Survival Analysis of Backward Recurrence Times

Paul D. Allison

Journal of the American Statistical Association, Vol. 80, No. 390 (Jun., 1985), 315-322.

Stable URL:
http://links jstor.org/sici?sici=0162-1459%28198506%2980%3 A390%3C315%3ASA0OBRT%3E2.0.CO%3B2-R

Journal of the American Statistical Association is currently published by American Statistical Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Nov 4 15:53:54 2004



Survival Analysis of Backward Recurrence Times

PAUL D. ALLISON*

Many surveys include questions that attempt to measure the
time of the most recent occurrence of some event, for example,
last visit to a physician. Although it is tempting to apply survival
(failure-time) methods to such data, the conditions under which
such applications are appropriate have not been apparent. In
this article it is shown that standard methods may be applied
when the data arise from certain well-known stochastic pro-
cesses. Special procedures may be necessary if the models in-
clude duration dependence, however. The methods are illus-
trated by the estimation of regression models for data on residential
mobility.

KEY WORDS: Forward recurrence times; Failure time anal-
ysis; Generalized gamma distribution; Open intervals; Regres-
sion analysis; Residential mobility.

1. INTRODUCTION

Surveys often include questions of the following sort: When
did you last see a doctor? How long have you been working
at your present job? When was the last time you and your
spouse quarreled? How long have you been living in this house?
All of these questions attempt to measure the length of time
between the survey and the last occurrence of some event. Such
questions are typically asked with no attempt to get information
about earlier events, either because of limitations on the number
or complexity of questions or because it is believed that re-
spondents can accurately recall the timing and circumstances
of only the most recent event.

Borrowing terminology from renewal theory (Cox 1962), I
shall refer to such data as backward recurrence times. Though
there are many possible uses for backward recurrence times, it
is tempting to use them to measure the rate or hazard of event
occurrence. If Jones published a paper last month, for example,
whereas Smith’s most recent paper appeared 10 years ago, it
is natural to guess that Jones has a higher rate of publication.
Or consider a more complicated example, which I shall pursue
in detail in later sections: In 1968 a national sample of ap-
proximately 2,300 male heads of households was asked, “When
did you move into this house (apartment)?” The aim is to
estimate models in which the hazard of residential mobility
depends on several covariates.

A natural approach to the analysis of these data is the body
of methods known as survival analysis or failure time analysis
(Kalbfleisch and Prentice 1980; Elandt-Johnson and Johnson
1980; Lawless 1982). A possible difficulty with that approach
is that from one point of view, all observations are censored.
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That is, there are no completed intervals between events, only
intervals that have been interrupted by the survey itself. When
all observations are censored, it is easily shown that the like-
lihood function always reaches its maximum at a boundary of
the parameter space, and hence maximum likelihood estimation
is problematic. For example, if the data consist only of censored
observations from an exponential distribution with parameter
A, the likelihood is exp(—AT), where 7T is the sum of the
censored times. Regardless of 7, this reaches a maximum of 1
when A = 0. As we shall see, however, this result is misleading
because it ignores the fact that the interrupted intervals all began
with the occurrence of an event.

Sgrensen (1977) used backward recurrence times to estimate
the rate parameter in a Poisson process, but his estimators are
unnecessarily complicated by the fact that he did not consider
likelihood-based estimation. And although Ginsberg (1979) used
backward recurrence times to estimate the distribution function
of a renewal process, his method required additional data be-
yond the recurrence times. There has also been considerable
interest on the part of demographers in “open birth intervals”
—the length of time between the last birth and the time of a
survey. Srinivasan (1966, 1968, 1970) argued that such inter-
vals are especially sensitive indicators of changes in natality
patterns, and his work has inspired a number of empirical stud-
ies (e.g., Hastings and Robinson 1975). Interest appears to
have fallen off in recent years, however, perhaps as a result of
the criticisms of the method by Leridon (1969), Sheps et al.
(1970), and Venkatacharya (1972). The most serious difficulty,
noted by Sheps et al., is the severe truncation of the distribution
of the open interval when the sample is stratified by number
of previous births, a problem that I shall also discuss in Sec-
tion 5.

The demographic approach has been almost exclusively fo-
cused on the mean of the open interval. This article, however,
is principally concerned with hazard functions, specifically the
conditions under which it is possible to estimate hazard func-
tions from data on backward recurrence times. The major find-
ing is that in some situations it is possible to use standard
methods with little or no modification, treating time as though
it ran backwards from the time of the survey until the time of
the event. Inference is also possible in other situations, but
special procedures may be necessary.

Note that my objective is not to argue unequivocally for the
use of backward recurrence times, but rather to clarify the
conditions under which they can and cannot be legitimately
used to estimate hazard functions. There are important limi-
tations to the use of such data, and there are many areas of
application in which such usage would be inappropriate.

A crucial requirement for estimating hazard functions from
backward recurrence times is that the event be repeatable. If
the event is not repeatable, the hazard is necessarily zero in the
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interval between the event and the survey; hence the length of
that interval gives no information about the hazard prior to the
event. Repeatable events are typically modeled as a stochastic
process (Gail et al. 1980; Prentice et al. 1981; Lawless 1982),
and I shall rely heavily on results from the stochastic process
literature. Such models are necessarily more complicated than
those for single events and pose a formidable array of speci-
fication decisions. The strategy here is to start with very simple
models and then introduce more realistic complications one by
one.

In Section 2, I consider the Poisson process, which is char-
acterized by a constant hazard. Later sections then generalize
this model in several different directions. Section 3 allows the
hazard to vary with time from the origin of the process, and
Section 4 allows variation with duration since the previous
event. Sections 2—4 also apply the theoretical results to the
analysis of data on residential mobility. In Section 5, I consider
the problem of estimating models in which the hazard for event
occurrence depends on the number of previous events. Section
6 extends some of the results of earlier sections to the case in
which individuals alternate between two states. In Section 7, I
discuss forward recurrence times, indicating that although most
of the results of earlier sections apply to prospective data, some
do not.

2. A CONSTANT-HAZARD MODEL

For events such as residence changes, which are repeatable
and undifferentiated, it is commonplace to model the occurrence
of events as a point process. Of course the simplest and best-
known point process is the Poisson process, which I shall con-
sider in this section. I begin with some notation that closely
follows that of Prentice et al. (1981) and will be used in sub-
sequent sections.

Let N(t) = {n(u): 0 < u < t} be a point process such that
n(u) counts the number of events in [0, u). Note that N(¢) is
equivalent to the set of random event times Ty, T, . . . , Ty
in [0, #). Let z denote a p X 1 vector of covariate values that,
for now, are assumed to be constant over time. I define the
hazard or intensity function to be

Mt | N@), z}
= lim P{n(t + h) — n(t) = 1| N@®), 2}/h. (2.1)
h—0

Equivalently,
Mt | N@®), z} = lim Pe{T,4; <t + h|N@), z}/h. (2.2)
h—0

The models examined in Sections 2—5 are obtained by imposing
various restrictions on this hazard function.

Now suppose that we observe n individuals (i = 1, ...,
n) whose event histories are independent realizations of the
point process just defined. For all individuals, the process is
interrupted at some time 7, which is independent of N(¢). Let
t; be the earliest known time such that the half-open interval
(t;, 7) contains no events; and let §; = 1 if an event is known
to occur at t;, 0 otherwise. For each individual, then, the data
consist of (u;, J;, z;), where u; = t© — ¢; is the backward
recurrence time and z; is the covariate vector. We assume that
nothing is known about the individual’s event history (sample
path) before ¢; or after 7.
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The variable J; indicates whether or not ¢; is left censored.
Note, however, that if ¢; is left censored, then u; is right cen-
sored. Despite this ambiguity we shall continue to refer to such
censoring as left censoring. Left censoring can occur for a
variety of reasons. If the events are residence changes, it may
happen that some individuals have lived in the same house
since birth. For such individuals, u; is the person’s age at time
7 and d; = 0. Censoring also occurs when individuals cannot
recall the exact time of the most recent event, but only that it
happened more than, say, 10 years ago. Even when respondents
do report the time of the most recent event, it is sometimes
desirable to treat all event times earlier than a certain value as
censored at that value. This may happen either because re-
spondents’ recall is not trusted beyond a certain point in the
past or because the specified model is not trusted beyond a
certain point in the past. As an example of the latter situation,
a model that assumes a constant hazard may be plausible over
a relatively short interval, but not over a longer interval. As
usual, censoring times are assumed to be independent of event
times.

I turn now to the Poisson process, specified as

M INQ@), 2z} = M), (2.3)

which asserts that the hazard is constant over time for each
individual but may vary across individuals as a function of the
covariates. When there are no covariates, it is well known that
U—the random variable denoting the backward recurrence
time—has a possibly censored exponential distribution with
parameter A (Feller 1971; Sgrensen 1977). Allowing for de-
pendence on covariates is a straightforward extension. Thus the
problem of estimating A(z) from (u;, J;, z;) reduces to the
standard problem of regression analysis of a censored expo-
nential variate (Zippin and Armitage 1966; Glasser 1967). Note
that this approach is equivalent to treating 7 as the origin and
letting time run backwards.

I applied this method to data on residential mobility. As part
of the Michigan Panel Study on Income Dynamics (Survey
Research Center 1972), a national sample of 4,802 families in
the U.S. was interviewed for the first time in 1968. In that year
respondents were asked, “When did you move into this house
(apartment)?” The analysis is restricted to 2,297 U.S.-born
males who were “heads of households” and between the ages
of 30 and 59 (inclusive) in 1968. The distribution of responses
for this subsample is shown in Table 1.

In the data supplied by the Survey Research Center, moves
prior to 1964 were grouped into multiyear intervals of varying
length. This created problems that were most easily dealt with
by treating all moves in 1963 or earlier as censored at 1964.
As noted earlier, an additional advantage of such deliberate
censoring is that it increases the plausibility of the assumption
that the hazard is constant over the period of observation.

More than 400 variables were coded for the 1968 interview,
many of which are plausible determinants of residential mo-
bility. The vast majority of these variables did not realize their
1968 values until after the most recent move occurred, however.
To facilitate a causal interpretation, covariates were limited to
those determined prior to 1964, the earliest year at which an
uncensored move could occur. This was a severe restriction,
since the only variables that unambiguously satisfied that cri-
terion were race, region of birth, father’s education, parents’
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Table 1. Year of Most Recent Move for
Respondents Interviewed in 1968

Number Number of Estimated
Who Person-Years Probability of
Year Moved at Risk Moving
1968 103 8182 126
1967 229 2,194 104
1966 216 1,965 110
1965 200 1,749 114
1964 178 1,549 115
<1963 1,371
Total 2,297

2Although all respondents were at risk in 1968, they were not at risk for the entire year.

economic status when respondent was a child, and number of
siblings. Also included were respondent’s education and first
occupation, even though there may have been a few cases in
which education was completed or first occupation entered after
1964.

The model specified that A(z) = exp(fz), where fisa 1l X

p vector of coefficients. This gives rise to the likelihood

n

[T expld; Bz: — u; exp(Bz)], (2.4

i=1
which is standard for exponential regression. Since the data are
actually discrete, it would be desirable to estimate a model
obtained by grouping exponential data into equal intervals
(Kalbfleisch and Prentice 1980). I have done so, but the results
are virtually identical to those obtained when a continuous dis-
tribution is assumed. For simplicity I report only the latter
results. Estimates of the regression coefficients and their stan-
dard errors are shown under Constant Hazard in Table 2. Cod-
ings for the covariates are shown in the note to the table. To
summarize these results, the hazard of residential mobility was
lower among those whose first job was farming, those with
more than a high school education, and those who were born
in the North. Race, number of siblings, father’s education, and
parents’ economic status had virtually no impact. '

To evaluate the fit of the model, the residuals u; exp(fz;)
described by Lawless (1982) were calculated, and the survival
curve of the residuals was plotted. No departures from the
exponential distribution were apparent. Correlations among the
covariates and among the coefficient estimates were moderate
to low.
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3. A TIME-DEPENDENT MODEL

Although the assumption of a constant hazard may be a
reasonable approximation in some settings, it is likely to be
unduly restrictive in many others. Suppose that the model is
relaxed by assuming that

Mt | N@), z} = A@; 2),

which allows the hazard to depend on time and the covariates,
but not on the previous event history. If we suppress dependence
on the covariates, we have a time-dependent or nonhomoge-
neous Poisson process (Cox and Lewis 1966). Note that ¢ is
the length of time since the origin of the process, not the length
of time since the previous event. Thus this model does not
allow for what is commonly referred to as duration dependence.

The distribution of U, the backward recurrence time, is read-
ily obtained. Pr(U > u) is equivalent to the probability that no
events occur in the interval [t — u, 7]. Ignoring dependence
on z, from Cox and Lewis (1966) we have

3.1)

Pe(U > u) = exp{— f C k) dx} , (3.2)

which implies that the density for U is given by
fw) = Mz — u) exp{— f A dx} RNEE)

Hence the hazard function for U, which is denoted by y(u), is

given by
yu) = fw)/Pr(U > u) = Az — u). (3.4)

We now introduce covariates by assuming that a proportional
hazards model applies to A(-); that is,

At z) = Ao(t) exp(Bz),

where z is a vector of fixed covariates. If follows immediately
that a proportional hazards model also applies to y(-), that is,

(3.6)

(3.5)

y(u; z) = yo(u) exp(Bz),

where yo(u) = Ao(tr — u). If 7 is constant across observations,
then y,(+) is the same function across observations.

It is apparent, then, that the backward recurrence time U
behaves just like an ordinary survival time arising from a pro-
portional hazards model. Thus Cox’s partial likelihood (1972a)
should be an appropriate method for estimating 8.

Table 2. Estimates for Regression Models Based on Backward Recurrence Times

Time-Dependent

Age-Dependent Duration-Dependent

Constant Hazard Hazard Hazard Hazard
Covariate I SE  pISE B SE  BISE B SE  pISE B SE  pISE
FARM -.512 144 -3.56 —.524 144 -3.65 —.348 145 240 -259 070 -3.72
ED -.304 .080 -3.80 -.313 .080 -—-3.90 —.430 .080 -—-5.41 —.158 .037 —4.25
RACE -.120 .087 -1.38 -.127 .087 —1.46 -.037 .087 - 42 —.051 .040 -1.29
SIBS .016  .013 1.13 .016 .014 1.16 .020 .014 1.43 .006 .006 .88
ECON .081 .073 1.10 .084 .073 1.15 .053 .074 72 .030 .033 .93
FAED .066 .093 71 .067 .093 71 —-.064 .094 - .69 .020 .042 .48
NORTH —.422 146 —2.88 —.445 147 -3.04 —.428 147 -291 -.206 .066 —3.11
NC -.174 136 —-1.28 -.189 .136 —1.38 -.218 137 -1.59 —-.088 .061 —1.45
SOUTH —-.206 .136 —1.52 -.220 .136 -—1.62 —.211 135 —1.56 -.119 061 —.194

NOTE: Covariates are coded as follows: RACE = 1 if white, 0 otherwise; ED = 1 if more than high school education, 0 otherwise; SIBS is number of siblings; FARM = 1 if first occupation is
farmer, 0 otherwise; ECON = 0 if parents were “poor,” 1 otherwise; FAED = 1 if father had more than a grade school education, 0 otherwise; NORTH = 1 if respondent grew up in the North,
0 otherwise; NC = 1 if respondent grew up in the North Central Region, 0 otherwise; SOUTH = 1 if respondent grew up in the South, 0 otherwise. SE = standard error.
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For the residential mobility data described previously, I es-
timated a proportional hazards model in which the baseline
hazard was allowed to vary arbitrarily with calendar year. Co-
variates were the same as those used in the exponential regres-
sion analysis. Estimation was by partial likelihood, using the
SAS supplemental procedure PHGLM (SAS Institute Inc. 1980).
This program uses Breslow’s (1974) approximation for tied
data. The coefficients and standard errors shown under Time-
Dependent Hazard in Table 2 are remarkably similar to those
estimated under the assumption of a constant hazard. The fit
of the model was evaluated by plotting the survival curve of
the residuals, as suggested by Kalbfleisch and Prentice (1980).
The fit appeared to be good, although Crowley and Storer
(1983) have raised questions about the sensitivity of residuals
from a proportional hazards model to departures from the model.

To this point, I have assumed that the point of interruption
is the same for every observation in the sample. If the hazard
is specified to be a function of calendar time and if the survey
is conducted at approximately a single point in calendar time,
then this is clearly an appropriate assumption. In some cases,
however, different individuals in the sample may be questioned
at quite different points in calendar time. In other cases, more-
over, it may be more realistic to specify the hazard as a function
of age since birth or some other natural starting point (Breslow
et al. 1983; Farewell and Cox 1979). The hazard for a residence
change, for example, is likely to vary more with age than with
calendar time. If all individuals are interviewed at the same
point in calendar time, the point of interruption will occur at
different ages for different individuals.

When interruption times vary across observations, the pre-
vious argument for the use of the partial likelihood method is
not directly applicable. Following Cox’s original argument, the
contribution to the partial likelihood for individual £ with an
event at time 7, is

At z3) Z Mt; zp),

IER(,)

3.7

where R(?) is the set of indices for individuals known to be at
risk at time ¢. When 7 is the same for all individuals, the size
of R(z) is an increasing function of # (i.e., a decreasing function
of u = t — t). When t varies across individuals, however,
R(t) consists of all j such that #; < ¢t < 7;. As a consequence,
as ¢ moves from the smallest #; to the largest 7;, R(f) may both
increase and decrease in size.

Although this creates no difficulty in theory, virtually all
standard computer programs for partial likelihood estimation
assume that the risk set never increases with time. What is
needed is a program that will allow for “transient risk sets”
(Mantel and Byar 1974), that is, for individuals to both leave
and enter the risk set during the span of observation. Note that
this problem is not peculiar to backward recurrence times. It
will occur whenever one deals with repeatable events and a
limited observation period that varies across individuals. This
is because when events are repeatable, one cannot assume that
no events occurred during periods when the individual was not
under direct observation.

I modified a conventional partial likelihood program to allow
for transient risk sets and used it to estimate a proportional
hazards model for the residential mobility data. The baseline
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hazard was specified as an arbitrary function of respondent’s
age. Covariates were the same as those in the preceding anal-
yses. The coefficient estimates under Age-Dependent Hazard
in Table 2 are similar to those for the constant-hazard model,
but not nearly so similar as the coefficients for the time-de-
pendent model. The most noteworthy differences are the re-
duced coefficient for the farm indicator and the increased coef-
ficient for the education indicator.

Fixed covariates have been assumed to this point. It is well
known that the proportional hazards model and the partial
likelihood method can be generalized to allow for time-de-
pendent covariates, and this generalization would seem to be
appropriate for backward recurrence times. There is one danger
that demands careful consideration, however. Let us write the
proportional hazards model as

Alt; 2(0)] = Ap(1)eP0, (3.8)

where z(t) is a vector of possibly time-dependent covariates.
In many situations, z(f) may change in value as a consequence
of an event at time ¢. If the event is a job change, for example,
many characteristics of the job will change. With prospective
data, it is usually understood that a causal interpretation requires
that the time-dependent covariates realize their values prior
(often just prior) to the occurrence of the event. This is still
essential in the case of backward recurrence times, even though
estimation usually proceeds as if time ran backwards from the
point of interruption to the occurrence of the event. Thus in
the case of residential mobility, covariates describing the res-
idence must refer to the home vacated, not the home entered.
Unfortunately, such information is rarely collected in retro-
spective surveys that produce backward recurrence times. For
the residential mobility data, for instance, there is no infor-
mation regarding characteristics of the previous residence.

The use of time-dependent covariates also makes it possible
to let the hazard depend on both calendar time and age. The
simplest approach, which can be done with standard programs,
is to specify the hazard as an arbitrary function of calendar time
and let age enter as a time-dependent covariate. An alternative
approach is to use age to define time-dependent strata (Kalbfleisch
and Prentice 1980; Breslow et al. 1983).

4. MODELS WITH DURATION DEPENDENCE

In modeling repeated events, it is common to assume that
the hazard depends on the length of time since the immediately
preceding event (Prentice et al. 1981; Gail et al. 1980; Flinn
and Heckman 1982). In the notation used here, this can be
specified as

Mt [N@OY = At — ty)- 4.1)

This defines an ordinary renewal process so that interval lengths
are iid random variables. If we allow for dependence on co-
variates, we have a modulated renewal process (Cox 1972b).
Suppressing such possible dependence, let F(-) be the common
distribution function for completed intervals. For renewal pro-
cesses, it is well known that the backward recurrence time has
a distribution function G(*) that differs from F (except in the
special case in which F is the exponential distribution function).

In general, G will depend on 7, the length of time between
the origin of the process and the point of interruption. For
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typical survey data, however, the origin of the process may not
be known, at least not with much certainty. In many cases, it
may be reasonable to assume that the point of interruption is
relatively far from the origin. Then one can employ the well-
known limiting distribution of the backward recurrence time
(Karlin and Taylor 1975). The limiting density is given by

gw) = p7'[1 = Fw)], (4.2)

where u is the mean length of completed intervals. The distri-
bution function is thus

G(u) = p~! f 1 — F&)] dx. 4.3)
0

Using this result, one can in principle transform models for F

into models for G. The integral in (4.3) may be difficult to

evaluate, however, except in a few special cases. One such

case is the Weibull distribution

F@) = 1 — exp{— (40"}, 4.4)

where a is a shape parameter and A is a scale parameter. We
then have

g) = [A/IT(A + a™")] exp{—(Au)*} 4.5)

and

G) = Ila™", (Aw)*], (4.6)

where [ is the incomplete gamma function (as defined by Law-
less 1982, p. 512). This distribution is a member of the family
of generalized gamma distributions defined by Stacy (1962),
which also includes the Weibull and two-parameter gamma
distributions as special cases.

This result is convenient because Farewell and Prentice (1977)
used the generalized gamma distribution as the basis for a
regression model for censored data. If U is the backward re-
currence time and z is a vector of fixed covariates, their model
can be written as

logU = —fz + v/a, 4.7)

where v has the density exp(kv — e")/I'(k). If we impose the
restriction k = 1/a, the distribution of U is G in (4.6) with A
= exp(fz).

I used the procedure proposed by Farewell and Prentice (1977)
and Lawless (1982) to obtain maximum likelihood (ML) esti-
mates of a and B for the residential mobility data, using the
same covariates as in the earlier analyses. As noted in Section
2, a discrete-time model would actually be more appropriate
for these data, but the results would probably be so similar that
it would not be worth the substantial additional effort necessary
to develop such a model.

The estimate for a was 3.06, implying that the underlying
Weibull distribution has an increasing hazard, that is, the risk
of moving increases with time since the last move. Note that
a = 1 corresponds to the exponential model estimated earlier.
A likelihood ratio test of the exponential versus Weibull models
yields a chi-square of 384 with 1 df. Estimates for f are pre-
sented in Table 2 under Duration-Dependent Hazard. Quali-
tatively, the results are similar to those abtained via exponential
regression and partial likelihood; the ratios of the estimates to
their standard errors are virtually identical. Both the estimates
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and their standard errors are somewhat smaller than those in
the earlier analyses, however.

Note that although the Weibull regression model satisfies the
proportional hazards assumption, the distribution of the back-
ward recurrence time obtained from a Weibull renewal process
does not satisfy the proportional hazards assumption. I suspect
that this pattern holds more generally—that proportional haz-
ards models for completed intervals imply hazard functions for
backward recurrence times that are not proportional.

5. DEPENDENCE ON THE NUMBER
OF PREVIOUS EVENTS

All of the models considered so far have been simplified in
one key respect: they do not allow the hazard A{t | N(¢), z} to
depend on n(t), the number of events that have already occurred
by time ¢. This restriction is likely to be violated for human
and animal subjects, since most events are positively or neg-
atively reinforcing to some degree.

It is easy to formulate models that allow for such dependence,
but it is extremely difficult to estimate them with backward
recurrence times. This is obvious when the only datum is the
backward recurrence time itself. But even if we are given the
additional knowledge of the number of prior events, the esti-
mation problem is formidable. Consider, for example, the rel-
atively simple case of

;L{t l N(t)9 Z} = j'n(t)+1’ (51)

which implies that intervals between events are independent
and that the jth interval is exponentially distributed with pa-
rameter A;. Suppose that we have complete knowledge of the
event history in [0, 7], and we wish to estimate a particular A,.
The ML estimate of 4, is easily obtained by considering only
those individuals who experience at least k — 1 events and
then applying the standard ML estimator for a possibly censored
exponential variate to the kth interval. Censoring occurs only
if the kth interval extends beyond 7.

It is tempting to take the same approach when we are given
only the time of the most recent event and the number of prior
events. That is, for a particular 4,, we could restrict the sample
to those who experienced exactly k — 1 events in the interval
[0, 7] and treat the backward recurrence time as being expo-
nentially distributed with parameter A,. Sheps et al. (1970),
however, showed that this procedure may be highly misleading.
For the model under consideration, their results imply that the
distribution of the backward recurrence time conditional on the
number of previous events is not exponential. In fact, the con-
ditional density is given by

h(u) = [e7Mg_ (1 — W)/[Gi-y (t) — Gi(7)],

where G, and g, are, respectively, the distribution function and
the density function for the convolution of the first & intervals.
Hence the distribution of the backward recurrence time depends
oni; (j =1,...,k) and not on 4, alone. Estimation of A,
thus appears to be quite intractable.

Let us specialize further by considering the case of 4; = 4
for all j, which is just the Poisson process discussed in Section
2. Suppose that we did not know that 4; = A, however, and
we tried to estimate the A;’s by the procedure just described.
That is, we stratified the sample by number of previous events

5.2)
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and, within each stratum, used ML for an exponential variate.
Now we know already that the marginal distribution of the
backward recurrence time in this case is exponential with pa-
rameter 1. Nevertheless, the conditional density, given that j
events already occurred, is given by

h(u) = j(t — w)~Y/), (5.3)

which depends on the number of prior events but not on A.
Hence in this case, it is impossible to estimate A by stratifying
the sample. Furthermore, the hazard function associated with
this density is j/(t — u). Thus one might be led to conclude
that the underlying hazard is increasing with the number of
events when in fact it is constant. Intuitively, the reason for
this anomaly is that the backward recurrence time is merely ©
minus the sum of the intervals up to the last observed event.
When the number of intervals (events) is large, we expect the
backward recurrence time to be small.

A second example is provided by the “linear growth with
immigration” process (Karlin and Taylor 1975), which has

Mt | N@), 2} = a(z) + On(), (5.4)

where a is some nonnegative function of the covariates and 6
> 0. It can be shown: that the distribution function of U, con-
ditional on both n(t) and z, is given by

e()(r —u) __

—lx 55
) 69

Thus conditioning on the number of prior events eliminates any
dependence on the covariates.

In sum, it appears that models that allow the hazard to vary
as a function of the number of previous events are not amenable
to estimation with backward recurrence times. The attempt to
do so can produce wholly misleading results.

Pr[U<u|n(‘c)=x,z]=1—<

6. ALTERNATING PROCESSES

Suppose that individuals may alternate between two states—
for example, married or unmarried, employed or unemployed,
on welfare or not on welfare. Suppose further that the data
consist of the current state at some time 7 and the length of
time since the last change of states. Thus a survey might ask
unemployed persons how long they have been out of work and
employed persons how long it has been since they were last
unemployed. The objective is to estimate the hazard to each
state, which may vary with time or as a function of covariates.

Models for two-state processes can be difficult to estimate
with this kind of data. Nevertheless, there is one simple model
that can be estimated easily by using conventional methods.
I assume that the data arise from a two-state birth and death
process (Hoel et al. 1972) such that the hazard for moving from
state 1 to state 2 is a constant A, and for moving from state 2
to state 1, a constant u. For the moment, I assume no depend-
ence on covariates. Under this model, completed intervals in
state 1 are exponentially distributed with parameter 4 and com-
pleted intervals in state 2 are exponentially distributed with
parameter u. For an individual who is in state 1 at time t and
has been in that state since time ¢, the likelihood of the data is
the product of three factors: (a) the probability of being in state
2 just prior to ¢, (b) the hazard for leaving state 2, and (c) the
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probability of staying in state 1 from ¢ to 7. Using results in
Hoel et al. (1972), the likelihood for an individual who was in
state 1 at time O is therefore

(A — Ae= @A + p) X u X e 49, 6.1)

For an individual who was in state 2 at time 0, the likelihood
is

A+ pe *+M A + p) X u X e 49, 6.2)

These expressions have limited value because (a) we may not
know how long it has been since time 0 and (b) we may not
know the state at time 0. It is expedient then to assume that 7
and ¢ are both far from the origin, which implies that exp[ — (4
+ w)t] will be near zero. Regardless of initial state, the ap-
proximate likelihood for individuals who moved to state 1 at
time ¢ and remained there until time 7 is therefore

Ape= 01 (A + p). 6.3)

By a similar argument, the likelihood for an individual who,
at time 7, has been in state 2 since time ¢ will have a limiting
value (as ¢ and 7 get large) of

Aue #e=0(A + p). (6.4)

For a sample of n independent individuals, the joint likelihood
is thus

[/ (2 + " e *NhT, (6.5)

where T, and T, are the total amounts of time that individuals
are known to be in each of the two states. Maximum likelihood
estimators for A and u are readily found to be

A =n/(T, + VI.T,) and J= ni(T, + VT T,). (6.6)

Although these estimators are easily computed, it is instruc-
tive to consider estimators conditional on the state occupied at
7. The limiting probability of being in state 1 is u/(4 + w),
and the limiting probability of being in state 2 is A/(u +4). It
follows that given a state of 1 at time 7, the conditional like-
lihood for the last state change being at time ¢ is A exp{—A(t
— 1)} and, similarly, the conditional likelihood for a person in
state 2 at 7 is u exp{—u(r — ©)}. In short, the backward
recurrence times have conditional distributions that are expo-
nential with a parameter corresponding to the distribution of
completed intervals in that state. Hence standard estimators for
exponential distributions may be applied. Specifically, if n, and
n, are the number of individuals currently in state 1 and state
2 (and there is no censoring on the left), the conditional esti-
mators are

A =n/T, and f = n,/T, 6.7)

where T, and T, are as defined for (6.5). Concretely, one could
estimate the hazard for becoming unemployed merely from
knowledge of the length of employment among those currently
employed.

The conditional estimators are necessarily less efficient than
the unconditional estimators because they discard information
contributed by the proportion of observations in each state at
time 7. On the other hand, they can be much more easily
generalized. If there is censoring on the left, for example,
conventional estimators for a censored exponential variate are
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appropriate. Unconditional estimators for censored data are ob-
tainable, but they are much more complicated than the condi-
tional estimators. More important, if we introduce covariates
by letting A = exp{fz} and 4 = exp{yz}, the conditional es-
timators are equivalent to the standard estimators for regression
analysis of an exponential variate, which we discussed in Sec-
tion 2. The only thing new is that the sample is split into two
groups depending on current state.

The usefulness of this approach depends, of course, on the
plausibility of the simplifying assumptions, principally that (a)
the hazards are constant over time and (b) the recorded state
changes are far enough from the origin that the limiting distri-
bution of states is applicable. The assumption of constant haz-
ards, though unlikely to hold exactly in any situation, may be
a reasonable approximation in many circumstances. It is not
easily relaxed, however, nor is it easy to verify with the data.
If one knows the origin time and state, it is possible to relax
the assumption of the limiting distribution by using (6.1), (6.2),
and similar expressions for other state combinations. Only in
rare cases is this likely to be worth the effort, however. Some-
what more helpful is the fact that the data may provide some
evidence for or against this assumption. Use of the limiting
distribution requires that exp{ — (A + w)t} be negligible. Having
obtained estimates of A and u, one can get an internal check
by computing exp{— (A + 2)r}. Furthermore, other data sources
may suggest the approximate size of A and u to gauge the
appropriateness of this assumption.

7. FORWARD RECURRENCE TIMES

Many of the results in the previous sections also apply to
forward recurrence times, that is, the length of time between
some point of interruption (which is fixed or independent of
the occurrence of events) and the first subsequent event. Such
data are much less common than backward recurrence times,
however, which is why I have focused on the latter. It is com-
mon to begin observing the occurrence of events at some point
in an ongoing process, but usually observation is discontinued
at some fixed point in time rather than at the occurrence of an
event. For such data, many of the issues dealt with earlier do
not arise.

For completeness, I shall briefly discuss some of the simi-
larities and differences in the analysis of forward and backward
recurrence times. Results in Sections 2—4 apply to forward
recurrence times with virtually no modification. It is well known,
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for example, that under the constant-hazard model discussed
in Section 2, both the forward and backward recurrence times
are exponentially distributed with the same parameter. Simi-
larly, for the renewal process discussed in Section 4, both the
forward and backward recurrence times have the same limiting
distribution, which differs from the common distribution of
completed intervals. For the time-dependent model of Section
3, the construction of the likelihood for forward recurrence
times is similar to that for backward recurrence times, and the
same estimation procedures may be employed. Note, however,
that the problems associated with the use of time-varying co-
variates do not arise with forward recurrence times.

For the sample of male heads of households examined in
earlier sections, it was possible to obtain forward recurrence
times for residential mobility. Respondents were interviewed
annually beginning in 1968, and in each year they were asked
if they had moved since the previous interview. Using data
through 1972, I constructed the number of years between the
1968 interview and the first subsequent residence change, with
moves after the 1972 interview treated as censored. I then
estimated the same models as for the backward recurrence times
by using the same estimation procedures and the same covari-
ates. Although this was done for the sake of comparing the
forward and backward results, many more covariates could have
been included in the forward analysis, since all of the variables
measured in the 1968 survey were possible candidates. Results
are shown in Table 3. The similarities are striking. As in the
backward analysis, the qualitative conclusions are not very sen-
sitive to the choice of model. For the most part those conclu-
sions are the same as in the backward analysis. Mobility rates
are lower among farmers, the more educated, and those born
in the North. We do not find any effects of number of siblings,
father’s education, and parents’ economic status. The one note-
worthy difference is that the forward analysis clearly indicates
that blacks were more mobile than whites, whereas the back-
ward analysis found no significant difference.

In Section 5, I observed that models in which the hazard at
time ¢ depends on the number of events prior to ¢ are very
difficult to estimate with backward recurrence times. These
difficulties arise because there is a purely artifactual dependence
of the distribution of the backward recurrence time on the num-
ber of prior events. No such difficulty arises with forward
recurrence times, however. If data are available on the number
of events prior to the survey, models incorporating dependence

Table 3. Estimates for Regression Models Based on Forward Recurrence Times

Time-Dependent

Age-Dependent Duration-Dependent

Constant Hazard Hazard Hazard Hazard

Covariate B SE  PISE B SE  BISE B SE  BISE B SE  BISE

FARM -517 .166 —-3.12 -.507 .166 —3.06 -.386 .167 —-231 -.388 .123 -3.15
ED -.195 093 -2.10 —-.190 .093 -2.06 -.260 .093 -2.80 -.150 .068 —2.20
RACE —.262 .099 —2.64 —.255 .099 —-2.57 -.219 .100 -2.19 —-.195 .073 —2.68
SIBS .002 .016 14 .003 .016 .16 .004 .016 .25 .001 .012 .08
ECON .004 .085 .05 .006 .085 .08 —-.047 .08 - 55 -.002 .062 - .03
FAED .091 108 .84 .089 .108 .83 .055 .109 .50 .073 .079 .93
NORTH —.561 .166 -3.38 —.544 .166 -3.28 —.544 .166 -3.28 —.402 21 -3.34
NC -.399 .165 —-258 -.386 .154 —2.50 -.431 155 -2.78 -.285 112 -255
SOUTH -.317 15683 -207 -.304 153 1.99 -.309 .152 -2.03 -.220 111 —-1.99

NOTE: See note to Table 2.
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on that number may be estimated in a straightforward fashion,
either by stratifying the sample or by inclusion of the number
of previous events as a covariate.

For the alternating process discussed in Section 6, estimation
is somewhat less restrictive with forward recurrence times. In
particular, although the conditional ML estimators are the same
as those given in Section 6, their derivation does not require
the assumption that the limiting distribution of states has been
reached. Furthermore, contrary to the case with backward re-
currence times, it is straightforward to estimate models that
allow for a time-dependent hazard. In fact, estimation condi-
tional on the state at time 7 (the point of interruption) is identical
to that described in Section 3.

8. DISCUSSION

I have shown that data on backward recurrence times can
often by analyzed by using standard methods of survival anal-
ysis, treating time as though it ran backwards from the time of
the survey to the time of the most recent event. This only makes
sense if events are repeatable, however, which demands that
the occurrence of events be modeled as some sort of stochastic
process. An important limitation is that models in which the
hazard depends on the number of previous events must be ruled
out. And though certain models with duration dependence are
estimable, the estimation procedure is considerably more com-
plicated than that used in most survival analysis.

Given the frequency with which such data are collected, I
believe that the methods described here are a useful addition
to the methodology of survival analysis. Nevertheless, consid-
ering the limitations just mentioned, it is reasonable to ask
whether such data should continue to be collected or whether
more effort should be expended in getting complete event his-
tories. Certainly more complete data are always desirable when
it is practical to collect them. On the other hand, eliciting
accurate data on long histories of events can be a difficult and
costly process. For many kinds of events, moreover, the ability
of the respondent to accurately recall the event history is ques-
tionable. In a recent study of contraceptive usage, for example,
respondents were frequently inconsistent in constructing his-
tories of their contraceptive use and failure over the previous
12 months (Furstenberg et al. 1983). Similarly, Cannell et al.
(1981) found that respondents made many erfors in reporting
hospitalizations in the previous year. In such cases, the limi-
tations imposed by focusing only on the most recent event may
well be outweighed by the greater accuracy of recall.

For those who would collect such data, however, there is
one important recommendation. Every effort should be made
to determine the values of any covariates prior to the occurrence
of the most recent event. This is rarely done, but the failure to
do so usually means that only a small fraction of variables
coded are available for inclusion as covariates.

[Received May 1983. Revised April 1984.]
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