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ESTIMATION OF
LINEAR MODELS
WITH INCOMPLETE DATA

Paul D. Allison

UNIVERSITY OF PENNSYLVANIA

In estimating linear models, it is often necessary to combine data from two
or more samples or subsamples, each with a somewhat different set of
variables. Conventional methods for doing this are statistically inefficient
or have unknown statistical properties. This paper describes a maximum
likelihood method that is both consistent and efficient and that can be
implemented with LISREL. Unlike other maximum likelihood al-
gorithms, this method can estimate overidentified models, and it produces
consistent estimates of standard ervors. Using this approach, one can
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72 PAUL D. ALLISON

estimate linear regression models, path models, confirmatory factor mod-
els, errors-in-variables models, and nonrecursive models with incomplete
data.

In estimating linear models, researchers often need to combine
data from two or more samples or subsamples, each with a somewhat
different set of variables. Consider the following examples:

1. Remeasurement studies. Sometimes additional data is collected
for some fraction of the original sample to evaluate the quality of the
data collection. For example, Bielby, Hauser, and Featherman (1977a,
1977b) had data on the status attainment of 25,223 nonblack males in
the U.S. To estimate the degree of measurement error, they reinter-
viewed a random subsample of 578 males to obtain repeated measure-
ments of the variables of interest. After estimating a measurement
model for this subsample, they used the resulting reliability estimates to
correct for measurement error in the entire sample—an ad hoc proce-
dure with unknown statistical properties.

2. Sibling studies. A currently popular way to estimate the effects
of family background on various outcomes in adulthood is to collect
data on siblings (Taubman 1977). The covariation in outcomes among
siblings can then be used to estimate models in which family character-
istics are treated as latent variables. However, a universal problem in
such studies is that some persons have no siblings, and it is not obvious
whether and how the data for only-children can be combined with the
data for sibling pairs. In studies that include a// siblings, variation in
sibship size further compounds the problem.'

3. Multiple data sources. It is increasingly common for investiga-
tors to construct data sets that combine results from questionnaire
surveys with government data files and other public records. In at-
tempting to combine data from different sources, one often finds that a
substantial fraction of the records cannot be matched. In such cases,
the total sample can be divided into subsamples according to which
records are present and which are absent.

4. Attrition in panel studies. In multiwave panel studies, there is
often substantial attrition from one wave to the next. As a result, there

"The same problems occur in the estimation of neighborhood effects
(Bielby 1981) when the number of neighbors in the sample differs across neighbor-
hoods.
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may be one subsample with data from the first wave only, a second
subsample with data from the first two waves only, etc.

5. General missing data problems. Examples 3 and 4 are usually
treated by conventional methods for handling missing data. More
generally, in any missing data problem, the sample can be decomposed
into subsamples, each having a distinct set of variables present and
absent. In many cases, however, these subsamples will be numerous
and small.

In each of these examples, the statistical problem is to combine
the data from the multiple subsamples in such a way that the resulting
parameter estimates are both consistent (i.e., converge to the true
values as the sample gets large) and efficient (i.e., have standard errors
that are as small as possible). Of nearly equal importance are good
estimates of the standard errors, which enable us to construct valid
hypothesis tests and confidence intervals.

Previous approaches to the problem are deficient in several
respects. For example, listwise and pairwise deletion are known to be
consistent (if the data are missing completely at random), but both are
inefficient (Glasser 1964; Afifi and Elashoff 1966). Listwise deletion, in
particular, can discard an enormous amount of potentially useful data.
Pairwise deletion may be more efficient than listwise deletion in many
cases, but for some data structures it is known to be less efficient
(Donner and Rosner 1982; Brown 1983). Moreover, the standard error
estimates produced by most pairwise deletion algorithms are incon-
sistent estimates of the true standard errors.

In this paper I describe a maximum likelihood (ML) method
that produces direct estimates of the parameters of a large class of
linear models using data from subsamples with different sets of ob-
served variables. Under appropriate assumptions, these estimates are
consistent, asymptotically efficient, and asymptotically normally dis-
tributed. The method also produces consistent estimates of the standard
errors of the parameter estimates. In essence, the method treats missing
variables as latent variables, possibly without indicators. The model is
then estimated simultaneously for all subsamples while appropriate
equality constraints are imposed across subsamples.

An attractive feature of this method is that it can be imple-
mented with recent versions of LISREL ( Joreskog and Sérbom 1981,
1983), which is widely available and frequently used in social science
research. Although this is currently the only known program that can
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implement the method, the recently developed EQS program (Bentler
1983) may eventually have this capability. The method is primarily
useful when the number of subsamples with distinct sets of variables
present is relatively small and when the number of cases in each
subsample is large. Although the technique can be used for general
missing data problems with numerous subsamples, it is likely to be
tedious and expensive in those applications.

This method is closely related to other recent uses of ML to
handle missing data problems, and I will later point out some of those
connections. A similar approach was suggested by Werts, Rock, and
Grandy (1979), but their method did not yield true ML estimates and
applied only to confirmatory factor models. In contrast, the method
considered here applies to any linear structural equation model sub-
sumed under the general model proposed by Joreskog (1977), which
includes multiple regression, path analysis, confirmatory factor analy-
sis, seemingly unrelated regressions, and nonrecursive structural equa-
tion models. Detailed examples will be presented.

ML ESTIMATION WITH INCOMPLETE DATA

In this section I discuss the requirements for ML estimation of
linear models with interval-level variables when the data are incom-
plete. I also comment on previous uses of ML estimation with incom-
plete data.

Models. The class of models considered here is defined by
Joreskog’s (1977) general linear structural relations model. This is
specified in part by

n=Bn+T{+{, (1)

where 7 is a vector of endogenous variables, £ is a vector of exogenous
variables, §{ is a vector of unobserved, exogenous disturbances, and B
and T are matrices of coefficients. { and £ are assumed to be
uncorrelated. For convenience, all variables are assumed to have means
of zero, thus eliminating the need for intercept terms in the model. To
achieve identification, one must usually impose restrictions on B, T,
and var({). Important special cases of equation (1) include multi-
variate regression (B =0), multiple regression (B=0, and n is a
scalar), and recursive systems (B is subdiagonal and var({) is diagonal).
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To facilitate its estimation with missing data, this model can be
equivalently expressed without the §’s:

n* =B*n* +{*, (2)
where n* = h , £*= ¢ , and B*= B T . In essence, this
L £ 0 0

reformulation forces some of the endogenous n’s to be identically equal
to some of the exogenous {’s.? Since equation (2) is the focus of the
remainder of the paper, the asterisks will be dropped for notational
simplicity.

While equation (2) (or the equivalent equation [1]) is quite
standard in the econometric literature, the class of models is greatly
expanded by allowing for the possibility that ® may not be directly
measured. This is accomplished by adding equations that specify the
effects of the latent variables on a set of observed indicators:

y=An+e. (3)

Here, y is a vector of observed variables, and ¢ is a vector representing
random measurement error. A is a2 matrix of coefficients that must
usually be restricted in some way to achieve identification. Although ¢
is assumed to be uncorrelated with m and {, correlations are allowed
among the elements of & so long as the model is still identified.
Equation (3) is essentially a factor model, and the elements of A can
be interpreted as factor loadings.

If we let 2 be the population covariance matrix for y, equations
(2) and (3) imply that Z=A (I-B)"'"¥(I-B’)"'A’, +6, where
¥ =var({) and 0, = var(e). The model can also be generalized to
allow for multiple populations simply by adding a subscript to each of
the parameter matrices.

Data. The data are presumed to consist of two or more subsam-
ples, each having measurements on a somewhat different set of vari-
ables. One of these subsamples may be complete; that is, it may have
observations on all the variables of interest. This is not essential,
however. What is essential depends, in part, on the identification status
of the model to be estimated. Within the class of models that are
identified, some are “more identified” than others:

2The 7’ that were previously £’s are still exogenous because they are
identically equal to the {’s, which are defined to be exogenous.
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1. In just-identified models, the number of parameters to be
estimated equals the number of population moments (usually variances
and covariances). Ordinary multiple regression models, for example,
are just-identified. In just-identified models, every possible pairing of
variables must occur in at least one of the subsamples, making it
possible to estimate the covariance (or correlation) for each pair. In an
extreme case, each subsample would have measurements on only two
variables; if there were K variables in the model, this would require
K(K — 1)/2 subsamples.

2. In overidentified models, the number of population moments
exceeds the number of parameters. Hence, some of the moments are
redundant and need not be directly estimated in any of the subsamples.
Unfortunately, it is often difficult to determine which moments are
redundant; it depends entirely on the model of interest. Confirmatory
factor models and simultaneous equation models are commonly over-
identified.

For application of LISREL, the number of cases in each sub-
sample must exceed the number of variables measured for that sub-
sample. Otherwise, the resulting correlation or covariance matrix would
not be positive definite.

All the conditions described so far are sample properties that
can be directly verified. It is also necessary to make some assumptions
about how the observations come to be in one or another of the
subsamples. Conventional approaches to missing data usually rest on
the assumption that the data are, in some sense, missing at random, but
there has been much confusion about what this actually means. In a
definitive treatment, Rubin (1976) showed that there are actually two
different conditions that determine whether or not the mechanism
generating the missing data can be ignored.

1. Data are missing at random if the probability of obtaining
the particular pattern of missing data found in the sample does not
depend on the values of the data that are missing. It may, however,
depend on the values of the data that are observed.

2. Data are observed at random if the probability of obtaining
the missing data pattern found in the sample does not depend on the
data that are observed; however, it may depend on the data that are
missing.

To clarify these distinctions, consider the following simple exam-
ple. Suppose that for = 1,..., n, we have a joint variable (x,, ;) that
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is independent and identically distributed (across cases). For concrete-
ness, imagine that x is years of schooling and y is income. Now
suppose that income ( ) is not observed for the first m cases but that
education (x) is observed for all. Let D; be a dummy variable with a
value of 1 if y; is missing, 0 otherwise, and define g(x;, 3;) = pr(D;=
0]x;, ;). The data are missing at random if g does not depend on the
value of y; for i=1,...,m when x; is fixed at its observed value. The
data are observed at random if g does not depend on the value of x;
for ;=1,...,m and if g does not depend on the values of x; or y; for
t=m+1,...,n.

In other words, the data are not missing at random if persons
with high income are less likely to report their income. On the other
hand, suppose that persons with high education are less likely to report
their income but that among those with the same years of schooling,
income is unrelated to the probability that they will report. Then, the
data are missing at random but are not observed at random.

Most missing data techniques rest on the rather strong assump-
tion that the data are both missing at random and observed at random.
If both these conditions are satisfied, the data are said to be missing
completely at random. One of the virtues of the ML method, by
contrast, is that it retains its desirable properties when the data are
missing at random but not observed at random. Thus, even if people
with high education are less likely to report their income, it is still
appropriate to use ML to estimate the regression of income on educa-
tion and other explanatory variables. For a more detailed discussion of
these points, see Marini, Olsen, and Rubin (1979).

Even the weaker assumption that the data are missing at
random is likely to be violated for many of the applications envisioned
here. In panel studies, for example, attrition may well depend on
values of the variables that would have been observed in later waves.
In kinship studies, a couple’s decision to have only one child may be
based on anticipated undesirable characteristics of later children. As
with other statistical assumptions, however, the missing-at-random
assumption may be a useful approximation even when it is believed to
be false. Although models that do not make this assumption are
possible, they must be specially constructed for each application (Little
1982, 1983). Such models are usually complex, difficult to estimate,
and untestable with the data at hand (Rubin 1977; Greenlees, Reece,
and Zieschang 1982; Heckman 1979).
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Finally, the ML method described here rests on the assumption
that the data are drawn from a multivariate normal distribution, which
implies that the sufficient statistics are the sample means, variances,
and covariances. This assumption is fairly common for multivariate
problems and will be familiar to users of LISREL. While it is unlikely
that this assumption will be exactly satisfied in practice, there are
several reasons to believe that violations may not seriously compromise
the estimates:

1. Regardless of the true distribution, the proposed estimators
are consistent.

2. For multiple regression models, normality is not required for
independent variables that have no missing data (Rubin 1974).

3. The same estimators can be justified by arguments that do
not require multivariate normality. If attention is restricted to estima-
tors that are functions only of sample means, variances, and covari-
ances, the method considered here yields estimators of the population
means, variances, and covariances that are approximately minimum-
variance unbiased (Beale and Little 1975; Hocking and Smith 1968).

Thus, even with nonnormal data, ML estimators should have
reasonably good properties relative to competing estimators. On the
other hand, the standard error estimates may be more sensitive to
departures from normality. It should also be noted that the approach
described here can be used with estimation methods that rest on
somewhat weaker distributional assumptions—e.g., generalized least
squares and unweighted least squares methods.

ML estimation. We have known for many years that ML has
several advantages over other methods of handling missing or incom-
plete data (Wilks 1932). But that knowledge had little impact on
applied data analysis because ML estimation with missing data re-
quired enormous computational resources. In recent years, however,
improved algorithms and reduced costs of computation have made ML
a feasible option.

ML estimation methods have been developed for interval-level
data, for categorical data (Fuchs 1982), and for a combination of the
two (Little and Schluchter 1985). I consider only interval-level data
here. There are presently three widely known computational methods
for getting ML estimates of an unrestricted covariance (or correlation)
matrix when data are missing or incomplete: factoring the likelihood,
the Newton-Raphson algorithm, and the expectation maximization
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(EM) algorithm. All three methods produce identical estimates of the
covariance matrix, but they differ in cost, ease of implementation, and
range of applications.

1. Factoring the likelihood (Anderson 1957; Rubin 1974; Marini
et al. 1979) is computationally simple but is only applicable if the
subsamples follow a monotone or “nested” pattern. This occurs when
the variables with missing data can be arranged in a sequence
X{, X9,..., x, such that, for a given respondent and for i>j, x; is
missing whenever x; is missing.

2. Newton-Raphson (Hartley and Hocking 1971; Hocking and
Marx 1979) is an iterative algorithm that handles general missing data
problems, but it is quite expensive computationally. It also produces
standard error estimates for the means, variances, and covariances.

3. The EM algorithm (see Orchard and Woodbury 1972;
Dempster, Laird, and Rubin 1977), an iterative method available in
the BMDP package (Dixon 1981), handles general missing data prob-
lems but is less expensive than the Newton-Raphson procedure. Like
the factorization method, however, it does not produce estimates of
standard errors.

In their generally available implementations, none of these
algorithms is ideally suited to the estimation of linear models. For
multiple regression models, which are just-identified, the estimated
covariance matrix produced by any of these algorithms could be input
to standard regression programs to get true ML estimates of the
coefficients. But the resulting standard errors would not be consistent
estimates of the true standard errors. (Such estimates can often be
obtained by additional, nonstandard calculations, however.) For over-
identified models, simply inputting the ML covariance matrix will not
yield efficient estimates of the model parameters. Efficient estimation
requires that the overidentifying restrictions be incorporated into the
ML estimation procedure. Again, it may be possible to modify or
extend the algorithms to accomplish this.

ML ESTIMATION WITH LISREL

I now describe how to use LISREL to get ML estimates of
linear models with incomplete data. The method capitalizes on the
ability of LISREL (versions IV through VI) to estimate simultaneously
the same model for two or more samples. Individual parameters can be
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either constrained equal across samples or allowed to vary. For incom-
plete data problems, the sample is divided into subsamples, each
having a different (although possibly overlapping) set of variables
present. The model is then estimated simultaneously for all subsamples,
constraining corresponding parameters to be equal across subsamples.
For this to work, however, a number of special techniques are neces-
sary.

Before describing these techniques, I will briefly indicate why
the method works and why the special techniques are needed. Suppose
that the sample is divided into G subsamples (g =1,...,G) in such a
way that each subsample has a distinct set of variables present and
missing. Hartley and Hocking (1971) showed that for an unrestricted
multivariate normal distribution with data missing at random, the
log-likelihood function is given by

G
Yy ng[loglzgl + tr(SgEg") + tr(HgEg_‘) + Cg]. (4)
1

g=

1
2
For subsample g, n, is the number of cases, Z, is the true covariance
matrix for the variables present, S, is the observed covariance matrix
for the variables present, C, is a term that depends on the data but not
on the parameters, and Hg =(fi,—p ), —p,), where p, is the
vector of true means for variables present and fi, is the corresponding
vector of sample means. Compare this with the fitting function that is
maximized under the multiple group option in LISREL ( Joreskog and
Sorbom 1981):

1 G

—Egglng[log!Egl +tr(Sg2g_l> +Cg’]. (5)
Although expressions (4) and (5) are clearly similar, they are different
in three key respects: (a) unlike (4), the LISREL function in (5) does
not include a term for the differences between sample and population
means; (b) the LISREL function in (5) is defined for situations in
which the same set of variables appears in all groups, but (4) allows for
a different subset of variables in each group; (c) expression (4) is
maximized with respect to the elements of 3, but (5) is maximized
with respect to the set of parameter matrices that determine 2.

These differences can be reconciled by applying some special
techniques to both data input and model specification in LISREL. One
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set of techniques, documented in the LISREL manual ( Joreskog and
Sorbom 1981), allows for the inclusion of structured means in the
LISREL model. This is accomplished by (a) specifying an additional
“variable” with a constant value of 1.0 and (b) analyzing a matrix of
mean sums of squares and cross-products rather than a covariance
matrix. A second set of techniques makes it possible to have a different
set of observed variables in each of the multiple groups. This is
accomplished by (a) inputting pseudo-values for the missing sample
moments and (b) specifying fixed values for certain factor loadings and
error variances so that these pseudo-values are fitted exactly. Following
are detailed instructions for implementing these two techniques. A
proof that these techniques do indeed produce an equivalence between
expressions (4) and (5) is provided in Appendix A.

Data input. To incorporate means in LISREL VI, do the fol-
lowing:

1. In the DATA statement, specify MATRIX = AM. This indicates
that the matrix to be analyzed is an “augmented” moment matrix.
This is a matrix of moments about zero, whose last row (and
column) consists of sample means followed by the element 1.0.

2. Unless raw data are read in, input both the sample covariance
matrix and the sample means. Read in the latter using the ME
statement.

To incorporate means in LISREL V, do the following:

1. In the DATA statement, specify MATRIX = MM. This indicates
that the matrix to be analyzed is a matrix of moments about zero.

2. Set NINPUT equal to one more than the actual number of vari-
ables.

3. Add a row (and implicitly a column) of zeros to the sample
covariance matrix. This corresponds to an x variable with a con-
stant value 1.0.

4. Read in the sample means using the ME statement. The last mean,
corresponding to the additional x variable, should be 1.0.

To allow for missing variables, for each subsample, set any missing
covariances to 0.0, missing means to 0.0, and missing variances to 1.0.
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Model specification. To incorporate means, formulate the model of
interest as in equation (2), where all observed variables are »’s and all
latent variables are 7’s. In addition, include the following specifica-
tions on the MODEL statement:

1. Set NY equal to the number of observed variables, and set NETA
equal to one more than the number of unobserved variables.
2. Set NX =1 and specify FIXEDX.

In declaring fixed and free parameters, make the following specifica-
tions:

3. In the PSI matrix (the covariance matrix for {), fix at 0.0 all the
elements of the last row (and column).

4. In the GAMMA matrix (which here is a vector), fix at 0.0 all
elements except the last, which should be fixed at 1.0.

The LY matrix will have one more column than usual, the last column
consisting of free parameters that correspond to the population means
of the observed variables.

The aim of this specification is to force x =§=7= 1.0 and to
let this “variable” directly affect all the y’s. The model actually being
estimated is

y=Ajn®+e,
wt =Bt L TE 4L, (©)
x=§,

where

0O --- 0

The unstarred parameters in equation (7) are the same as the starred
parameters in equation (2).
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To allow for missing variables, any variable that is missing from
any of the subsamples must be an indicator of a latent variable. If this
is not already the case, a new latent variable must be added to the
model. The coefficients in the A, matrix are then used to “switch” the
variable “on” or “off,” depending on whether it is present or absent in
a particular subsample. Specifically, in subsamples with data missing
for a particular variable y, all elements in row 7 of A must be fixed
at 0.0. One must also fix var(e;) = 1.0 and cov(e,, ¢;) = 0.0 for i # .
These constraints ensure that the pseudo-values of 0.0 and 1.0 in the
sample covariance matrix for that subsample will be fitted exactly.

In subsamples with data present for that variable y;, the treat-
ment depends on whether or not the model allows for random error in
the measurement of that variable. If the model does not allow for
random error, one of the A, coefficients should be fixed at 1.0 and
var(e;) should be fixed at 0.0. If random error is allowed, no special
constraints are needed; the A coefficient and the error variance should
be left as free parameters to be estimated. Finally, all other parameters
are constrained to be equal across subsamples.

I now consider two examples. Both are deliberately much sim-
pler than typical applications so that the mechanics of the technique
are not obscured by the complexity of the illustrations. In each case,
the model to be estimated is relatively simple, and the sample is
divided into only two subsamples. In the first example, the data are
incomplete by design rather than by accident, and they are missing
completely at random. In the second example, the data are missing at
random but are not observed at random.

A CONFIRMATORY FACTOR MODEL

Suppose the aim is to estimate the correlation between father’s
occupational status (FAOC) and father’s educational attainment
(FAED) for black men in the U.S. Using a sample of 2,020, Bielby
et al. (1977b) estimated that correlation to be 0.433. They recognized,
however, that this correlation may be attenuated by random measure-
ment error. To estimate and possibly correct for this error, they took a
random subsample of 348 black males from the original sample of
2,020 and reinterviewed them approximately three weeks later. Conse-
quently, their original sample can be divided into two groups: a small
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TABLE 1
Covariance Matrices for Measures of Father’s Occupation and Father’s Education
Father’s Father’s
Occupation Education
N P2 J3 D4

Complete-data subsample

(N = 348)

» 180.90

P 126.77 217.56

3 23.96 30.20 16.24

A 22.86 30.47 14.36 15.13

Mean 16.62 17.39 6.65 6.75
Incomplete-data subsample

(N =1,672)

M 217.27

S 0.0 1.0

73 25.57 0.0 16.16

”% 0.0 0.0 0.0 1.0

Mean 16.98 0.0 6.83 0.0

 Data for these variables are missing.

subsample of 348 with complete data and a larger subsample of 1,672
with incomplete data. The small subsample had two indicators of
FAOC (denoted by y, and 3,) and two indicators of FAED (denoted
by y; and j,). The large subsample had only y, and y;. This design
virtually guarantees that the missing data are missing completely at
random.

Table 1 gives sample variances and covariances for these two
groups.® For the missing variables in the large subsample, pseudo-values

3 The covariance matrix for the complete-data subsample was obtained
directly from the correlation matrix and standard deviations reported by Bielby
et al. (1977b). The variances and covariances for the incomplete subsample were
more difficult to obtain because what was actually reported was the correlation
matrix and standard deviations for the entire sample, a combination of the
incomplete and complete subsamples. The calculations were performed by (a)
converting the reported correlations and standard deviations into sums of squares
and cross-products, (b) subtracting the sums for the remeasurement sample from
those for the full sample, and (c) using the result to reconstruct the covariance
matrix for the incomplete subsample.
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FIGURE 1. Path diagram of confirmatory factor model.

of 1.0 have been entered for the variances, and pseudo-values of 0.0
have been entered for the covariances with the other variables. As
described above, this substitution is a necessary part of the estimation
procedure.

Let us assume (as did Bielby et al.) that the data were generated
by the simple confirmatory factor model diagrammed in Figure 1 and
represented algebraically by the equations

(v)=(3) ®

and
N 10 O g
Y2 Ay 0 ( m ) &
= + 9
3 0 1.0 [\ M2 & |’ )
Js 0 A, &y

which are just special cases of equations (2) and (3). The latent factors
1, and 7, represent the true values of FAOC and FAED, respectively,
and the &’s represent random measurement error for the four observed
variables. The model says that y, and y, load exclusively on 5, and
that y; and j, load exclusively on 7,. The nonzero A coefficients for y,
and yp; are fixed at 1.0 to define metrics for the latent variables
(otherwise the model would be underidentified). There are nine param-
eters to be estimated: the two unconstrained A’s, the variances of the
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four &’s, the variances of 7, and 7,, and the covariance of 7, and 7,.*
Since there are a total of ten population variances and covariances for
the four observed variables, the model is overidentified with a single
overidentifying restriction: 6,;0,, = 06,,0,3, where o, = cov( 3;, ).

For the subsample with complete data, this model can be
readily estimated with LISREL following standard procedures. The
estimate of cov(m,1n,) is 23.31 with an estimated standard error of
3.13. The corresponding correlation is 0.623, which is substantially
higher than the uncorrected correlation of 0.433.

The problem with this approach (which is equivalent to listwise
deletion) is that it discards the data on », and jy, for the large
subsample with incomplete data. Incorporating this additional data
might substantially increase the precision of the estimates.

Now consider the ML method for incomplete data. To incorpo-
rate the means, the model must be reformulated by adding one 7, one
£, and one x variable, all of which are forced to be identically equal to
1.0. Thus we have

m 0 §y

Ml=10|&+]5, (10)
M3 1 $s

and
ay (100 )
Y2 21 0 23 €y
= +

Y3 0 1.0 A, zz €|’ (11)
J4 0 Ay Ay b

where £ =x=17,=1.0 and var({;) = 0.0. Note that A; (:=1,...,4)
correspond to the population means of the four y’s.

LISREL VI control statements for estimating this model are
displayed in Appendix B. The data, including the sample means, are
read in as described above. For the subsample with no observations on
7, and y,, we set Ay, A,g, Ay, and Ay, equal to 0.0 and var(e,) and
var(e,) equal to 1.0. All the free parameters are constrained to be
equal across subsamples.

LISREL VI estimates are given in Table 2. The derived ML
estimate of the correlation between 7, and 7, is 0.616, slightly lower

* The covariance between the two 7’s is equivalent to the covariance
between the two {’s, which is what is actually reported in the LISREL runs.
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TABLE 2
Parameter Estimates for Confirmatory Factor Model

Standardized

Parameter Estimate SE Estimate
A 1.0% — 0.74
Aoy 1.25 0.09 0.89
Aso 1.0* — 0.94
Ay 1.003 0.04 0.97
cov(m,, M,) 25.17 1.41 0.62
var(n,) 116.63 10.20 —
var(1,) 14.29 0.70 —
var(g) 94.20 8.81 —
var(e,) 47.10° 1245 —
var(e;) 1.88 0.49 —
var(e,) 0.77° 0.48 —

2 The parameters are fixed at this value.
® These estimates are for the complete-data subsample only.

than that obtained using the complete-data subsample alone. More
importantly, the standard error for the estimate of cov(n,, n,) is cut in
half, from 3.13 to 1.41. Thus, there is a major gain in using all the
available data.

LISREL also routinely reports a likelihood ratio x? statistic for
evaluating the goodness of fit of the model to the data. For this
example, the x? was 7.80 with 15 degrees of freedom (df), yielding a p
value of 0.93. This would ordinarily be considered an excellent fit.
Unfortunately, the reported df is artifactually high and must be
corrected. LISREL calculates the df by subtracting the number of
estimated parameters from the total number of moments that are read
in as data. In this example, there are 13 parameters and a total of 28
elements in the two moment matrices for the two subsamples, yielding
the 15 df. Nevertheless, 9 of the elements in the moment matrix for the
incomplete subsample are pseudo-values of 1.0 and 0.0, which are
perfectly fitted as part of the estimation procedure. We must therefore
subtract 9 from 15 to get the correct number, 6. A x? of 7.80 with 6 df
has a p value of 0.25, which is still acceptable but not nearly as good
as the first impression.

There is still more to be said about this x? statistic. The 6 df (as
well as the statistic itself) can be decomposed into two parts: 1 df
pertains to the fit of the model to the complete-data subsample; the
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other 5 df pertain to the equality constraints across the two subsamples.
To get the x? for the single df, we can fit the model to the complete-data
subsample by itself (which has already been done). The resulting x? is
1.96 with a p value of 0.16. To test the equality constraints, we
calculate x? as 7.80 — 1.96 = 5.84, with 5 df and a p value of 0.32.
Thus, no matter how one looks at the x?, the fit is still acceptable.

What if the x? for the equality constraints had been large and
statistically significant? That would suggest that at least some of the
parameters were not really the same for the two subsamples or,
equivalently, that the data were not really observed at random. There
would be no cause for concern, however, because the procedure still
produces valid ML estimates when the data are not observed at
random as long as they are missing at random. Unfortunately, there is
no general test for the missing-at-random assumption because the
observed data are always consistent with some missing-at-random
model (Rubin 1976).

Before concluding this example, two additional comments are in
order. First, the example shows that the model does not have to
be identified for every subsample. The confirmatory factor model was
identified for the complete-data subsample, but it was grossly under-
identified for the incomplete-data subsample. In a more extreme
situation, the model may be underidentified in each subgroup and yet
identified for all the groups taken together. The equality constraints
across the subsamples are what make it possible to estimate the model
under such conditions. Second, the estimation procedure applied here is
very natural for confirmatory factor models that contain latent vari-
ables. When a single latent variable has multiple indicators, these
indicators are substitutable for one another, and the loss of any one of
them is not crucial to the estimation of the model. Moreover, the
technique of switching variables off by fixing the appropriate A
parameters to 0.0 is straightforward, since these parameters are already
part of the original model. I turn now to an example in which this
technique is not so obvious or straightforward.

A MULTIPLE REGRESSION MODEL

In this example, the aim is to estimate a linear regression model
in which the dependent variable is years of schooling (ED) and the
independent variables are father’s years of schooling (FAED) and
father’s occupational status (F40C). The purpose of this example is
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() to illustrate the use of LISREL when none of the variables in the
model is a latent variable, (b) to demonstrate the superiority of ML
estimation when data are missing at random but not observed at
random, and (c) to show how to correct for certain kinds of sample
selection bias.

Suppose that the sample is restricted, for reasons that need not
concern us, to persons who have at least some college education. That
is, ED>12. It is well known that when a sample is truncated by
values of the dependent variable, OLS regression may suffer from
severe sample selection bias (e.g., Heckman 1979; Berk 1983). Let us
also suppose, however, that we have an auxiliary sample in which we
observe ED (but not FAED or FAOC) for persons who have 12 or
fewer years of education. Thus, we have one sample with complete
data and a second sample with data missing on FAED and FAOC. As
we shall see, when the information in these two samples is combined
using the LISREL method, the sample selection bias is eliminated.
Note that the only information required from the auxiliary sample is
the mean and the variance of the dependent variable. This information
can often be obtained from published or publicly available sources.

Let us pursue this example with the simulated data in Table 3,
which gives means, variances, and covariances for the two samples. By
using simulated data, we can control the process generating the missing

TABLE 3
Covariance Matrices for Education, Father’s Education and Father’s Occupation
ED FAED FA0C
Complete-data subsample
(N =492)
ED 3.043
FAED 1.987 13.07
F4a0C 10.38 37.94 496.43
Mean 14.25 10.59 37.65
Incomplete-data subsample
(N =508)
ED 3.240
FAED? 0.0 1.0
F40cC* 0.0 0.0 1.0
Mean 9.614 0.0 0.0

? Data for these variables are missing.
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TABLE 4
Coefficient Estimates for Regression of ED on FAED and FAOC

FAED FAOC
Estimation Method Estimate SE Estimate SE
OLS (no missing data) 0.272 0.0230 0.0283 0.00400
OLS (listwise deletion) 0.106 0.0222 0.0173 0.00386
ML 0.271 0.0328 0.0276 0.00557

data and compare results of missing data methods with results obtained
when no data are missing. To get the data in Table 3, a random
number generator was used to produce 1,000 multivariate normal
observations based on the moment matrix for ED, FAED, and FAOC
reported by Bielby et al. (1977a). Observations in which ED > 12 were
assigned to the complete-data subsample (n = 492), and observations
in which ED < 12 were assigned to the incomplete subsample (7 = 508),
in which values of FAED and FAOC were suppressed. (As in the
previous example, missing means and covariances are given a value of
0.0 in the table, and missing variances are given a value of 1.0.) These
data are missing at random, since the probability that an observation is
assigned to the incomplete subsample does not depend on the variables
that have missing data— FAED and FAOC. The data are not observed
at random, however, because the value of ED completely determines
whether or not an observation has missing data.

The effect of sample selection bias can be seen in the first two
rows of Table 4. The first row, which may be taken as a standard of
comparison, gives coefficients and standard errors for OLS applied to
the complete data for all 1,000 observations. The second row gives
coeflicients and standard errors for OLS with listwise deletion of
missing data (i.e., the subsample in which ED < 12 is discarded). The
listwise coefficient for FAED is less than half the estimate obtained
from the complete-data sample, and the listwise coeflicient for FAOC is
about 60 percent of the estimate obtained from the complete sample.

Now consider the ML method using LISREL. Although the
model of interest is simpler than in the previous example, it is less
straightforward because there are no latent variables. To apply the
method, the model must be reformulated by postulating latent vari-
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ables corresponding to each of the three observed variables. The
observed variables are assumed to be measured without error when no
data are missing. This is, in fact, the approach usually taken in
LISREL to estimate models in which all variables are directly ob-
served. The difference here is that in the subsample with missing data,
the latent variables corresponding to missing variables are treated as
true unobservables with no observed indicators. To accomplish this and
to incorporate means, the model may be specified as

] ->‘11 0 0 Ay, ;';1 £
P f=10 Ay 0 Ay nz + % (12)
sl 0 0 1 Agl|q, €3
and
m] [0 o o o][m] T[o &
M2 By O 0 Ofmy 0 $
= + + , 13
s Bsi By O Of|Ts 0 : §3 (13)
Me] | 0 0 0 0]lLMs | ¢

where y, is FAED, y, is FAOC, y; is ED, and x=§=1.0.

Equation (12), which is a special case of equation (3), says that
the observed variables »,, 7, and y; depend on the latent variables.
The model forces 71, to be identically equal to 1.0, which implies that
A4 Ay, and Ag, are the population means of y, »,, and y;. In the
complete-data subsample, we set A;; = A,, = 1.0 and var(g,) = var(e,)
= var(e;) = 0.0. For the subsample with data missing on », and y,, we
set A, = Ay =A, =\, =0.0, var(g)) = var(e,) = 1.0, and var(e;) =
0.0.

Equation (13), which is a special case of equation (2), is the
same for both subsamples. The regression coefficients of interest are 35,
and f,,. Although the B, coefficient is not of direct interest, it is
included in the model as a convenient way to allow for a nonzero
covariance between FAED and FAOC. In estimating the model, the
matrix of B’s, the covariance matrix for {, and the A, coefficients are
constrained to be equal across the two groups. We must also fix
var($,) = 0.

LISREL VI control statements for estimating this model are
given in Appendix B. These statements should be relatively straightfor-
ward for anyone experienced with LISREL, with one exception. By



92 PAUL D. ALLISON

default, LISREL V and VI calculate starting values for the iterative
algorithm using a least squares and instrumental variables method.
This method requires that each latent variable in each subsample have
at least one indicator with a fixed, nonzero A coefficient. For the
subsample with missing data, however, this condition is not satisfied,
since 7, and 71, have no indicators with nonzero coefficients. Conse-
quently, the automatic starting values must be suppressed (by coding
NS on the OUTPUT card), and initial estimates must be supplied.
These can be obtained from the listwise-deletion OLS.

ML coefficients and their standard errors are given in the last
row of Table 4. The coefficients are very close to those obtained by
applying least squares to the original data with no truncation and no
missing values.

The x? statistic for this model was 996.37 with 2 df (after
correction), suggesting correctly that the data are not observed at
random. Virtually all of this statistic comes from constraining the
population mean of y, for the incomplete subsample to be equal to the
population mean of y; for the complete subsample. Of course,
the missing data mechanism ensures that this constraint must be false,
because observations are allocated to the complete and incomplete
subsamples according to whether they are high or low on y,. This does
not mean that the constraint should be relaxed, however. Violation of
the observed-at-random condition does not vitiate ML estimation, and
failure to impose the constraint yields estimates that are not true ML
estimates. In this example, relaxing the constraint gives estimates that
are quite close to those obtained with listwise deletion.

It should also be noted that in this example, the missing data
follow a monotone pattern, implying that ML estimates can be ob-
tained by factoring the likelihood (Marini et al. 1979). This is easily
accomplished by hand calculations performed on the sample moments.
The resulting estimates are identical to those obtained with the LISREL
method. Nevertheless, as previously observed, this method of obtaining
ML estimates does not yield standard errors of those estimates.

DISCUSSION

Although the models and missing data patterns in the two
examples were quite simple, extensions to more complicated situations
should be straightforward. On the other hand, the LISREL method is
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obviously cumbersome when there are many missing data patterns.’
And if the number of variables is at all large, the number of possible
missing data patterns is enormous.®

As we have seen, there are many kinds of applications that tend
to produce a small number of missing data patterns containing most of
the observed cases. Even in those situations, however, there are often a
number of minor missing data patterns that each contain only a
handful of cases. In practice, several ad hoc approaches may be used to
eliminate these minor patterns. One is to delete all observations that do
not fall into one of the major patterns. A second is to use pairwise
deletion or imputation within each of the minor patterns to make it
conform to one of the major patterns. Finally, there are some situations
in which it may be possible to make a minor pattern conform to a
major pattern by suppressing some of the observed variables (see
Marini et al. 1979 for details). While none of these methods is ideal,
any one of them seems preferable to abandoning the ML approach
altogether, since that would require the application of ad hoc methods
to the entire sample.

Another bothersome characteristic of the proposed method is the
inclusion of sample means, which requires that the model be refor-
mulated in a cumbersome and confusing way.” Unfortunately, the
means are essential for getting true ML estimates. Since some authors
have proposed similar methods that do not require the means (e.g., Lee
1986), it is worth considering the possible consequences of ignoring
them. My own experience in applying the method to several examples
suggests that the consequences are slight when the data are missing
completely at random. Specifically, the estimates and their standard
errors differed only slightly when the method was applied without the
means.

On the other hand, the information contributed by the means
appears to be crucial when the data are missing at random but not

® This limitation is not inherent in the proposed method, since it could be
overcome by efficient computer programming. The entire process could be au-
tomated to the point at which specifying the model could be no more difficult than
specifying a LISREL model for a single sample. This could be done either by
modifying LISREL itself or by creating a preprocessor to generate the control
statements for LISREL.

\ 6 If there are £ variables, the number of possible missing data patterns is

2f—1.

7 The forthcoming LISREL VII will make it possible to include means in a
much more direct, straightforward fashion.
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observed at random (as in the second example above). When the
means are omitted, the estimates may change drastically. As previously
noted, while most conventional missing data techniques presume that
the data are missing completely at random, ML estimators are con-
sistent and asymptotically efficient under the weaker assumption that
the data are missing at random but not observed at random. Thus, one
of the principal advantages of ML estimation may be lost without the
inclusion of sample means.

Even the weaker assumption that the data are missing at
random but not observed at random will be dubious in most applica-
tions, but there are some applications in which one can with total
confidence invoke the assumption that the data are missing completely at
random. These are studies in which the data are incomplete by design,
as in the confirmatory factor example. The availability of efficient
statistical methods should now make such designs much more attrac-
tive. I will briefly mention two possible applications here; a more
thorough treatment will appear in a later paper.

1. Suppose the aim is to estimate a linear regression model in
which one of the explanatory variables is extremely expensive to
measure. Instead of measuring all the variables for all the cases, a more
cost-effective approach might be to measure the expensive variable for
only a random subsample. Using the LISREL method, one could
combine the complete data from this subsample with the incomplete
data from the remaining respondents to get consistent estimates of the
regression coefficients.

2. Since long questionnaires can lead to respondent fatigue and
consequent response errors, one solution might be to assign respondents
randomly to different shortened versions of the questionnaire. Then
one could use the LISREL method to combine the results from the
incomplete subsamples.

A final comment concerns the relationship between missing data
and unobservable variables. As we have seen, the way to get LISREL
to estimate models with missing data is to treat missing data as
unobservable variables. In effect, this reverses an approach that is now
popular among statisticians. The EM algorithm, discussed earlier, is a
general approach to missing data problems. Early in the development
of this algorithm, it was realized that unobservables could be treated as
missing data and that a variety of latent variable models could be
estimated in this way (Dempster et al. 1977; Rubin and Thayer 1982;
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Bentler and Tanaka 1983). The method proposed here demonstrates
that the process can be turned around: Methods for estimating latent
variable models can be used to estimate models with missing data. This
should not be too surprising, since unobservables are merely missing
data carried to an extreme.

APPENDIX A: PROOF THAT THE MODIFIED LISREL
ALGORITHM MAXIMIZES THE LIKELIHOOD WHEN
DATA ARE MISSING

The proof is presented in two parts. In part 1, I show that the
proposed techniques for handling missing variables allow expression (5)
to be applied when there are different variables measured for each
subgroup. In part 2, I show that the proposed techniques for incorpo-
rating means into the LISREL algorithm produce an equivalence
between expressions (4) and (5).

Part 1. Consider a p X 1 random vector y of potentially ob-
servable variables that depend on a set of ¢ latent variables by
equation (3). Now suppose that we have G subsamples with observa-
tions on y, such that each subsample has a distinct set of variables
present and missing. We focus on a single, arbitrary subsample with
variables observed and s = p — r variables not observed. Without loss
of generality, let us assume that the observed variables are the first 7
elements of y, and let ¥ be an 7 X 1 vector of those elements. Thus, we
can write

y=An+E,

where A is an 7 X ¢ matrix consisting of the first 7 rows of A  and & is
a vector con51stmg of the first 7 elements of €. Define 9 = var( £).

Let S be the 7 X r sample covariance matrix for y, and define
the p X p matrix

(59
(o 1)

where I is an s X s identity matrix. The techniques described in the
main text specify that S* is the sample covariance matrix that is read
into LISREL for the subsample under consideration. Those techniques
also require that two of the parameter matrices take the following
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Aj‘,=(A’), 0:=(°e 0),
where A% has p rows and 8* is p X p.
We define Z* = A*QA*’ + 6.*, where @ is the ¢ X ¢ population
covariance matrix for 1. We therefore have
A QK+, 0) _ (2 0)
0 I o 1/
where 2 is the population covariance matrix for the r observed

variables.
For a single group, the function that is maximized by LISREL

form:

2|

n[log|2*| +tr(S*Z*71) + C].

It then suffices to show that |2*| = |£| and tr(S*Z* ") =t(SZ ') +
s. The equality of the determinants is easily shown by repeated
expansion by cofactors. The second equality follows from

ssx-1_ (S O}[=!' o}_(S="'" 0

ST2 _(0 1)( 0 1) ( 0 I)'
Therefore, tr(S*Z* ') =tr(SZ ") + tr(I) =tr(SZ ') +s5. We have
thus shown that maximization of expression (5) with the proposed
modifications to S, A , and 6, allows the set of observed variables to be
different in each subsample.

Part 2. For simplicity, we assume that there is no missing data,
but the proof works equally well if there is missing data and the
techniques in part 1 have already been applied. If there is no missing
data, then expressions (4) and (5) apply to a single sample with no
summation involved.

Notation. We observe y distributed as N,(p, 2). Let S be the
sample covariance matrix and fi be the sample mean vector for y.
Define M = S + [ifi’, the matrix of sample moments about zero, and
define = 2 + pp’, the matrix of population moments about zero. We
also define three augmented moment matrices:

M Q
* = 4 * — * —
n (b 10", M (ﬁ-’ 1'0), and € (W 1.0).
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M* is the matrix that is analyzed by LISREL under the proposed
techniques.

Lemma I: The modified model in equations (6) and (7) implies that Q*
is the population covariance matrix fitted by LISREL.

Proof: By equation (1.4) in Joreskog and Sorbom (1981), the popula-
tion covariance matrix expressed in terms of the parameters is
AX(1—-B*) (TOT"+¥*)(I-B*) 'A% +8,

%= B
A®T/(1-B*) 'AY

-1 ’
A’;(I —B*) TOA,
A PN + 6
where ¥ * = var({ *), 0, = var(e), ® = var(£), and 6; = var(x — A £).
The other matrices are defined in equations (6) and (7). Under the
proposed techniques, the FIXEDX specification in LISREL sets 65 =
0.0, A,=1.0, and ® = 1.0. We thus have
~1 , 1 5w, —1

A*(I-B*) (TT'+¥*)(I-B*) A*'+6, A*(I-B*) T

I'(I-B*") 'A% 1.0

Next, we note that

—1
A%(I—B*)'T=][A ((I‘B) 0)(°)= .
5 ) (A w57 b
It follows that

— ( AS(T—B*) W (I—B*) 'A% +0,+up g )

p 1.0
But since
v 0
* =
v=(g o)

it follows that
s _ A(I-B) '"¥(I-B) "N, +0,+pp p
p 1.0

ZHu B ) o,
W 1.0 '
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Lemma 2: e(M*Q* 1) =w(SZ7) + uf (A —p)(E—p)' 27+ L.

Proof: By a standard inversion formula for partitioned symmetric
matrices (Theil 1971, p. 18),

Q! — (Q—pp)" —(Q-pw) p )
—w(@-pp) " 1+ (Q-pp) e
_ 3! -2
_IJ'/ZVI 1_{_"/2—1”‘ :
Then,
M*QF - — MS ' =2 -MZ A+ a(l+p =)
}1/2_1"‘}1.,2_1 _ﬁ/2~lp+1+p/2—lp
Therefore,

tr(M*Q* ) =ee(M2 ™' — S ) +tr( -’27+ 1+ W)
=1 +u[(S+pp)E -]
+ur(pwE7 - pprE)
= 1+ [(S+ R+ pw — fp —pd) 27
=1+uw(SZ7) +uf (- p)(E-p)=].

Lemma 3: |Q*| = |Z|.

Proof: Q* can be factored as follows:

(I p,)(z O)
* =
@ (0’ 1o/\p 10)°

where both matrices are square and nonsingular. In this situation, the
determinant of the product is the product of the determinants; there-
fore,

| =

I p||Z O0)_
0’ LOHW l.Oh 21
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Theorem: Under the techniques described in the main text, the LISREL
algorithm maximizes

n[log|ﬂ*| + e (M*Q*") + C]
= n[log|2| +tr(SZ71)

+u((f-p)(E-p) 27 +C7],

which is equivalent to expression (4).

Proof: Apply lemmas 1, 2, and 3.

APPENDIX B: LISREL VI CONTROL STATEMENTS
FOR EXAMPLES

Confirmatory factor model

FATHERS SES—COMPLETE DATA

DATA NI=4 NOBS=348 MA=AM NG=2
CM

180.90

126.77 217.56

23.96 30.20 16.24

22.86 30.47 14.36 15.13

ME

16.62 17.39 6.65 6.75

MODEL NY=4 NX=1 NE=3 FIXEDX PS=FI GA=FI
FREE LY 2 1LY 42LY1T3LY23LY33
FREE LY 4 3 PS11PS22PS12
VALUE 1.0 GA 3

ST 0.5 ALL

MA LY

1016

1016

016

016

OUTPUT SE TO SS NS

FATHERS SES—INCOMPLETE DATA
DATA NOBS=1672
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CM

217.27

0.0 1.0
25.57 0.0 1
0.0 0.0
ME

16.98 0.0 6.83 0.0
MODEL PS=IN GA=IN LY=FI
FIX TE 2 TE 4

VALUE 1.0 TE 2 TE 4

FREE LY 1 3 LY 3 3

ST 0.5 ALL

MA LY

10 16

6.16
0.0 1.0

0
0
0

o -0

6
0
EQ TE
EQ TE
EQ LY

EQ LY
ou

— ) - -
W =2WN=-=
WWW-
rre -
< < mm
W= N -
WWW-

Multiple regression model

EDUCATION REGRESSION—COMPLETE DATA
DATA NI=3 NOBS=492 MA=AM NG=2

CM

13.07

37.94 496.4

1.987 10.38 3.043

ME

10.59 37.65 14.25

PAUL D. ALLISON

MODEL NY=3 NX=1 NE=4 FIXEDX TE=FI BE=SD,FR

TD=FI GA=FI PS=DI,FR

FREE LY 1 4 LY 2 4 LY 3 4

FIX PS &4 &

VALUE 1.0 LY 1 1LY 2 2 LY 3 3 GA 4
ST 11 LY 1 4

ST 40 LY 2 4
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ST 14 LY 3 4

ST 3 BE 2 1

ST 0.3 BE 3 1

ST 0.03 BE 3 2

ST 300 PS 1

ST 7 PS 2

ST 3PS 3

OU TO NS SE SS

EDUCATION REGRESSION—INCOMPLETE DATA
DATA NOBS=508

CM

1

001

000 3.24

ME

0 0 9.614

MODEL GA=IN BE=IN PS=IN LY=FU,FI
FREE LY 3 4

VALUE 1.0 LY 33 TE1 TE 2 2
EQ LY 1 3 4 LY 3 4
ou
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