the general case, Kiefer (1982) has proposed a practical test of
the hypothesis that o® = 0, which may be used to determine
whether or not there is dependence among the observations.

EXTERNAL MODELS FOR
GROUPED, DEPENDENT DATA

We now consider methods for estimating models that have the
general form of equation 16. A well-known special case is the
beta-binomial model, which has been applied to data on unem-
ployment (Heckman and Willis, 1977), psychological testing
(Wilcox, 1981), marketing (Given, 1980), and toxicology (Hase-
man and Kupper, 1979).

The beta-binomial model assumes that F(B8x;) + ¢ has a beta
distribution (Williams, 1979), with a mean of m; = F(B8x;) and a
variance of mj(1 - m;)¢;, where 0 < ¢; < 1. Note that this indirectly
specifies the distribution of ¢. It follows that R; has a beta-
binomial distribution. When x; contains quantitative variables, it
is customary to impose the restriction that ¢; = ¢ for all j, which is
analogous to the assumption of homoscedasticity in linear models
(Crowder, 1978; Williams, 1982). Under this specification, esti-
mates of 8 and ¢ may be obtained by ML (Crowder, 1978).
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MAXIMUM LIKELIHOOD

For the data in Table 1, I assumed a beta-binomial regression
model with the additional specification that F(.) is the logistic
function. I then estimated B and ¢ by ML using a Newton-
Raphson algorithm programmed in the PROC MATRIX lan-
guage of SAS.” Coefficient estimates and their estimated standard
errors are shown in line 5 of Table 2. These estimates should be
compared with those in line 1 obtained by ML under the assump-
tion that ¢ = 0, which is just the conventional logit model with no
disturbance term. The coefficient for NIH funding is about 14%
larger for the beta-binomial model, while the estimated standard
error is about 33% larger. The estimate for ¢ is .0508 with an
estimated standard error of .0266.

Since the conventional model is a special case of the beta-
binomial model, a likelihood-ratio chi-square test of the hypoth-
esis that ¢ = 0 is obtained by taking twice the positive difference
between the log-likelihoods under the two models. The log-
likelihoods are -306.30 for conventional ML and -300.92 for
modified ML, yielding a chi-square of 10.76 with 1 degree of
freedom. This indicates that there is dependence, and that the
beta-binomial model is preferable.

WEIGHTED LEAST SQUARES

Since ML estimation of the beta-binomial model is computa-
tionally demanding and not available in standard software pack-
ages, an attractive alternative is WLS estimation. The model just
estimated assumed that m; = F(Bx;) with F specified as the logistic
function. It also implied that var(e) = mi(1 — 7). We shall retain
those two conditions, but will relax the assumption that F(B8x;) + ¢;
has a beta distribution. As with the Amemiya-Nold estimator,
the working dependent variable is the empirical logit,® U; =
In[R;/(n; - R;)]. The aim is to regress this variable on the explana-
tory variables, weighting inversely by the variance of Uj.

Using results in Kleinman (1973) together with the delta
method (Bishop, Fienberg, and Holland, 1975: 486ff.), it can be
shown that the approximate variance (as n; gets large) of Uj is
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1+(1’1j" l)d)

njrrj(l "‘ITj) [18]

A consistent estimator of expression 18 is needed in order to
construct the weights for the regression.

A consistent estimator of ; is just P; = R;/n;. In general, one
also needs a consistent estimator of ¢. However, in the special
case in which all the ny’s are equal, the numerator in expression 18
is a constant and can therefore be ignored in constructing the
weights. In this case, the WLS estimator of 8 is gotten by choos-
ing B to minimize

3wi(U; - ij)2 [19]

where w; = Py(1 - P,). But this is just the conventional WLS esti-
mator for the logit model when all the n;’s are equal (Berkson,
1944); hence no special procedures are necessary for estimating
the coefficient vector. For the conventional WLS estimator, the
covariance matrix for the coefficients is ordinarily estimated by
(1/n) (3;w;x;x{)"" where n is the common number of observations
in each group (Berkson, 1953). But this is not a consistent esti-
mator when ¢ > 0. A consistent estimator is given below in
equation 22.

Estimation is more difficult when groups are unequal in size
since a consistent estimator of ¢ is necessary for constructing the
weights. Such an estimator can be rather simply obtained from
the Pearson chi-square statistic for the goodness-of-fit of the
binomial model (Brier, 1980; Williams, 1982). Let X? be the
chi-square statistic from fitting the conventional logit model by
WLS, that is,

X2 = 5P, - )Y/ [#(1 - #)] [20]

where ;= 1/(1 + exp[—ij]). Let ii be the arithmetic mean of the
n;’s, and let K be the number of estimated coefficients. Then
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X2~ (I -K)
G-I -K)

-

where J is the number of groups. Note that since ¢ is an increasing
function of X’, the usual chi-square test can be interpreted as a
test for the hypothesis that ¢ = 0.

The modified WLS estimator is then obtained by choosing B to
minimize expression 19 with w; = n;Pi(1 - f’j)/ (1 +[nj-1]¢). The
estimated covariance matrix® of 8 is (3;w;x;x;)"'. However, when
n; = n for all j, this reduces to

[X/(J - K] (1/m) [5P(1 - Pyxixi] ™, [22]

which is the conventional estimator (discussed earlier) inflated by
a factor that is the chi-square statistic divided by its degrees of
freedom.

To sum up, the WLS procedures can be described by the
following steps:

(1) Fit the model by conventional WLS. If the chi-square statistic is
not significant, the conventional model is adequate. If it is sig-
nificant, proceed to the next steps.

(2) If the group sizes are equal (or approximately so), the conven-
tional WLS coefficients are satisfactory. However, the standard
errors should be inflated [X?/d.f.]".

(3) If the group sizes are not equal, estimate ¢ by equation 21 and
construct the weights Rj(1 - R;/n;)/[1 + (n;— 1)$]. Refit the model
with the new weights.

Using the GLIM program (Baker and Nelder, 1978), these
steps were applied to the data in Table 1. The conventional WLS
estimates resulted in a chi-square of 60.66 with 38 d.f. (line 2 of
Table 2) yielding a p-value of about .01. This suggests that, in fact,
¢ > 0. Applying equation 21, we get an estimate for ¢ of .0569
(which is quite close to the ML estimate of .0508). Using this
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estimate to construct new weights, we get the results in line 4 of
Table 2. The coefficient for NTH funding is about 21% higher than
that obtained from conventional WLS estimation, but about 11%
lower than the ML estimate. The estimated standard error is
slightly higher than that for the ML estimate.

QUASI-LIKELIHOOD ESTIMATION

Earlier we saw that when all the n;’s are equal, the WLS
procedure for an external disturbance model reduces to the con-
ventional WLS estimator for a grouped logit model. A similar
result holds for ML estimation. Wedderburn (1974) introduced a
general method of quasi-likelihood estimation that is applicable
whenever the variance of the dependent variable is proportional
to some known function of the mean. Quasi-likelihood estimators
share many properties with ordinary ML estimators, but they are
not always efficient. For the beta-binomial model, the condition
on the mean and variance is satisfied when the group sizes are
constant. In this case, the quasi-likelihood estimator of B is
identical to the ML estimator for the model that assumes that
¢ =0, that is, the conventional ML estimator for a logit regres-
sion model. A consistent estimator for the covariance matrix of
B is obtained by multiplying the conventional covariance matrix
by a factor that can be estimated by the Pearson chi-square
statistic for the fitted model divided by its degrees of freedom."’
This is the same adjustment suggested earlier for the WLS esti-
mators in the case of equal group sizes. Williams (1982) has
extended this result to the case where the group sizes are not equal.

CONCLUSIONS

There are several different ways to introduce a disturbance into
logit and probit regression models, and each model has somewhat
different implications. Nevertheless, the models share some prop-
erties that have been confused in previous discussions of the
problem.
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Consider first the case in which all the dichotomous observa-
tions are independent. For the external logit and probit models,
and for the internal probit model, the form of the likelihood
function is unchanged by the introduction of the disturbance
term. While the likelihood function is altered for the internal logit
model, we saw that the effect of that change is so slight as to be of
little practical importance relative to other sources of misspecifi-
cation. Thus standard estimation procedures should be quite
satisfactory for all these models, and there is no reason to expect
an increase in the variance of the observed counts. Nevertheless,
for the internal models, the disturbance variance leads to adown-
scaling of the coefficient vector, and this can invalidate cross-
population comparisons. Since there is little basis for choosing
between the internal and external models, caution is advisable in
making such comparisons.

Models appropriate for grouped data with dependent observa-
tions within groups yield quite different results. The observed
counts are no longer binomially distributed and, in particular, the
variance exceeds the binomial variance. Although standard esti-
mation procedures are inefficient in such cases, several efficient
methods are available for both internal and external models. The
simplest method is probably the WLS estimator for the external
logit model; it is easily computed and reduces to the conventional
WLS estimator when the groups are equal in size.

NOTES

1. To simplify the notation, the x vector is treated as a set of fixed constants rather
than as a random vector. Nevertheless, all the results that follow apply equally to the
random case. To include an intercept term, the first element of x should be 1.

2. In one study, I used numerical integration to generate predicted probabilities
based on equation 7 for six different values of o and a wide range of x’s. These were then
compared with probabilities based on the approximation given by equations 13 and 9. In all
but one of the 90 comparisons, the approximation was within .01 of the true value. In the
second study, I generated data based on equation 7 and estimated a standard logit model
by maximum likelihood. Even with extremely large samples (e.g., 15,000) the logit model
fit extremely well, and the estimated coefficients were very close to those predicted by
equation 9. Further details are available from the author.
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3. Chamberlain (1980) discusses the case in which some of the explanatory variables
vary across individuals and there are equal numbers of individuals in all groups.

4. Even when the observations are independent, the observed variation in R; will
often exceed that expected under the binomial model. This is merely an indication that
there is something else wrong with the model, for example, nonlinearities or unspecified
interactions.

5. A common recommendation is to adjust the empirical logit to be In[(R; + 14)/
(n; - Rj + 14)]. However, Cox (1970) argues that this adjustment is only appropriate for
unweighted least squares.

6. Standard regression programs that perform WLS with user-specified weights (like
PROC REG in SAS) usually estimate the covariance matrix as s’[3;w;x;x/]"' where s’ is the
weighted mean residual sum of squares. To get the correct estimates, divide the elements in
the reported covariance matrix by s’. Equivalently, divide the reported standard errors by
s (the root mean squared error). In GLIM, s’ can be forced equal to 1 by specifying
$SCALE 1.

7. A listing or BITNET file for this program is available from the author.

8. See note 5.

9. See note 6.

10. In GLIM, this adjustment can be accomplished by specifying $SSCALE 0.
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