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CHANGE SCORES AS
DEPENDENT VARIABLES IN
REGRESSION ANALYSIS

Paul D. Allison™

Change scores have been widely criticized for their
purported unreliability and for their sensitivity to regression
toward the mean. These objections are shown to be unfounded
under a plausible regression model for the nonequivalent con-
trol group design. This model leads to inferences that are
intuitively correct, as judged by changes in means over time,
while the conventional model leads to inferences that are
intuitively false. Moreover, the conventional model implies
that regression toward the mean within groups leads to
regression toward the mean between groups, an implausible
result for naturally occurring groups. Nevertheless, the con-
ventional model may be more appropriate when there is a true
causal effect of the pretest on the posttest, or when cases are
assigned to groups on the basis of their pretest scores.

1. INTRODUCTION

The measurement of a dependent variable at two or more
points in time is widely regarded as a powerful tool for making

An earlier version of this paper was presented at the 1988 Annual
Meetings of the American Sociological Association. I am indebted to Herbert
Smith for helpful comments and suggestions. Michael Pertschuk generously
permitted me to report results from his data.

*University of Pennsylvania
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94 PAUL D. ALLISON

causal inferences with nonexperimental data. If the aim is to show
that X causes Y, there is supposedly great merit in examining the
relationship between X and Y, while “controlling” for Y, where Y,
and Y, are measurements of the same variable at times 1 and 2,
respectively. Such a procedure, it is argued, allows one to rule out
the rival hypothesis that Y causes X. It also greatly reduces the
threat of spuriousness, i.e., that some other variable causes both X
and Y.

Using the terminology of experimental design, I shall here-
after refer to Y, as the pretest and to Y, as the posttest. In the
early 1960s, there was a great deal of confusion about the proper
statistical analysis for designs with both pretest and posttest
measurements (Bereiter 1963; Lord 1963). Specifically, the issue
was how to control for Y,. Of the many proposed treatments, the
two most commonly considered were the change score method and
the regressor variable method. In the change score method, Y, — Y,
is regressed on X. In the regressor variable method, Y, is regressed
on both Y, and X. Thus, the regressor variable method treats the
pretest like any other control variable, and the change score method
assigns it a special status.

Before proceeding further, it is worth pointing out that each
of these methods has a computational equivalent. First, the
regression of Y, — Y, on both Y, and X is equivalent to the regressor
variable method (Werts and Linn 1970). Both procedures produce
the same coefficient of X and the same estimated standard error.
Hence, it must be understood that in the change score method, Y,
cannot also appear as a regressor variable. Second, when X is
categorical, the change score method is equivalent to a repeated-
measures analysis of variance in which a test for an effect of X on
Y is achieved by testing the interaction of X with the within-subject
factor (Maxwell and Howard 1981).

Debate among psychometricians soon led to a consensus
against the change score method and in favor of the regressor
variable method (Cronbach and Furby 1970), and this opinion
became conventional wisdom among sociologists (Bohrnstedt 1969).
There were two major objections to the use of change scores.

1. Unreliability. Change scores tend to be much less reliable
than the component variables (Kessler 1977). Consider the simpli-
fied case in which Y, and Y, are equally reliable and have the same
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variance. The reliability of Y, — Y, is then given by

Py — Plz,
1 - p

where p,, is the correlation between Y, and Y, and p% is their
common reliability. If this correlation is positive (as it almost always
is), then the reliability of the change score must be less than p3},
often much less. For example, if pj = 0.7 and p,, = 0.6, the
reliability of the change score is only 0.25.

2. Regression effects. Because of the almost universal
phenomenon of regression toward the mean from pretest to posttest
measurements, Y; will usually be negatively correlated with
Y, — Y,. Thus, individuals with high pretest scores will tend to
move down on the posttest, while individuals with low pretest scores
will tend to move up. Consequently, if X (or any other variable) is
correlated with Y, it will tend to have a spuriously negative relation-
ship with Y, — Y, (Markus 1980). For these reasons, methodologists
in the social sciences have repeatedly warned against the use of
change scores.

Since 1975 there has been some tempering in the attitude of
psychometricians toward change scores. Zimmerman and Williams
(1982) and Sharma and Gupta (1986) showed that there are common
circumstances in which change scores can be highly reliable. More-
over, Overall and Woodward (1975) demonstrated the paradoxical
result that change scores can yield powerful tests of causal hypoth-
eses even when they are extremely unreliable. Their result was
elaborated by Maxwell and Howard (1981), who claimed that change
scores are sometimes appropriate for randomized experimental
designs. Most importantly, Kenny (1975) and Kenny and Cohen
(1979) argued that regression toward the mean is not a problem
when the objective is to compare two or more stable groups. In
such circumstances, the change score method can give results with
less bias than the regressor variable method.

A major aim of this paper is to review and clarify these
results. Nevertheless, I believe that psychometricians have not gone
far enough. I claim that the change score method is superior to the
regressor variable method whenever X is temporally subsequent to
Y, and uncorrelated with the transient component of Y,. I shall
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argue that this is a commonly satisfied condition. When it holds, the
problem of measurement error in Y, disappears entirely. Moreover,
when the effects of other variables on Y are invariant from pretest
to posttest, those variables can be omitted from the analysis without
introducing bias. In short, the use of change scores under appropri-
ate conditions can greatly enhance our ability to make causal infer-
ences from nonexperimental data.

Like much of the psychometric work on change scores, this
paper focuses almost exclusively on the nonequivalent control group
design (Campbell and Stanley 1963). largely because it is the sim-
plest design that embodies all the relevant issues. The principal
advantage of this restriction is that parameters in alternative models
are simple functions of pretest and posttest means. This allows
for a more direct, intuitive evaluation of the models and their
implications. Many of the arguments given here also apply in more
general settings, however. Liker, Augustyniak, and Duncan (1985),
for example, described the benefits of change scores in general two-
wave panel designs.

2. LORD’S PARADOX AND THE NONEQUIVALENT
CONTROL GROUP

In the nonequivalent control group design, individuals in the
sample are divided into two groups. labeled treatrment and control.
(Multiple treatment groups are also possible.) A pretest (Y;) is
conducted; then something happens to the treatment group that
does not happen to the control group; finally, a posttest measure-
ment (Y,) is taken. What distinguishes this design from a true
experiment is that individuals are not randomly assigned to the two
groups, which may therefore differ substantially in their distributions
of Y,. Though the terminology of this design suggests that the
treatment is under the control of the investigator, the design also
encompasses studies in which the treatment group experiences some
naturally occurring event, such as divorce, retirement, or marriage.
It is essential, however, that the pretest measurements be made
before the event occurs.

In analyzing such data, the aim is to compare the treatment
and control groups on Y, while somehow controlling for Y. Clearly
this can be accomplished by either the change score method or the
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regressor variable method, defining X to be 1 for the treatment
group and O for the control group. To decide between these
methods, it is helpful to imagine what would be observed if the
treatment had no effect. Lord (1967) developed the following hypo-
thetical example. Suppose that the mean and standard deviation for
Y in the treatment group are exactly the same on the pretest and
the posttest and that the within-group correlation between Y, and
Y, is substantially less than 1. Suppose that the same conditions
hold in the control group, except that the means are lower than
those in the treatment group. Thus, the mean differences on the
posttest reproduce those on the pretest. Intuitively, such a pattern
seems to be consistent with no treatment effect.

The data in Table 1, panel A, come from a real quasi-
experiment that had exactly this outcome. The treatment group
consisted of 18 children who underwent plastic surgery for cranio-
facial abnormalities. The control group consisted of 30 normal
children. The two groups had approximately the same age range.
The dependent variable was a measure of the frequency of negative
social encounters, based on parental reports. In the treatment group,
this variable was measured shortly before the surgery and again 18
months later. In the control group, the measurements were also

TABLE 1
Means and Standard Deviations for Two Measures of Adjustment, by Time
and Treatment

Time 1 Time 2
A. Frequency of negative social
encounters
Treatment group 48.3 48.6
(7.6) (6.5)
Control group 41.6 41.1
9.2) (8.1)
B. Trait anxiety
Treatment group 37.3 31.5
(6.8) (5.1)
Control group 321 30.3

(5.9) (6.7)
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FIGURE 1 Means from Table 1.

taken 18 months apart at comparable ages. In both groups, the
means and standard deviations hardly changed at all from the pretest
to the posttest. On the other hand, at each occasion the control
group scored about 7 points lower than the treatment group. The
means are displayed graphically in Figure 1, panel A.

Two analyses were performed. The regressor variable
approach, in which Y, was regressed on Y, and X (the treatment
indicator), yielded a coefficient of X that was positive and significant
at the 0.03 level. This seems to imply that plastic surgery had a
deleterious effect on children’s social experiences. But the change
score method, in which Y, — Y, was regressed on X, yielded a
coefficient for X that was near zero and far from statistical signifi-
cance.

This is what has come to be known as Lord’s paradox. The
standard regressor variable approach seems to give the wrong
answer. The change score method seems to confirm the intuitive
impression that the treatment produced no change. Lord (1967,
p-305) concluded that “with the data usually available for such
studies, there is simply no logical or statistical procedure that can be
counted on to make proper allowances for uncontrolled preexisting
differences between groups.” An alternative response is to question
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the preferential status of the regressor variable method and to
reconsider the utility of the change score method.

The regressor variable method can also lead to the conclusion
that there is no treatment effect when a straightforward examination
of the means suggests otherwise. This phenomenon is exhibited in
Table 1, panel B, which reports results from the same study of
craniofacial surgery. Here the outcome variable is a measure of trait
anxiety. In the control group, the mean declined slightly from 32
to 30. In the treatment group, the mean declined from 37 to 31 (see
Figure 1, panel B). While it is not entirely clear what produced this
decline in the treatment group, it seems desirable that the statistical
analysis should be sensitive to the differential change. The change
score method does, in fact, find an effect of the treatment that is
significant at the 0.02 level. But the regressor variable method yields
a treatment effect that is far from significant.

Why does the regressor variable approach seem to go astray
in these examples? A definitive answer requires the formal analysis
presented in the next section, but it is helpful first to consider some
informal arguments. The basic problem is that the use of Y, as a
regressor variable seems to underadjust for prior differences. Thus,
in Figure 1, panel A, the fact that the pretest difference is the same
as the posttest difference is not fully captured by including Y, as an
independent variable. Similarly, in Figure 1, panel B, the regressor
variable approach emphasizes the fact that the treatment and control
groups were almost the same on the posttest but puts little weight
on the fact that they were different on the pretest.

In the psychometric literature, measurement error was
quickly seized upon as an explanation for such underadjustment. If
Y, is a fallible measure of some true score, then the estimated
coefficient of Y, will be biased toward zero. This, in turn, could
bias the coefficient of X. One proposed solution was to get estimates
of the reliability of Y, and use these to produce corrected regression
estimates (Preece 1982).

Some have argued, however, that even with perfect measure-
ment, there is usually underadjustment when Y, is used as a
regressor variable (Reichardt 1979). There is typically inherent insta-
bility in any variable Y, leading to a less than perfect correlation
between Y, and Y,. When Y, is regressed on Y, and X, therefore,
the regression coefficient for Y, is usually between zero and one.
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The lower the correlation between Y, and Y,, the smaller the
regression coefficient. If b is that coefficient, then the estimated
coefficient for X (the treatment ecffect) is Y., — Y.
— b(Y,7+ — Y,¢), where T and C indicate treatment and control,
respectively. That is, the estimated treatment effect is the posttest
difference in means minus some fraction of the pretest difference in
means. If the correlation between Y, and Y, is small, the adjustment
accomplished by the regressor variable approach will also be small.
When the change score approach is used, the estimated treatment
effect is Yo7 — Y, — (Y17 —Y1¢), a quantity that is unaffected by
the correlation between Y, and Y.

The problem with these informal arguments is that they rest
on a number of implicit assumptions that need more careful examin-
ation. This will be accomplished in the next section. Before proceed-
ing further, however, it is worth emphasizing that these arguments
apply whenever one includes Y, in a regression predicting Y,. The
only thing special about the nonequivalent control group design is
that it makes it easy to compare mean differences, and thus easy to
see when something is amiss.

3. MODELS FOR THE NONEQUIVALENT CONTROL
GROUP DESIGN

A problem with much of the work comparing change score
and regressor variable methods is that the conclusions are rarely
based on an explicit model for the generation of the data. Thus, it
is often difficult to evaluate the arguments on such basic statistical
criteria as bias and efficiency. In this section, I consider two alterna-
tive models for the nonequivalent control group design. Model 1 is
implicitly assumed in the regressor variable approach. Model 2,
which leads to the change score method, is a variant of a model
introduced by Kenny (1975). It also has precedents in econometric
treatments of panel data (Chamberlain 1984; Heckman and Robb
1985).

3.1. Model 1

Model 1 can be written as
Yo =a+ BY;, + 86X, + €, i=1,...,n, (1)
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where X; = 1 for individuals in the treatment group, 0 for those in
the control group. Thus, & is the treatment effect. With the further
assumption that E(e | Y;;,X;) = 0 for all i, ordinary least squares
(OLS) regression of Y, on Y, and X yields unbiased estimates of
the coefficients.

3.2. Model 2

Model 2 posits separate equations for Y at the two time
points. To facilitate interpretation, we define G, to equal 1 or 0
depending on whether or not an observation is in the group that
eventually gets the treatment. This variable is conceptually distinct
from X;, which denotes whether or not the treatment has actually
been received. However, in the present context, G; = X, at time 2.
The model is

Y, a+ yG; + €, (2)
Y,-=a+7+’yG,-+5X,+€iz, i=1...n (3)

The coefficient vy represents a group difference that is assumed to
be constant over time. This assumption is essential in the present
treatment, but some possible modifications will be considered in a
later paper. The parameter 7 is the change over time that applies
to all individuals in both treatment and control groups. The treat-
ment effect is 8. The variables ¢;; and ¢, are random disturbances.
For the moment, we assume that E(¢;, | X;) = E(e, | X;) = 0 for
all i, although we shall shortly relax this assumption. It is not
necessary to assume that €, and e, are uncorrelated; indeed, it would
be very unusual if they were.

Equation (2) can be estimated without bias by OLS regression
of Y, on G. But equation (3) cannot, because X is completely
confounded (collinear) with G. By subtracting equation (2) from
equation (3), however, we get

Y,' _Y,‘I:T+ 6Xi+€,'*, (4)
where € =¢€,—¢,. Since E(e}IX,) = E(e.1X) — E(g/X)

= 0 for all i, it follows that (4) can be estimated without bias by
OLS regression. Thus, model 2 justifies the change score method.
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Model 2 can be informatively extended by decomposing the
disturbance terms in (2) and (3) into three components:

e =U+V,+ W, t=1,2; i=1,...n, (5)

where W, is random measurement error at time ¢, V;, is period-
specific variation in Y, and U, is a component of Y that is stable
across time. U; can be thought of as including all those explanatory
variables that are stable over time and that have identical effects at
both times. Although V;, and W, are formally equivalent, they are
substantively distinct: V, captures true variation in the phenomenon
of interest, and W, refers to random variation that is specific to the
measurement process.

We assume that E(V,, | X;) = E(W, | X;) = 0 for all / and ¢,
but we do not have to assume that E(U; | X;) = 0 for all i. In other
words, we now allow X to be correlated with the stable component
of Y. This causes no difficulty, because the U; term drops out when
the difference is taken in equation (4); i.e.,

€ =Vo - Vy+ Wy — W, (6)

This implies that stable explanatory variables whose effects are
constant over the two time points may be omitted from the equation
without biasing the estimate of the trcatment effect.

4. SOME IMPLICATIONS OF THE MODELS

The most obvious distinction between models 1 and 2 is that
model 1 has Y, on the right-hand side of the equation and model 2
does not. This is not quite accurate, however, because adding Y,
to both sides of equation (4) yields

Yi2=7+ Yil+5Xi+€i*' (7)

Thus, model 2 does not actually exclude Y, from the right-hand
side of the equation; it just forces its coefficient to be equal to 1.
In fact, equation (7) can be estimated directly by using a regression
routine that allows restrictions on the coefficients.! It is tempting,

"Kessler and Greenberg (1981, p. 13) erroneously claimed that such
constrained estimation will yield biased estimates because Y, is correlated with
the error term. When a coefficient is constrained to any specific value, it no
longer matters whether that associated variable is uncorrelated with the error
term. This is easily demonstrated by comparing the residual sum of squares
(the minimization criterion) for OLS estimation of (7) and (4). The two are
identical.
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then, to conclude that model 2 is just a special case of model 1 and
that model 1 is therefore preferable because it avoids needless
restrictions. But this is erroneous, because model 1 assumes that Y,
is uncorrelated with the disturbance term in equation (1), and model
2 implies that Y, must be negatively correlated with the disturbance
term in equation (7). Hence, if model 2 is correct, unrestricted OLS
estimation with Y, on the right-hand side will yield biased estimates.

This conclusion can be stated more precisely. If we assume
that model 2 is true and that § = 0 (no treatment effect), it is
relatively easy to derive the population linear regression function?
of Y, on Y, and X. The regression of Y, on Y, alone has the slope
coefficient

_cov(Y,,Y,)
2 var(Yy)

var(yX + U)

- var(yX + U) + var(V, + Wl)’
which is clearly less than one. If we let p,x be the correlation
between X and Y, the partial regression coefficient for Y, control-
ling for X is

_ B — P%X

Porx = 1 - pix ,
which is easily shown to be less than 1. Thus, model 2 accounts for
the finding that empirical regressions of Y, on Y, and X nearly
always have slope coefficients for Y, that are less than 1. More
importantly, the partial coefficient for X is

cov(X,U)
~ (1 - le)[y + W’]
Box1 = 1 - piy :

Hence, under model 2, the regression of Y, on Y, and X will yield
a nonzero coefficient of X even when there is no real treatment

2 Under model 2, the population linear regression function will not be
equivalent to the conditional expectation function, which will be nonlinear.
However, OLS will always give consistent estimates of the population linear
regression function. The derivations reported in this section depend on the
additional assumptions that E(V,| U) = E(W, | U) = 0 for all i and ¢, and that
E("VQW“) = E(V,‘zl/,'l) = E(VV,Z ‘/,1) = E(V,‘zWﬂ) = Ofor all i. If these assump-
tions are not satisfied, the results are much more complicated but have essen-
tially the same qualitative interpretation.
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effect. It will be zero (a) when there is no pretest difference between
the two groups (i.e., when y = 0), and (b) when the assignment to
the treatment group is uncorrelated with the stable component of
Y (i.e., when cov(X,U) = 0). Thesc two conditions are guaranteed
to hold in a true experiment with random assignment to treatments,
but not in general. In sum, model 2 fully accounts for the empirical
results that are typically obtained when one estimates model 1.

5. THE IMPACT OF MEASUREMENT ERROR

What about the notorious unreliability of change scores? The
problem with this claim is that it is typically considered in isolation
from the estimation and testing of a causal model. In that context,
what we need to be concerned about is not reliability but rather the
error variance in (4), which is what determines the precision of the
estimates of 8. The error variance can decrease even as the reliability
of the change scores decreases. Here is how it works. Equations (4)
and (5) imply that the reliability of the change score is given by

var(8X + V, — V)

var(8X + Vo — V, + W, — W)
where V, — V| represents true change over time, and the W’s are
random measurement errors. If we make the further assumption
that the V’s are uncorrelated with the W’s, the reliability becomes

var(8X) + var(V. = Vi) )

var(éx) + var(V, — V) + var(W, — W))

Notice that var(V, — V) + var(W, — W,) is the error variance in
equation (4), so that any reduction in var(V, — V) will reduce the
error variance and thereby increase the power of statistical tests of
hypotheses about the coefficients in (4). But (8) is also an increasing
function of var(V, — V). In short, var(V, — V) is true-score vari-
ance for the purpose of estimating reliability, but it is error variance
for the purpose of estimating parameters in equation (4). Conse-
quently, any reduction in var(V, — V,) will simultaneously decrease
the reliability of the change score and increase statistical power.
Hence, the low reliability of change scores is irrelevant for the
purpose of causal inference.
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This seemingly paradoxical result is actually quite consistent
with intuition. The ideal situation for detecting a treatment effect
is one in which subjects who do not receive the treatment hardly
change at all from pretest to posttest while subjects who do receive
the treatment all change by about the same amount. But this is just
the situation that produces high correlations between pretest and
posttest and, as we have seen, low reliability of change scores. The
low reliability results from the fact that in calculating the change
score we difference out all the stable between-subject variation,
except for that due to the treatment effect.

In addition to this result, model 2 has several advantages
over model 1 with respect to measurement error. Under model 1,
measurement error in Y, produces biased estimates of the treatment
effect; but this is not the case with model 2. Given the generally
low reliability of measurement in the social sciences, this insensitivity
to measurement error is highly desirable. Although the estimates
under model 1 can be corrected for unreliability (Porter 1967),
such corrections typically require data that are unavailable and
assumptions that are unrealistic and untestable. Model 2 not only
allows for measurement error in Y, but is also surprisingly robust
to characteristics of the measurement error. For example, corre-
lation over time in the measurement error (between W, and W,)
does not bias the treatment estimate, nor does differential reliability
between treatment and control groups. (Differential reliability may
cause inefficiency, but this can be remedied by weighted least
squares.) Of course, the fact that model 2 is more robust to measure-
ment error is not a sound basis for choosing it over model 1. That
decision should be based on our beliefs about which model better
represents reality.

We now proceed to a consideration of that question.

6. CHOOSING BETWEEN THE MODELS

We have seen that the choice between the regressor variable
method and the change score method can be recast as a choice
between models 1 and 2. We have also seen that the criticisms
commonly leveled at the change score method do not stand up when
examined in the framework of model 2. Now we are faced with a
choice between these two models. What criteria are appropriate for
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choosing between them? Purely mathematical or statistical consider-
ations will not suffice because the models are incommensurable.
Moreover, both models do a good job of accounting for the typical
empirical patterns found in data produced by the nonequivalent
control group design.

The arguments I shall consider depend to some degree on
the fit between the models’ implications and what we intuitively
expect for a given phenomenon. It is unrealistic to expect either
model to be best in all situations; indeed, I shall argue that each of
these models has its appropriate sphere of application. Since model
2 is the underdog, I shall concentrate on arguments that support it.
Nevertheless, the choice will rarely be obvious, and there will almost
always be some residual uncertainty. One should also consider the
possibility that neither of these models is appropriate (more on that
later). v

Clearly, the empirical examples discussed above provide an
argument in favor of model 2. The fact that the posttest means are
identical to the pretest means for both groups strongly suggests that
there was no effect of the treatment. We ordinarily expect a treat-
ment to produce some change, and no change means no treatment
effect. Since model 2 leads to that answer, we should have greater
confidence in the model. Nevertheless, while the intuition is essen-
tially correct, it rests on assumptions that will not always hold in
the nonequivalent control group design. These assumptions will be
examined in detail shortly.

Model 1 has a closely related problem: It implies that
regression toward the mean within groups will be translated into
regression toward the mean between groups. For example, if we
assume that 8§ = 0 (no treatment cffect), it is easily shown that
model 1 implies

Mor — M2c = ,B(IMT - Mlc),

where w; is a population mean at time i, with j = T for the treatment
group and j = C for the control group. As suggested earlier, in
most empirical applications 3 will be a positive number less than 1,
often substantially less. In that case, the model implies that the
expected mean difference on the posttest will be less than the mean
difference on the pretest. In other words, the mean for each of the
two groups will regress toward the grand mean.
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If the two groups are the result of some existing social demar-
cation, such an implication is quite unreasonable. Consider the
following hypothetical example. Suppose that the treatment group
consists of all the males in some organization and that the control
group consists of all the females. These two groups are exposed
to different conditions. The dependent variable is a measure of
productivity, taken at two points in time. Suppose, further, that the
correlation in productivity from time 1 to time 2 is 0.50 and that
the variances are stable over time. Model 1 then implies that in the
absence of a treatment effect, the sex difference in productivity at
time 2 should be only 50 percent of the sex difference at time 1.
Model 2 says that the sex difference should be the same at the two
points in time when there is no treatment effect.

Despite these arguments, model 1 may be preferable when
Y, has a true causal effect on Y, or when the values of X are
determined, in part, by the period-specific components of Y;.

I shall consider each of these possibilities in turn. First, let
us specify what it means to say that Y, has a causal effect on Y.
To avoid philosophical difficulties with the concept of causality, it
is sufficient for our purpose to consider a hypothetical randomized
experiment. Suppose that individuals are randomly assigned® to
values of Y. If the excepted value of Y, varies as a function of Y/,
we shall say that Y, is a cause of Y.

When might such a functional relationship occur? To answer
this question it is convenient to distinguish between “stocks” and
“flows.” Stocks are those quantities that have an inherent persist-
ence over time unless altered by some specific process. Flows are
quantities that must be created anew at each time point or time
interval. An obvious example of the difference between stocks and
flows is the difference between income and wealth. Organizational
size and body weight are examples of stock variables. Most measures
of behavior and attitude, on the other hand, are considered flow
variables.

In most cases, stock variables satisfy our definition of a causal
effect of Y, on Y>. For example, if we could randomly assign people

. ? Lord (1969) pointed out that the mechanisms by which such assignment
is made may have important consequences for the outcome.
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to different levels of wealth, we would expect them to have different
levels of wealth one year later. If such were the case, then Y, would
have to appear on the right-hand side of a linear equation for Y.
But in most cases, we can expect the coefficient for Y, to have a
structural value* of 1. That is, Y, will be equal to Y, plus some
increment or decrement determined by other variables. Thus,
despite the causal impact of Y|, we would again be led to equation
(7).

In the case of flow variables, there is usually much less reason
to expect a causal effect of Y, on Y,. For example, if we could
randomly alter people’s incomes by giving them additional amounts
of money during a single year, we would not expect those increments
to change the expected values of income in the following year.
Nevertheless, there are some flow variables for which it is plausible
to expect a true effect of Y, on Y,. For the income example, if the
increments were substantial, a portion could be saved for income-
producing investments. Attitudes and behaviors are subject to
reinforcement or habit formation, and either of these processes
could be interpreted as a causal effect of Y, on Y,. For instance,
Allison, Long, and Krauze (1982) considered the hypothesis that
each time a scientist publishes a paper, the probability of future
publications is increased. If this hypothesis is represented by a
contagious Poisson process (Allison 1980), it follows that the
expected number of publications in year ¢ is a linear function of the
number of publications in year f—1.

Another type of mechanism that leads to a causal effect of a
variable on itself at a later point in time is the “halo effect.” If an
individual is searching for a job, the prestige of his current job may
be an important factor in potential employers’ evaluation of him.
Thus, a high-prestige origin job may lead directly to a high-prestige
destination job, irrespective of any characteristics of the job holder.

If any of these processes is operative to a substantial degree,
model 2 may not be an adequate representation. On the other hand,
model 1 may also be too simple a formulation for such complex
effects. My own view is that while such causal processes are often
operative, the effects are typically so small relative to the action of
other variables that it is not essential to build them into the model.

+ Because of measurement error, the estimated coefficient may be less
than 1.
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This should not be interpreted as a blanket admonition to disregard
them, however. Each case should be evaluated on its own merits.

The other situation in which model 1 may be preferable to
model 2 is when the transient (period-specific) components of Y,
(V) and W, in equation (5)) are correlated with X. Such a correlation
is a violation of the assumption that E(V, | X;) = E(W, 1 X,) =0
for all i and r. How might this occur? Suppose that the treatment
is participation in an SAT training program and that the aim of the
study is to determine whether the program improves SAT scores.
We can imagine several different ways in which high school seniors
might be selected for the treatment:

1. All seniors in high school A are enrolled in the program, and
the SAT is administered before and after the program. All
seniors in high school B serve as controls.

2. The SAT is administered as a pretest to a group of high school
seniors. Those who score below 400 are enrolled in the program,
and those who score above are not.

3. Seniors self-select into the program before seeing the results of
a pretest administration of the SAT.

4. Seniors self-select into the program after seeing the results of a
pretest administration of the SAT.

For cases 1 and 3 we would not expect the treatment assign-
ment to be correlated with the transient components of Y. In case
1 such a correlation would occur only if the mean of V|, + W,
happened to be different for the treatment and control groups. Even
if this occurred by chance, the induced correlation between X and
Vi + W, would likely be small. In case 3, while we would expect a
student’s ability to affect self-selection, the stable rather than the
transient component of ability would be the determining factor.

For cases 2 and 4, on the other hand, it should be obvious
that the transient components of Y are likely to affect the treatment
assignment. In case 2, the observed Y, completely determines
treatment assignment; hence, its transient components must be
correlated with X. This is just the well-known regression-disconti-
nuity design (Campbell and Stanley 1963). In case 4, although we
don’t know for certain, it would be surprising if Y, did not have
some impact on the selection into treatment. For either 2 or 4, it
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can be shown that the regressor variable method is more appropriate
than the change score method (Goldberger 1972; Reichardt 1979),
although in many cases it may be necessary to use more elaborate
methods (Rubin 1977).

7. DISCUSSION AND EXTENSIONS

The objective of this paper has been to make a case for the
use of change scores as dependent variables in regression models.
In the first part of that case, I refuted standard objections to the
use of change scores: that they are unreliable and prone to biases
resulting from regression toward the mean. I showed that both
objections are groundless under the specification of a plausible
causal model (model 2) whose most distinctive feature is that Y,
does not appear as an independent variable. While this refutation
does not resolve the controversy, it raises it from a technical issue
to a choice between alternative models and assumptions.

In the second part of the case, I considered reasons why
model 2 might be more sensible than the model leading to the
usual regressor variable approach (model 1). The most compelling
argument against model 1 is that it leads to the conclusion that there
is a treatment effect when a straightforward examination of means
indicates that nothing has happened. Moreover, model 1 implies
that regression to the mean within groups implies regression to the
mean between groups, a conclusion that seems quite implausible
for many applications.

Unfortunately, arguments about model choice are notoriously
difficult to resolve. In fact, I also argued that the standard model
1 might be more appropriate for some applications, notably when
Y, has a true causal effect on Y,, or when X is correlated with the
transient components of Y,. The important point is that there should
be no automatic preference for either model and that the only
proper basis for a choice is a careful consideration of each empirical
application. Even then, the choice may not be clear cut. In ambigu-
ous cases, there may be no recourse but to do the analysis both
ways and to trust only those conclusions that are consistent across
methods.

All these arguments were presented for the case of the non-
equivalent control group design, but they are by no means limited
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to that application. On the other hand, neither are they as general
as one might like. I shall now sketch some possible extensions and
current limitations. I already mentioned that the treatment variable
X can have more than two categories, and indeed, there is nothing
to prevent it from being a continuous variable. What is necessary
is a clear temporal ordering from Y, to X to Y,. This allows for
most designs in which X indexes some event or intervention that
occurs between time 1 and time 2, but it does not include the
popular two-wave, two-variable (2W2V) panel design in which X is
measured contemporaneously with Y at both points in time. While
it is straightforward to generalize model 2 to allow for 2W2V designs
(Liker et al. 1985), the causal interpretation is more problematic.
The generalization is accomplished by specifying a model for
the regression of Y on X and other variables at each time point:

Y=o+ 08X, *+yZ+ BV, +AU+¢, t=12. (9

In this equation there are four kinds of independent variables: X is
a vector of variables whose values change from time 1 to time 2 but
whose effects do not change; Z is a vector that is constant over time
but whose effects change; V is a vector whose values and effects
both change; U is a vector of time-constant variables with constant
effects. When we substract the equation for time 1 from the equation
for time 2, we get

Y-V = (- ) + (X, — X))+ (- WZ+ BV,

=BVt (&~ €).
With appropriate assumptions for the error term, this equation can
be estimated by OLS regression of the change score for Y on the
change score for X and the other independent variables. But, of
course, the equations in (9) can also be estimated directly by OLS
in a straightforward manner. The advantage of the difference score
formulation is that the U vector has dropped out of the equation,
making it unnecessary to statistically control for stable variables
with stable effects. The problem with this result is that we must
assume that the independent variables are causally prior to Y, at
each ¢, rather than rely on the design to ensure that causal priority.
In evaluating the appropriateness of this model, we must again ask,
(a) Is there a true causal effect of Y, on Y,? or (b) Is (X, — X))
correlated with any omitted Z or V variables? If the answer to
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either of these questions is “yes,” then other models may be more
appropriate.

Attention has also been restricted to linear models with nor-
mal errors, leading to OLS regression estimates. Similar results can
be obtained for logit models with binomial errors and for loglinear
models with Poisson errors, in both cases by using conditional
maximum likelihood estimation. These results will be reported else-
where. On the other hand, I have not been successful in generalizing
model 2 to allow for interaction between the treatment variable X
and the initial level of Y,. This is easily accomplished with the
standard model 1, but it leads to great complexities and possible
underidentification with model 2.

Another unresolved problem (for both models) is how to
distinguish treatment effects from “differential growth.” Model 2
(and implicitly, model 1) presumes that the parameter vy, represent-
ing group differences in the absence of a treatment effect, is constant
over time. If this parameter is allowed to vary, it is almost impossible
to distinguish such differential changes from true treatment effects
(Blumberg and Porter 1983; Bryk and Weisberg 1977). Solutions
are available if there are two pretest measurements rather than just
one, but that is a subject for another paper.

Finally, it must be stressed that the two models discussed here
do not exhaust those that may be appropriate for the nonequivalent
control group design. Heckman and Robb (1985), for example,
considered many different models and estimation methods for data
of this sort; some of these are similar to model 1, and others are
closer in spirit to model 2. They also gencralize the models to allow
for more than two time points. Working in the observational studies
tradition, Holland and Rubin (1983) took a somewhat more general
approach that did not presume a particular functional form or error
distribution. They concluded, as I have, that the choice of methods
is essentially dictated by a choice among competing models.

REFERENCES

Allison, Paul D. 1980. “Estimation and Testing for a Markov Model of
Reinforcement.” Sociological Methods und Research 8: 434-53.

Allison, Paul D., J. Scott Long, and Tad K. Krauze. 1982. “Cumulative
Advantage and Inequality in Science.” American Sociological Review 47:
615-25.



DEPENDENT VARIABLES IN REGRESSION ANALYSIS 113

Bereiter, Carl. 1963. “Some Persisting Dilemmas in the Measurement of
Change.” Pp. 3-20 in Problems in Measuring Change, edited by Chester W.
Harris. Madison: University of Wisconsin Press.

Blumberg, C. J., and A. C. Porter. 1983. “Analyzing Quasi-Experiments:
Some Implications of Assuming Continuous Growth Models.” Journal of
Experimental Education 51: 150-59.

Bohrnstedt, George W. 1969. “Observations on the Measurement of Change.”
Pp. 113-33 in Sociological Methodology 1969, edited by E. Borgatta. San
Francisco: Jossey-Bass.

Bryk, A. S., and H. I. Weisberg,. 1977. “Use of the Nonequivalent Control
Group Design When Subjects are Growing.” Psychological Bulletin 84:
950-62.

Campbell, Donald T., and Julian C. Stanley. 1963. Experimental and Quasi-
Experimental Designs for Research. Chicago: Rand-McNally.

Chamberlain, Gary. 1984. “Panel Data.” Pp. 1248-1318. in Handbook of
Economics, vol. 2, edited by Zvi Griliches and M. D. Intriligator. Amster-
dam: North-Holland.

Cronbach, L. J., and L. Furby. 1970. “How We Should Measure Change—Or
Should We?” Psychological Bulletin 74: 32-49.

Goldberger, Arthur S. 1972. “Selection Bias in Evaluating Treatment Effects:
Some Formal Illustrations.” Discussion paper. Madison: University of Wis-
consin, Institute for Research on Poverty.

Heckman, J. J., and R. Robb, Jr. 1985. “Alternative Methods for Evaluating
the Impact of Interventions.” Pp. 156-246 in Longitudinal Analysis of Labor
Market Data, edited by R. W. Pearson and R. F. Boruch. New York:
Springer-Verlag.

Holland, P. W., and D. B. Rubin. 1983. “On Lord’s Paradox.” Pp. 3-25 in
Principles of Modern Psychological Measurement: A Festschrift for Frederic
M. Lord, edited by H. Wainer and S. Messick. Hillsdale, NJ: Lawrence
Erlbaum.

Kenny, D. A. 1975. “A Quasi-Experimental Approach to Assessing Treatment
Effects in the Nonequivalent Control Group Design.” Psychological Bulletin
82:345-62.

Kenny, D. A., and S. H. Cohen. 1979. “A Reexamination of Selection and
Growth Processes in the Nonequivalent Control Group Design.” Pp.
290-313 in Sociological Methodology 1980, edited by Karl Schuessler. San
Francisco: Jossey-Bass.

Kessler, R. C. 1977. “Use of Change Scores in Criteria in Longitudinal Survey
Research.” Quality and Quantity 11: 43-66.

Kessler, R. C., and D. F. Greenberg. 1981. Linear Panel Analysis: Models of
Quantitative Change. New York: Academic Press.

Liker, J. K., S. Augustyniak, and G. J. Duncan. 1985. “Panel Data and Models
of Change: A Comparison of First Difference and Conventional Two-Wave
Models.” Social Science Research 14: 80~101.

Lord, Frederic M. 1963. “Elementary Models for Measuring Change.” Pp.
21-38 in Problems in Measuring Change, edited by Chester W. Harris.
Madison: University of Wisconsin Press.



114 PAUL D. ALLISON

. 1967. A Paradox in the Interpretation of Group Comparisons.”
Psychological Bulletin 68: 304-305.

. 1969. “Statistical Adjustments When Comparing Preexisting
Groups.” Psychological Bulletin 72: 336-37.

Markus, G. 1980. Models for the Analysis of Panel Data. Beverly Hills: Sage.

Maxwell, Scott E., and George S. Howard. 1981. “Change Scores—Necessarily
Anathema?” Educational and Psychological Measurement 41: 747-56.

Overall, J. E., and J. A. Woodward. 1975. “Unreliability of Difference Scores:
A Paradox for Measurement of Change.” Psychological Bulletin 82: 85-86.

Porter, A. C. 1967. “The Effects of Using Fallible Variables in the Analysis
of Covariance.” Ph.D. diss., University of Wisconsin.

Preece, P. F. W. 1982. “The Fan-Spread Hypothesis and the Adjustment for
Initial Differences Between Groups in Uncontrolled Studies.” Educational
and Psychological Measurement 42: 759-62.

Reichardt, C. S. 1979. “The Statistical Analysis of Data from the Nonequivalent
Control Group Design.” Pp. 147-206 in Quasi-Experimentation: Design and
Analysis Issues in Field Settings, edited by T. D. Cook and D. T. Campbell.
Chicago: Rand-McNally.

Rubin, Donald B. 1977. “Assignment to Treatment Group on the Basis of a
Covariate.” Journal of Educational Statistics 2: 1-26.

Sharma, K. K., and J. K. Gupta. 1986. “Optimum Reliability of Gain Scores.”
Journal of Experimental Education 54: 105-108.

Werts, C. E., and R. L. Linn. 1970. “A General Linear Model for Studying
Growth.” Psychological Bulletin 73: 17-22.

Zimmerman, Donald W., and Richard H. Williams. 1982. “Gain Scores in
Research can be Highly Reliable.” Journal of Educational Measurment 19:
149-54.



