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THE RELIABILITY OF

VARIABLES MEASURED AS
THE NUMBER OF EVENTS IN
AN INTERVAL OF TIME

Paul D. Allison

CORNELL UNIVERSITY

In both the social and the natural sciences, many vari-
ables are measured as the number of events that occur in an in-
terval of time. Recent sociological examples include the frequency
of racial disturbances in American cities (Spilerman, 1970), the
frequency of mental hospitalizations (Eaton, 1974), and the
frequency of religious revivals in nineteenth-century Ohio
counties (Hammond, 1974). Such measures often have several

I am indebted to Scott L. Feld, Arthur S. Goldberger, and Thomas A.
Heberlein for helpful suggestions and to Barbara F. Reskin for the use of her
data.
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desirable properties: ease of data collection, high face validity,
and a resulting ratio scale.

Nevertheless, even if counts of events are perfectly accu-
rate, one may not wish to view the resulting scale as an error-free
measure of the variable of interest. One simple but important
reason is that there is usually considerable variation in the spac-
ing of events even when the average rate of occurrence remains
stable over long periods. This means that if events are counted
over relatively short intervals of time, the resulting counts may
not be a very accurate indicator of the long-run rate of occurrence.
The number of murders in a single day in a medium-sized city,
for example, would probably not be a very reliable measure of the
city’s murder rate; the next day might well give a very different
number.

While it could be argued that such short-term variations
represent real changes in the phenomenon of interest, it is often
more useful to view the interval-to-interval variability of fre-
quency counts as random variation in the measurement of some
stable, latent trait. In this study I develop some techniques for
estimating the importance of this random variation, under the
assumption that events are independent—that is, the occurrence
of an event does not alter the likelihood that an event will occur
at any future time. Specifically, I propose an estimator of the
reliability of counts of events in a specified interval of time as a
measure of a latent trait.

The advantage of this estimator over more conventional
approaches is that it requires neither test-retest data nor parallel
measures at the same point in time—only the mean and variance
of the univariate data are needed. Although the basic formula
assumes that no errors are made in counting events, it will be
generalized to the case where the counts themselves have a known
unreliability. Other extensions include a method for determining
the length of time needed for any desired reliability and a reli-
ability estimator for counts that are standardized by population.

While the assumption that events are independent may
seem restrictive for some applications, I argue that it is only
slightly stronger than assumptions made for conventional mea-
surement models. Moreover, the ease of application makes the
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estimator an attractive method of approximation even when other
models provide a more accurate representation of reality—
especially when multiple indicators are difficult or impossible to
obtain.

THE COMPOUND POISSON PROCESS

Let us begin with a model for the generation of events.
Consider a single individual (or aggregate) with a constant pro-
pensity for events to occur. That propensity is denoted by A,
and one can assume for the moment that A has some positive
numerical value. A formal definition of A will be given shortly.
Let X denote the number of events that occur during an interval
of length /. For reasons just discussed, X is not a perfectly reliable
measure of A. This notion can be expressed in the language of
probability by saying that for a fixed value of A, X is a random
variable. That is, X has a probability distribution with a positive
variance. Since A is fixed and X is a measure of A, it is appro-
priate to interpret the variance of X as measurement error
variance.

Can anything be said about the probability distribution of
X? If it is assumed that two or more events cannot occur simul-
taneously and the events are independent, then the probability
distribution can be completely specified. As already noted, in-
dependence means that the occurrence of an event does not
change the likelihood that an event will occur in the future. Under
these assumptions, X is said to be generated as a simple Poisson
process (Hays and Winkler, 1971) and the probability distribu-
tion of X is a Poisson distribution:
(\t)e™

r!

Pr(X =) = (r=0,1,2,...) (1)

where ¢'is the exponential constant and A is a fixed parameter.
This equation implicitly defines A, which we have interpreted as
the propensity for events to occur.
An unusual property of the Poisson distribution is that its
mean and variance are equal (Hays and Winkler, 1971):'
"The following notation will be used: I'(X) denotes the population vari-

ance of X; E(X) denotes the expectation of .X; (/(X, <) denotes the population
covariance of X and Z; px; = p(X, <) denotes the population correlation of
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EX) = VX) = M @)

Without loss of generality, time can arbitrarily be rescaled so
that 1 = 1. Hence

EX) = V(X) = A 3)

It should now be clear why A can be interpreted as the propensity
for events to occur—it is simply the expected number of events in
an interval of unit length.

Now suppose that instead of being constant, A is some
function of time—that is, A = f (¢). In this case no difficulty arises
as long as we define the latent trait to be \, the mean of \ over
the interval in question. Formally,

— 1 2
A= —(tz _— [ f () dt 4)

Then X still has a Poisson distribution, but with the parameter
A, and X is said to be generated as a time-dependent Poisson
process (Chiang, 1968). The importance of this generalization is
that it allows the model to be applied to cases where the pro-
pensity for events to occur varies periodically or has some long-
term trend. The number of events in a given interval can thus be
seen as a measure of the average likelihood that events will occur
during that interval. Since it makes no formal difference, A will
subsequently refer to the parameter in both the constant and the
time-dependent cases. Note, however, that if A is changing in
response to the occurrence of events, the assumption of indepen-
dence is violated. The source of the change must be exogenous to
the system.

Now consider one additional but essential complication.
Instead of a single individual, suppose there is a population of
individuals, each emitting events according to a Poisson process
but each having a different propensity for events to occur. This is
sometimes called a compound Poisson process (Arbous and
Kerrich, 1951). No longer is A\ a fixed parameter but rather a
random variable across individuals. Similarly, the marginal dis-

Xand Z;E(X| Q) denotes the conditional expectation of X given some value of
<; similarly, (X | <) denotes the conditional variance of X given some value

of <.
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tribution of X is no longer Poisson but a compounding of the
Poisson distribution and the distribution of A (Feller, 1957). It
is still the case, nonetheless, that the conditional distribution of
X given some value of A is a Poisson distribution, and the condi-
tional mean and variance are the same as before:

EXIN = VXN =\ (5)
RELIABILITY OF POISSON VARIATES

From these assumptions, it is possible to derive a simple
formula for the reliability of X as a measure of A. Reliability may
be defined as the squared product-moment correlation between
the true and observed scores, in this case A and X (Lord and
Novick, 1968). From the definition of correlation, this is

pir = CC(\ X))/ V(N V(X) (6)

It can be shown’ that for any two random variables w and z,
C(w,z) = Clw, E(z| w)]. Using this result together with Equa-
tions (5) and (6) gives

pin = 2N/ VN VX)) = V(IN)/V(X) (7

This is the same result one gets from classical test theory—
namely, that reliability equals the ratio of the true score variance
to the observed score variance. In fact, it can be shown that the
compound Poisson model implies the basic assumptions of classi-
cal test theory.

Since V' (X) is already estimable, it is only necessary to get
an expression for V' (\) in terms of estimable quantities. To do
this, it is convenient to decompose the variance of X as follows:

V(X) = EIVXIN] + VIEX V) (8)

This decomposition is quite general (Parzen, 1962) and does not

ZLet w* = w — E(w). Then
Cw,z) = E(w*z)
= E[E(w*z|w)]
= E[w*E(z|w)]
= Clw, E(z | )]
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depend on the assumptions of the compound Poisson process.
Substituting from Equation (5) yields

VX) =EX) + V) (9)

This result can be found in Spilerman (1970) or Arbous and
Kerrich (1951).

From Equation (5) and the law of iterated expectations,
one gets

E(X) = E[E(X|IN] = EON) (10)

That is, the observed mean of X is the same as the mean of A over
individuals. Combining this result with Equation (9) gives

Vin) = VX)) — EXX) (11)
Substituting this into Equation (7) yields
pir = V(X) = E(X))/V(X) (12)

pin =1 — [EX)/V(X)]

which is the intended result. Thus, assuming that events are
generated by a compound Poisson process, the reliability of
counts of events is a simple function of the observed mean and
variance. A method-of-moments estimator of Equation (12) is
obtained by substituting the sample mean and the sample vari-
ance:’

pin=1— X/s5% (13)

Before we proceed, Formula (13) will be used to estimate
the reliability of measures of scientific productivity. Reskin (1973)
used the Science Citation Index to count the number of articles pub-
lished and citations received in four 1-year intervals by a sample
of 239 chemists. The table gives the means and variances of the
counts in each of the 4 years: 1965-1968. These were substituted

A maximum-likelihood estimator (MLE) of Equation (12) may be ob-
tained under the assumption that X has a negative binomial distribution, a
very plausible assumption for variables generated by a compound Poisson
process (Spilerman, 1970). The MLE is found by substituting the MLEs for
E(X)and V(X) into Equation (12). The MLE of £(X) is simply X, the sample
mean. The MLE of V(X) requires an iterative solution described by Fisher
(1953).
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TABLE 1
Reliability Estimates for Two Measures of Scientific Productivity
Compound Four-Wave

Mean Variance Poisson Model® Panel Model
Articles
1965 1.03 2.59 0.60
1966 0.80 2.15 0.63 0.63
1967 0.83 2.73 0.70 0.65
1968 0.87 2.51 0.65
Citations
1965 5.08 190 0.97
1966 6.12 280 0.98 0.97
1967 6.35 290 0.98 0.97
1968 6.89 336 0.98
*Estimated by 1 — X/s%.

into Equation (13) to get the reliability estimates in the column
labeled “Compound Poisson Model.’” Although the estimates are
fairly stable from year to year for each measure, the reliability
of citation counts is markedly higher than that of publication
counts.

Reliabilities for these data have also been estimated
(Hargens and Reskin, 1974; Hargens, Reskin, and Allison, 1976)
using the four-wave panel model proposed by Werts, Joreskog,
and Linn (1971), which separates reliability from stability. This
method requires the variance-covariance matrix for all 4 years,
but only produces estimates for the two middle years of the series.
These estimates, shown in the last column of Table 1, are similar
to those obtained with the much simpler method proposed here.

ERRORS IN COUNTING EVENTS

Until now it has been assumed that no errors were made in
counting events and that, hence, all measurement error stemmed
from random variation in the spacing of events over time. In many
cases this assumption may not be far off the mark—events can
often be counted with a high degree of accuracy. Nevertheless,
the compound Poisson model can be extended to incorporate
information about errors that occur in the process of counting
events.

Let 7 denote the observed number of events in an interval ¢,
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and X will continue to denote the {rue number of events that occur
in that interval. It is still the case that piy = 1 — E(X)/V(X),
but now E(X) and V(X) are not directly estimable. Assume that
Y, the observed number of events, satisfies the usual assumptions
of classical test theory (Lord and Novick, 1968)—namely, that

Y=X+¢ (14)
and
E() = E(Xe) = E(Ae) =0 (15)
It follows that
E(Y) = E(X) (16)
and
pir = V(X)/V(Y) (17)
or
V(X) = pa V(1) (18)

where p}ris the reliability of the observed counts as a measure of
the true number of events. If p%y is known, then by substitution
of Equations (16) and (17) into (12), p%\ can be expressed in
terms of known and estimable quantities:

pin =1 = [E(T)/V(Y)pir] (19)

Although p%, may be the parameter of interest, more often one
is concerned about p%,: the reliability of the observed counts as
a measure of the latent trait. From Lord and Novick (1968, p. 69)
we have

pzn = pfmpfw (20)
Multiplying both sides of Equation (19) by p%rtherefore yields

pix = pir — [E(X)/V (D)) (21)
which is the intended result. This could be estimated by
P = phr— T/s% (22)

Note the similarity of Equations (13) and (22). The first formula
estimates reliability by subtracting the ratio of the observed mean
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and variance from 1; the second takes the same ratio and sub-
tracts it from the reliability of the observed counts as a measure
of the true number of events. If Equation (13) is inappropriately
used when the observed counts are unreliable, the resulting esti-
mator has an asymptotic bias of 1 — p%r. That is, when random
errors are made in counting events, Equation (13) tends to over-
estimate the reliability.

But how can p%rbe known? In some cases it may be pos-
sible to estimate it by using parallel or tau-equivalent measures.
For the scientific productivity example just discussed, articles
published in 1967 were also counted using an alternative source—
Chemical Abstracts. The correlation between these counts and the
counts from Science Citation Index was 0.94; the variances were
2.77 and 2.73 respectively (Hargens, Reskin, and Allison, 1976).
On the reasonable assumption of tau equivalence (Lord and
Novick, 1968), we may take this correlation of 0.94 to estimate
the reliability of the SCI counts for that year. Using this value
with Equation (22) to correct the compound Poisson model esti-
mate for the 1967 article counts, one gets an estimate of 0.65—
identical to the estimate obtained with the four-wave panel model.

CHANGING THE TIME INTERVAL

Earlier it was observed that counts of events over “‘short”’
intervals of time tend to be unreliable. In general, increasing the
time interval will always increase the reliability of the resulting
event counts. But how short is short and how long is long enough?
Using the compound Poisson model, it is possible to get an exact
expression for the functional relationship between time and
reliability.

The compound Poisson model can be shown to be a special
case of a generalized version of classical test theory, first pro-
posed by Woodbury (1963) and later elaborated by Lord and
Novick (1968, Chap. 5), in which the observed score is generated
by a covariance stationary stochastic process. For this general-
ized model, the well-known Spearman-Brown formula for the
reliability of a lengthened or shortened test may be used with the
continuous variable time interpreted as test length (Lord and
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Novick, 1968; Allison, 1976). Let p%\(¢) be the reliability of event
counts taken over the interval ¢, and let p%,(ct) be the reliability
of counts taken over an interval ¢ times as long. Then

pin(et) = [pa V(1 + (¢ = Dpin()] (23)

which is the Spearman-Brown formula.

It must be emphasized that use of this formula requires a
strengthening of the earlier assumptions. Specifically, it must be
assumed that, for each individual, A either has a constant value
or the same mean in the intervals ¢ and cf. Substantively, this
means that the propensity for events to occur must remain con-
stant or have no systematic trend.

Consider again the scientific productivity example. Since
publication counts from a 1-year interval have an estimated reli-
ability of only about 0.64, it seems advisable to take counts from
a somewhat longer interval, say 5 years. Using Equation (23)
with ¢ = 5 and p3x(¢) = 0.64 yields pix(ct) = 0.90, a substantial
improvement.

Alternatively, Equation (23) can be solved for ¢ to obtain

_[_piaet) 1 — ph()
‘ _<1 - pix(cl)>< pir(t) > (24)

which enables one to determine the interval length required for
any desired reliability. Again using 0.64 as the 1-year reliability
estimate, suppose one wanted a reliability of 0.95. That is, pk-
() = 0.64 and pix(ct) = 0.95. Then Equation (24) implies that
a 10.7-year interval would be needed to obtain this level of reli-
ability. Note that ¢ is not the interval length but the multiplier of
the original interval length, in this case 1.

VARIABLE TIME INTERVALS

To this point it has been assumed that counts of events
have been made over intervals of equal length for every individual
in the sample, although the consequence of changing that interval
for every case has just been examined. That assumption made it
possible to set ¢ = 1 in the derivation of Equation (12). In many
samples, however, the length of the interval may differ for every
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case. In measuring scientific productivity, for example, it is com-
mon to count the total number of publications in a scientist’s
career even though career age (years since doctorate) may vary
substantially across scientists. In such cases, if one wants to
measure the rate at which events occur, it is desirable to stan-
dardize the counts by dividing by the length of the time interval—
that is, to use X/t as a measure of A (Lord and Novick, 1968).
Then it is no longer correct to use Equation (13) to estimate the
reliability because X/t does not have a Poisson distribution con-
ditional on A. Nevertheless, it is possible to get a similar reliability
estimator for X/t as a measure of A.

For the general stochastic process model, Lord and Novick
(1968, p. 111) show that

X VA
b <T’ >‘> = VX 25)

which is the familiar result that the reliability is the ratio of the
true and observed score variances. Since V' (X/t) is estimable, the
objective is to express V'(A) in terms of estimable quantities. Us-
ing EX|Nt) = VXN = N, V(X/t) can be decomposed in
a manner similar to the derivation of Equations (8) and (9):

bl e

V[—}—E(Xl A,t)] + EE; VXA z)]

1

Il

VN + E(%)

R EIY) I

E[tiz E(X| A,t)]

Similarly



EVENTS IN AN INTERVAL OF TIME 249

Together, Equations (26) and (27) imply
VN = V<%’> - E<f¥> (28)

Substituting Equation (28) into (25) gives

= 29)

v )
)-8
which is the desired result. The simplest approach to estimating

Equation (29) is to substitute the sample mean of X/¢* and the
sample variance of X/¢.

STANDARDIZING BY POPULATION

When the unit of analysis is an aggregate (census tracts,
cities, nations), it is common practice to standardize the number
of events by population size (or some multiple of population as
in deaths per 1,000). Then the variable of interest is X/P, where
Pis population size. Since X is a fallible measure of A\, X/P can
be regarded as a fallible measure® of A\/P. (It is assumed that P
is measured without error.) Using techniques similar to those
already employed, it is possible to obtain an expression for the
reliability of X/ P as a measure of A/P. It may be shown that

AN e

and the variance of X/P may be decomposed into

oy

* A formal rationale can be given for this standardization procedure based
on the idea of an aggregate of individual Poisson processes. Suppose that each
individual i of the population produces a number of events x; according to a
Poisson process with parameter ¢;. Then X = Z 1%. A sum of Poisson vari-
ates is itself a Poisson variate with a parameter equal to the sum of the param-
eters (Feller 1957). Therefore X is generated by a Poisson process with param-
eter A = Z, 10; = 6P, and A\/P = 7, the average rate of pccurrence for the in-
dividuals in the population. Similarly, p (X/P ANP) = (X/P 7).
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Then the formula for the reliability of X/P is identical to that for
the reliability of X /¢, with Psubstituted for ¢. That is,

T -

If there is standardization for variability in both population size
and interval length, one may use

EH--ERE o

Note that the compound Poisson process is often a good model
for aggregates even though the events do not occur as a Poisson
process to the individuals in the aggregate. Births and deaths,
for example, surely do not arrive as a Poisson process to indi-
viduals—the occurrence of the event may drastically change the
probability of that event in the future. Nevertheless, such events
probably do arrive as a Poisson process to cities—one birth does
not substantially alter the probability that another will occur in
the same city.

CLASSICAL TEST THEORY

Earlier it was observed that the compound Poisson model
implies the assumptions of classical test theory and is a special
case of the stochastic process version of the classical model (Lord
and Novick, 1968). The classical model defines an error term

e=X-T

where X is the observed score and 7 is the true score. The as-
sumption is that ¢ is uncorrelated with any other variable in the
system. In the compound Poisson model, we may define the error
term

e =X - A\t

In this case, e must be independent of any other variable in the sys-
tem. While independence implies uncorrelatedness, the converse
is not true. In addition to the focus on discrete events, this as-
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sumption of independence is a major sense in which the com-
pound Poisson model is a special case of the classic model.’
One of the basic results of the classic model is

Vx) = V(T) + V()
Note the similarity to the decomposition in Equation (9):
Vx) = V) + EN)

Since A is equivalent to 7, then V(¢) = E(A) = E(X)—that is,
the error variance in the compound Poisson model is equal to the
mean of the true and observed scores. It is this equivalence that
makes it possible to estimate the reliability from the univariate
distribution. If one simply wants the error variance for X (as for
input to LISREL; see Joreskog and Van Thillo, 1973), X pro-
vides a satisfactory estimate. Since, in this model, the error vari-
ance is a property of the population (rather than of one’s measur-
ing instruments), there is no reason to expect it to be more stable
across populations than the reliability coefficient. This instability
of error variance creates no difficulty because either the reliability
coefficient or the error variance can be quickly estimated for what-
ever sample one has in hand.

Finally, it should be noted that this is not the first instance
of a reliability estimator requiring only the mean and variance of
the observed scores. Kuder and Richardson (1937) did the same
for tests consisting of a set of dichotomous items of equal dif-
ficulty. It is simply the familiar KR-21:

I I

where 7z is the number of items in the test and X is the number of
items correct. KR-21 can be derived in a manner similar to the
derivation of Equation (12) by assuming that X has a binomial
distribution for each individual with parameters n and p, and p
is a random variable across individuals—a ‘‘compound binomial

>Some versions of the classical model do specify independence (Lord and
Novick, 1968, p. 44), but this is stronger than necessary to obtain the usual
results.
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experiment.” In fact, the limit of Expression (34) as n goes to
infinity is simply the estimator given by Equation (13).
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