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The concept of genetic relatedness is central to the sociobiological tfleory of kinship
altruism. Genes which code for altruistic acts toward closely related genetic kin can
overcome selection pressures favoring self-interested behavior. But genetic relatedness
declines rapidly as kinship becomes more distant, thereby restricting genctically-based
altruism to very close kin. This paper extends these notions to cultural relatedness,
arguing that oblique and horizontal transmission can yield high levels of cultural re-
latedness in larger groups. A mathematical model of cultural transmission is proposed,
and equilibria for several special cases are investigated. For all models, the equilibrium
level of relatedness is critically dependent on the influence of exogenous sources. In
models with equal influence of nonparents, the level of relatedness varies inversely with
group size. On the other hand, when nonparental influence is concentrated on a single
individual, the level of relatedness does not vary with group size.

he concept of genetic relatedness is central to the sociobiological

theory of kinship altruism. Suppose that there is a gene which says,

in effect, ‘‘Perform an altruistic act whenever Br > C,”” where r—

the coefficient of relatedness—is the probability that recipient and
donor share the same gene by inheritance from a common ancestor, B is the
benefit (in reproductive fitness) to the recipient, and C is the cost (also in
reproductive fitness) to the donor. It has been shown that such genes will
increase in frequency over time and may come to predominate in the pop-
ulation (Hamilton 1964). On the other hand, the probability of sharing al-
truistic genes decreases geometrically as kinship becomes more distant.
Thus, relatedness between first cousins is only .125, requiring that the benefit
to the recipient be more than eight times the cost to the donor if the inequality
is to be satisfied. Consequently, genetic kinship theory has a hard time ac-
counting for altruistic behavior in large, extended families.
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CULTURAL EVOLUTION

Recently there have been several attempts to apply sociobiological models
to the evolution of culture (Boyd and Richerson 1985; Cavalli-Sforza and
Feldman 1981; Lumsden and Wilson 1981; Pulliam and Dunford 1980). In
particular, Werren and Pulliam (1981) have argued that altruistic behavior
that is learned from other people may have evolved by processes similar to
genetic kinship altruism. Specifically, learned rules that mandate helping
behavior toward close ‘‘cultural relatives’ may be resistant to selection
processes that favor strictly self-interested behaviors. For example, suppose
that someone has learned a rule which says, in effect, ‘‘Be good to those
who follow the same customs that you do.”” While such acts may be costly
to the actor, the benefit will go to people who have a bigh probability of
carrying the same rule. This benefit, in turn, can increase the likelihood that
the rule will be passed on to others.

But, of course, cultural transmission does not operate exactly like ge-
netic transmission, and it would hardly be surprising if the results were
somewhat different. One crucial difference is that genetic transmission only
occurs vertically (from parent to child), while cultural transmission can be
oblique (from parent to niece, nephew, or unrelated child), horizontal (from
adult to adult or from child to child), and even reverse vertical (from child
to parent). As a consequence, | have suggested elsewhere that cultural kin-
ship may lead to larger sets of mutual altruists than those produced by genetic
kinship (Allison 1991).

For this to work, however, it is necessary that processes of cultural
transmission lead to higher levels of cultural relatedness than are produced
by genetic transmission. In an unpublished paper, Boyd and Richerson (1978)
argued that a combination of oblique cultural transmission and cultural in-
breeding is not sufficient to generate significant degrees of cultural relat-
edness. Specifically, they found that an increase in the number of cultural
parents tended to reduce relatedness between siblings, even if those cultural
parents were consanguines. In one example, with ten consanguine co-par-
ents accounting for 95 percent of socialization, the relatedness between sib-
lings was only .16.

In this paper, I present more promising results for relatedness between
cultural cousins. 1 begin by formulating a model for cultural relatedness
under oblique transmission. Within the framework of this model, I examine
the impact of several variables on cultural relatedness: group size, parental
vs nonparental influence, variability of nonparental influence, and the in-
fluence of exogenous sources. I then extend the model to include horizontal
transmission. Although the models are highly simplified, I believe that they
capture some of the more important properties of cultural transmission. On
the other hand, there are some features of the models that would obviously
have to be modified for a fully adequate theory. Thus, I regard this as a
preliminary effort at modeling cultural kinship, but one that is sufficient to
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(a) show that cultural relatedness. can exceed genetic relatedness by sub-
stantial degrees and (b) point out some of the key variables that may influence
the degree of cultural relatedness.

A MODEL OF CULTURAL TRANSMISSION

The general model is for a group of actors which, for concreteness, can be
thought of as the male line of a patrilocal group, with one male offspring for
each biological father. (The model would also be appropriate for the female
line in a matrilocal group.) The requirement of exactly one son for each
father avoids the difficult complication of dealing simultaneously with ge-
netic and cultural change.' The group practices strict exogamy, so there is
no biological or cultural relatedness between husband and wife. Although
this assumption greatly simplifies the model, it also biases against high re-
latedness. Later I shall briefly consider an extended model that allows for
some endogamy.

There is a sequence of generations t = 1, 2,3, . . . with #» males in each
generation. Consider a single cultural ‘‘locus’’ for which there are two or
more variant traits. By this I mean that there is a certain class of behaviors
for which there is a set of well-defined alternatives. For example, there is
a set of variants for political party in the U.S. (Democrat, Republican, In-
dependent, . . . .) and a set of variants for eating preferences (vegetarian,
nonvegetarian). Each male in generation ¢ ‘‘selects’ his variant by choosing
one person in the preceding generation (¢ — 1) and adopting the variant of
that person. Of course, the selection could be unconscious or imposed by
members of the prior generation.

The probability that male i in generation ¢ selects his variant from male
J in generation ¢t — 1 is denoted by ay,. This probability does not depend on
the variant carried by male j. For the moment, it is also assumed that the
probability is constant across cultural loci, but we shall Iater consider the
possibility that different loci may have different adoption probabilities and,
consequently, different degrees of cultural relatedness. Biological father and
son are assigned the same index number, so that a;, is the probability that
the son adopts the variant of his father.

If each male always chose his variant from among the members of the
preceding generation, the a;s would necessarily sum to 1 (over j). But to

! This is not an unreasonable restriction since the models considered here apply to any cultural
traits without regard to their adaptive implications. Of course, the principal reascn for devel-
oping these models is to provide support for arguments about altruistic traits, which could be
maladaptive at the individual level. Elsewhere, however, I have argued that some culturally
transmitted altruistic traits, while leading to actions that reduce an individual's genetic fitness,
produce an average increase in fitness for the subgroup of those who carry the trait (Allison
1991). ‘
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allow for the possibility that person i does not choose any of the n males,
we define

H
€n = I - 2 QAije -

i=1

This is the probability that person i chooses from the set of variants in such
a way that the probability of any particular variant does not depend on the
variants chosen by the n males in the preceding generation. In practice, this
could mean that he chooses his mother’s variant or the variant of someone
outside the system. It could also mean that he invents and chooses a new
variant (the analog of a mutation). 1 shall refer to e;; as the exogenous com-
ponent. I also assume that there is no socialization by females other than
the mother. This model is a member of the family of additive models pro-
posed by Cavalli-Sforza and Feldman (1981).2

Cultural relatedness r between two persons is the probability that both
have adopted the same variant from a common cultural ancestor. Note that
this is not the same as the probability that both adopt the same variant, since
that variant could have come from entirely different ancestors. If the variant
is rare, these two probabilities will be very close. If the variant is common,
however, the probability of having adopted the same variant will be much
higher than the coefficient of relatedness.?

As an example of the model, consider the four-person, two-generation
system in Figure 1. For the first generation, the two curved arrows corre-
spond to relatedness coefficients of ri = .5 and r34 = .2. The absence of
curved arrows between several of the pairs means that these individuals are
unrelated. The relatedness coefficients for the first generation are treated

2 The additive character of the model can be seen from the following equivalent formulation.
Let A, = 1if person i in generation ¢ adopts variant A, otherwise 0, Then

PriA; = 1| Air—13s + - - » Anr—1] = Boarr + > aipAje-n
J

where pax is the probability that person i in generation ¢ selects variant A when no one in
generation ¢-1 has adopted A. (It can be factored into e; and the conditional probability of
choosing A given the nonchoice of any of the persons in generation ¢.)

3 Formally, it works like this. Consider Pr(A; | A7), the probability that person i has variant A
given that person j has variant A. Let C be the event that { and j both have the same variant
by common descent, and let r = Pr(C). By the law of total probability

Pr(A; | A) = Pr(A; | A;, COYPr(C) + Pr(A; | Ay, C)Pr(C)
= r + Pr(4A)(Q - r).
Solving for relatedness r yields
, - Pr(A; | A;) — Pr(Ai).
1 — Pr(A)

Note that when the two probabilities are equal, r = 0. On the other hand, as Pr{A;) goes towarcl
0, » approaches Pr(A; | A;). Finally, if Pr(A; | A)) = 1, r = 1 and we may say that the two
individuals are perfectly related. Although the conditional and unconditional probabilities will
usually differ across variants, r will be constant (so long as the a5 are constant across variants) |
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FIGURE 1. Path diagram for two-generation system.

as predetermined although, presumably, they could be derived from the
transmission structure of the preceding generation if that were known. The
straight arrows from first to second generation correspond to the ay.s. Person
1 in generation 2 has a probability of .9 of adopting the variant of his parent
(person 1) in generation 1, and a probability of .1 of adopting a variant from
outside the system. Person 3 in generation 2 adopts his variant from gen-
eration 1 with probabilities of .2 from person 2, .5 from person 3, .1 from
person 4, and .2 from outside the system.

The diagram in Figure | was constructed according to the rules of path
analysis (Wright 1968), which also provides convenient methods for cal-
culating relatedness coefficients for any pair of individuals in the model.
These methods are described further in the Appendix. If the ay s are left
completely unconstrained, it is difficult to reach any general conclusions.
Therefore, we now consider several special cases in which various restric-
tions are imposed.

Model 1. Parental Inheritance, Constant Exogenous
Component, Equal Nonparent Contributions

In this model, I assume that for each person there is a probability p of
adopting the biological father’s trait, and a probability e of choosing outside
the system. The remaining probability is distributed evenly over other males
in the parent generation, so that each nonparent has a probability c that his
trait will be adopted. This model bears a close resemblance to the uniparental
model of Cavalli-Sforza and Feldman (1981: 193) except that they did not
allow for an exogenous component. A two-generation example is shown in
Figure 2 in which parental inheritance p is .7, and all other adults have
transmission probabilities of ¢ = .05. The exogencus component is e = .15.

For simplicity, I also assume that in the first generation there is a com-
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Generation 1

Generation 2

FIGURE 2. Path diagram for an example of Model 1. All oblique paths hawve a value
of .05.

mon level of relatedness for all pairs of individuals, which implies that this
will also be true in every subsequent generation. (This is not & restrictive
assumption since even if the relatedness coefficients vary within the first
generation, they will quickly converge to equality in subsequent genera-
tions.) In the Appendix, we obtain the recursion formula

r. =A + Br,—
where
A = 2pc + (n — 2)c?,
B =p?+ 2(n — pc + (n* = 3n + 3)c>.

This equation says that the level of cultural relatedness in generation r is a
linear function of the level of cultural relatedness in the previous generation,
with the constants dependent on the transmission rules. Thus, if we start
out with a given level ry in the first generation, the level changes in a de-
terminate way at each new generation.

Suppose, for example, that n = 11, p = .5, ¢ = .04, and r; = .10.
Substituting into the equations above, we get , = .12, a slight increase in
relatedness. Although such changes could be investigated numerically, it is
more efficient to ask whether there comes a point at which the relatedness
no longer changes. That is, do there exist points such that r,,. ;, = #,? The
equilibriurmn solution may be found by setting 7,41 = r, = r and solwving for
r, which yields r = A/(1 — B). This can be written as:

.= 2n—Dp(l-—p—e)+(n—=2)(1-p —e)>
(n=1*(1=p*)=2(n-2)(n~Dp(l~p~e) —(n®=3n+3)(1 —p — €)®




Cultural Relatedness and Transmission Rules 159

Relatedness {r)

1.

Exogenous Component {e)

FIGURE 3. Equilibrium relatedness as a function of the exogenous component for
Moadel 1, with p = .5,

While this equation may appear forbidding, it is easily shown that when
e = 0, r = 1. In other words, if people always choose their cultural variants
from among the members of the preceding generation, the degree of relat-
edness eventually converges to unity—everyone is perfectly related to
everyone else. Conversely, ¢ = | implies p = 0 and, hence, r = 0. Since
r is a continuous function of e, it follows that any degree of equilibrium
relatedness can be obtained by appropriate choice of the exogenous com-
ponent ¢. On the other hand, for this statement to be true, it is necessary
that the total influence of nonparents (1 ~ p — ¢) be positive; if it 1s zero,
the equilibrium relatedness is also zero.

Figure 3 illustrates this dependence of r on e, and also shows the inverse
relationship between relatedness and group size. For groups larger than 50,
the exogenous component must be quite small to get appreciable levels of
relatedness. Figure 4 shows that when both the exogenous component and
group size are held constant, relatedness varies directly with the oblique
component—the total influence of nonparents—which is equal to 1 —-—p —
¢. Relatedness increases rapidly from zero, but at a diminishing rate. The
initial rate of increase and eventual level of r depends greatly on ¢, the
exogenous component.

Of course, these are just equilibrium values. To see how rapidly the
equilibria are attained, 1 ran computer simulations for several different sets
of parameter values. Regardless of the parameter values or the initial value
of r, equilibrium was reached fairly rapidly, typically in about 15 generations.

The importance of ¢ in determining the equilibrium level of relatedness
suggests some plausible ‘‘strategies’” for ensuring high relatedness within a
group. For groups that are strictly exogamous, one possibility is to create
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Oblique Component: 1-p-e = (n-1)e

FIGURE4. Equilibrium relatedness as a function of the oblique component for Model
1, withn = 15.

social structures and practices that reduce the cultural influence of the ex-
tralinear parent. While it may not be practical to reduce the absolute im-
portance of the mother, it may be possible to restrict her influence in the
following way. To this point I have assumed that the a;S are constant across
cultural loci. Suppose, however, that loci can be divided into two or more
domains, with different values of e and the ay ;s in each domain. Then the
influence of the extralinear parent could be restricted to certain domains.
For example, while mothers could be given free rein in socializing person-
ality characteristics, males could handle all socialization regarding religious
beliefs and practices (some of which may mandate altruistic behavior). Con-
sequently, cultural relatedness for personality variants would be rather low
while relatedness for religious variants would be quite high.

Alternatively, a strategy of cultural endogamy can greatly reduce e,
although it also complicates the model considerably. To get some idea of
the effect of endogamy, let us extend the present model by supposing that
all wives are taken from a neighboring clan. Instead of being completely
unrelated, the women from this clan have a coefficient of relatedness d with
each man in the focal group. They also have a common relatedness s with
each other. Finally, let m be the probability that the son will adopt the variant
of his mother. For simplicity, I assume that all these values are constant
across individuals and across generations, and I retain the assumption that
mothers are the only females who may influence their sons.

It can be shown that the equilibrium solution for this expanded model
is given by

- 2pc + (n = 2)c? + m%s + 2n — Ddme + 2dmp
1 — [p? + 2(n — pc + (n* ~ 3n + 3)c?]
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If mothers have no influence on their sons (i.e., m = 0}, we are effectively
back to the case with no endogamy. If we assume that any increase in the
mother’s influence is exactly offset by a reduction in e, then we can increase
m while leaving p and ¢ constant. This can substantially increase the equi-
librium relatedness. For example, if we suppose thatn = 5, p = .5, ¢ =
0625, and m = 0 (no effect of mother on son), equilibrium relatedness is
14. If we now set m = .2, 5 = .3, and d = .2 (which reduces ¢ from .25
to .05), the equilibrium relatedness rises to .29. Of course, higher levels of
relatedness between spouses (d) and between females (s) would produce
even higher equilibrium relatedness. Even higher values could be obtained
by allowing these values to increase with successive generations.

Model 1.a. Constant exogenous component, no special inheritance. Returning
to the strict exogamy of Model 1, we now examine a special case in which
the biological father plays no special role and all males are equally important
in socialization. Thus, we have Model 1 plus p = c. In this case, the equi-
librium solution simplifies to

1
o= .
e(2 — e)
1 +n ———-——(1 _6)2)

Again, » decreases with n, but the rate is critically dependent on e.

Model 1.a.1. p = ¢ = e. In this model, the exogenous component is con-
strained to be equal to the contribution of each adult, all of which are con-
strained equal. The equilibrium solution is r = n/(3n -+ 1), which equals .31
when n = 5 and converges to § as n gets large.

Model 2. Inherited Headman

With Model 1, we established that an increase in nonparental transmission
resuited in an increase in equilibrium relatedness, but that model assumed
an equal role in socialization for all nonfathers. I now consider the opposite
extreme where there is only one male in each generation who has a cultural
influence on nonbiological offspring in next generation, and this influence
is distributed equally across the members of that generation. 1n the current
model, this special role (which I call the headman) is passed on from father
to son, an assumption that will be relaxed in Model 3. There continues to
be a special influence of the biological father.

Model 2 has two parameters. Let k represent the influence of the head-
man on each member of the next generation, and let p be the influence of
each nonheadman on his son. Then p + # is the influence of the headman
on his own son. Once p and A are determined, so is the exogenous component
e. In the Appendix, I show how this model may be obtained by imposing
restrictions on the general model. An example is diagrammed in Figure 5.
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FIGURE 5. Path diagram for an example of Model 2.

ey
—

For this model, it is necessary to define two different relatedness coef-
ficients: r, is the common relatedness between any two individuals in gen-
eration ¢, neither of whom is the headman, and r,, is the relatedness between
the headman and any other person in the same generation. In the Appendix,
the equilibrium levels of relatedness are shown to be:

(1 - e — p)z(l + p(1 - e))

(1 —p5» \1l—pd-e)
, _d—-e—-—p)d - e
g 1—pl—e) °

It can be shown that r, is always higher than r; that is, the headman is more
closely related to other members of the same generation than they are to
each other. The most striking feature of this model, however, is that unlike
Model 1, neither r nor r, depend on n; that is, the level of relatedness is
independent of group size. As with Model 1, if ¢ = 0, both r and #;, are 1.
Consequently, even a relatively small influence of the headman can yield
high levels of relatedness if the influence of exogenous sources is also small.
For example, e = .05, p = .80, and & = .15 gives r = .46, Table 1A displays
equilibrium relatedness values for several other combinations of ¢ and p.
Figure 6 shows the dependence of r on e for three different values of
h. The curves are quite similar to those in Figure 3. In Figure 7, we see the
dependence of r on A. While this is similar in form to Figure 4, both the rate
of increase and the maximal value of relatedness are substantially higher.

Model 3. Random Headman

One might suspect that the high levels of relatedness found for Model 2 are
at least partly a consequence of the fact that the headman’s son inherits his
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Table 1. Equilibrium Relatedness for Selected Values of Parameters in Models 2, 3, and 4

A. Relatedness among Nonheadmen in Model 2

Parental Influence (p)

e .40 .50 .60 .70 .80 .90
01 .96 .95 .93 91 .86 .74
.05 .80 76 70 .61 46 A7
10 .63 .56 47 .35 A7 0.0
15 .49 .40 .30 17 .04 T
.20 .37 .28 .18 .07 0.0 T
25 27 .18 .09 .02 T T
B. Relatedness in Model 3
e .40 50 .60 70 .80 .90
.01 .96 .94 93 .89 .83 .67
.05 .80 74 .68 .58 42 A7
.10 .63 .56 .46 .34 .18 0.0
.15 .50 .42 30 .19 .06 t
20 .38 29 20 A0 0.0 T
.25 .29 21 A2 .04 t T
C. Relatedness in Model 4
e 40 50 .60 .70 .80 90
.01 .97 96 95 .93 .90 .81
.05 .84 .81 77 .69 .56 .25
10 .69 .64 56 .44 .25 0.0
.15 .56 .49 .39 25 06 +
.20 44 36 .25 1 0.0 T
.25 34 .25 14 03 + +

+ Impossible combinations of ¢ and p.

FIGURE 6.
Model 2.

Equilibrium

Reilatedness r)

relatedness as a function of the exogenous component for

.1 0.2 0.3 0.4

Exogenous Component (e)
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FIGURE 7. Equilibrium relatedness as a function of the headman coefficient for
Model 2,

capacity to influence the next generation. To examine this possibility, we
consider Model 3, which is the same as Model 2 except that the headman
status is randomly reassigned within each new generation. I investigated this
model by simulation. After approximately 20 generations, the levels of av-
erage relatedness appear to vary randomly within a narrow range. Mean
values of equilibrium relatedness for several pairs of parameter values are
shown in Table 1B. The rs in this table are averages over all possible pairs
for n = 5, which means that they combine pairs with and without the head-
man. Comparing these with the values of those in Table 1A for Model 2, it
is apparent that the levels of average relatedness are very close to those for
the inherited headman model. Thus, random allocation of the headman status
does not appear to have any substantial effect on levels of relatedness.

Model 4. Textual Transmission

Suppose our hypothetical group has a sacred text that (a) mandates one of
the variants on the cultural locus, (b) is faithfully copied and transmitted
across generations, and (c) is read by (or to) each person in the group. This
notion can be modeled as a minor variation of Model 2. Each person has a
probability A of adopting a variant as a result of exposure to the text, and
a probability p of adopting his father’s variant. The exogenous component
eisequalto ! — p — h. As shown in the Appendix, this model has the

equilibrium solution
. ( h )2 AR S
1 —-p h+e)’

Values of r for several values of ¢ and p are presented in Table 1C. Comparing
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these results with those in Table 1A, we find that textual transmission pro-

duces relatedness values that are somewhat but not enormously higher than
the headman model, the largest difference being about .10.

HORIZONTAL TRANSMISSION

The preceding models can easily be extended to allow for horizontal trans-
mission by inserting an intragenerational stage after each of the intergen-
erational stages. Models for the horizontal stage have the same form as the
vertical-oblique models, except that the two sets of nodes represent the same
people at two different points in time. Influence on the self is treated as a
vertical path while peer influence is treated as an oblique path.

Specifically, let us suppose that there is a fixed interval between the
time that a generation selects its variants from the preceding generation and
the time that it passes on its variants to the next generation, and suppose
further that people can switch variants during that interval. They may switch
more than once, but we are only concerned with the initial and final choices.
Let by, be the probability that person i in generation 7 adopts his final variant
by choosing the variant initially selected by person j in generation . Of
course by, is the probability that person i does not switch variants during
the interval. Note also that this setup allows for i to switch to j’s initial
variant while j switches to i’s initial variant. As before, ay is the probability
that person i in generation ¢ selects his variant from person in the preceding
generation, but we now add that this selection occurs only after the hori-
zontal changes have occurred in the preceding generation.

In effect, we have simply inserted another ‘‘generation’’ between each
of the original generations, but we alternate between possibly different trans-
mission rules, one set for intergenerational transmission and another set for
intragenerational transmission. The outcome, of course, depends on how
different the two sets of transmission probabilities are. Two special cases
can be easily examined. One case is to assume that the two sets are identical,
i.e., that by, = ay for all i, j and ¢. In that event, the outcomes described
in the previous sections are unchanged, except that equilibrium is reached
in half the number of generations. At the other extreme, let us suppose that
there is no horizontal transmission, i.e., that by = 1 and by = 0 for all {
# j. Since this leaves the original models unchanged, we again have identical
outcomes.

Although both of these special cases are implausible, I believe that the
plausible cases arc likely to lie within their range. In particular, I would
expect that the father’s influence on the son would be less than the son’s
influence on himself at a later point in time, i.e., that b = ay,. 1 would also
expect the influence of exogenous SOUrces to be greater in intergenerational
transmission than in intragenerational transmission. Less obvious is what
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happens to the oblique paths. Are people more influenced by their peers or
by nonparental adults?

Leaving aside this last question, I have investigated what happens to
Models 1 and 2 when &, > a; but by = ay, forall i # j. That is, the increase
in self influence over parental influence is exactly compensated by a decrease
in the exogenous component, leaving nonparental contributions unchanged.
The two-step recursion equation for the relatedness coefficients are found
by two applications of Appendix Eq. (3) or Appendix Egs. (6) and (7) using
different values of p at each step. It can be shown that the resulting equi-
librium values are always higher than those for models without the horizontal
stage (proof available on request).

In general, I hypothesize that the equilibrium values for two-stage
models will be somewhere between the equilibrium values for each stage
iterated separately. Computer simulations are consistent with this hypoth-
esis, but so far I have only investigated a few possibilities.

DISCUSSION

The following general conclusions seem warranted from these results. First,
for all models, the level of relatedness that is attainable under oblique or
horizontal transmission is critically dependent (inversely) on the influence
of exogenous sources. This influence could be reduced either by reducing
the socialization role of the extralineal parent, by partitioning the sociali-
zation process, or by endogamy. Second, in models where nonparents are
equally influential, the level of relatedness varies inversely with group size.
Third, the level of relatedness does not depend on group size when non-
parental influence is concentrated on one individual.

The lack of dependence on group size for the headman models may be
somewhat misleading because, in real life, the parameter £ measuring the
influence of the headman is likely to decline with group size. Surely, the
larger the group, the harder it is for a single individual to influence everyone
in that group. On the other hand, progress in communication and transpor-
tation technologies has tended to increase the potential influence of single
individuals (as well as single institutions) over large groups of people.

Real-life situations are undoubtedly somewhere between the equal in-
fluence models and the headman models, suggesting that the level of relat-
edness for a given group size should also be somewhere in between. Indeed,
simulation results suggest that the level of relatedness for a given group size
is an increasing function of the coefficient of variation for the ais.

All the models considered are ostensibly for the transmission of discrete
characters, but they readily allow for quantitative characters so long as the
quantitative scale is treated as discrete. In other words, the theory is not at
all dependent on the number of possible variants for a given cultural locus.
On the other hand, while it is plausible that the adoption of one variant from
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only two possibilities could be made without error, it seems a little far-
fetched to assume the error-free adoption of a quantitative variant. Boyd
and Richerson (1985) have formulated models for the inheritance of quan-
titative characters with error, but it is not obvious how relatedness could
be defined for such models.
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APPENDIX

For the general model, cultural relatedness between males / and j in gen-
eration ¢ + | is given by the following recursion formula:

n 4] n
For = 2y Qualige T+ D, 2Dy QiktCjmtlkmr — 1) (D
k=1 k=1 m=k

If we apply this equation to the example in Figure 1, we get the following
coefficients of relatedness among the second generation:

I

riz = (D3 + (NC6)(.5) = .54,
Fia = (D2)(5) = .09, rs = 0,
raa = (.6)(.2) = .12,

rz4 = 0,

raa = (SN2 + (D7) = .14,





