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Propensity Score Analysis

1. Overview

1.1 Observational studies and challenges

1.2 Why and when PSA is needed?

1.3 Overview of corrective methods

Recommended Textbooks
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Statistical Methods and Applications, Second Edition. 

Thousand Oaks, CA: Sage Publications.

 Morgan, S.L, & Winship, C. (2007). Counterfactuals and 

Causal Inference: Methods and Principles for Social 

Research. New York: Cambridge University Press.

 Rosenbaum, P. R. (2010). Design of Observational 

Studies. New York: Springer.
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Observational Studies

An observational study is an empirical 
investigation whose objective is to elucidate 
causal relationships when it is infeasible to 
use randomized controlled trials (Cochran, 
1965).

Observational data: survey, census, 
administrative, or any data that were not 
generated by RCT.

Observational studies ~ evaluations with a 
quasi-experimental design (Shadish, Cook, 
& Campbell, 2002).

Association  Causation

Three criteria for a causal relation 

(Lazarsfeld, 1959):

1. A causal relationship between two variables 
must have temporal order, in which the 
cause must precede the effect in time

2. The two variables should be empirically 
correlated with one another

3. Most important, the correlation is not 
spurious
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Purpose of Evaluation

The field of program evaluation is 
distinguished principally by cause-effect 
studies that aim to answer a key 
question:

To what extent can the net difference
observed in outcomes between treated 
and nontreated groups be attributed to 
an intervention, given that all other 
things are held constant?

Note. The term “intervention research” refers to the design and

evaluation of programs.

Internal Validity and Threats

 Internal validity – the validity of inferences about 

whether the relationship between two variables is 

causal (Shadish, Cook, & Campbell, 2002).

 In program evaluation and observational studies 

in general, researchers are concerned about 

threats to internal validity. These threats are 

factors affecting outcomes other than intervention 

or the focal stimuli. There are nine types of 

threats.*

Selection bias is the most problematic one!

*These include differential attrition, maturation, regression to the 

mean, instrumentation, and testing effects.
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Why and when propensity score 

analysis is needed? (1)

Need 1:  Remove Selection Bias

The randomized clinical trial is the “gold standard” in 
outcome evaluation. However, in social and health 
research, RCTs are not always practical, ethical, or 
even desirable. Under such conditions, evaluators 
often use quasi-experimental designs, which – in most 
instances – are vulnerable to selection. Propensity 
score models help to remove selection bias.
Example: In an evaluation of the effect of Catholic versus public school on 
learning, Morgan (2001) found that the Catholic school effect is strongest among 
Catholic school students who are less likely to attend Catholic schools.

Why and when propensity score 

analysis is needed? (2)

Need 2: Analyze causal effects in 
observational studies
Observational data - those that are not generated by 

mechanisms of randomized experiments, such as surveys, 

administrative records, and census data.

To analyze such data, an ordinary least square (OLS) 

regression model using a dichotomous indicator of 

treatment does not work, because in such model the error 

term is correlated with explanatory variables. The violation 

of OLS assumption will cause an inflated and 

asymptotically biased estimate of treatment effect.
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The Problem of Contemporaneous 

Correlation in Regression Analysis
Consider a routine regression equation for the 

outcome, Yi:

Yi = + Wi +Xi +ei

where Wi is a dichotomous variable indicating intervention, 

and Xi is the vector of covariates for case i.

In this approach, we wish to estimate the effect () of 

treatment (W) on Yi by controlling for observed 

confounding variables (Xi ).

When randomization is compromised or not used, the correlation 

between W and e may not be equal to zero. As a result, the ordinary 

least square estimator of the effect of intervention ( ) may be biased 

and inconsistent. W is not exogenous. 

Example of Selection Bias:  
Decision Tree for Evaluation of Social Experiments 

 

        Total Sample 

 

 

      Individual decision         Individual Decision 

      to participate                   not to participate in 

             experiment  

 

 

    Administrator’s                   Administrator’s decision 

    decision to select          not to select 

 

 

     Control group       Treatment group 

 

 

  Drop out            Continue   Drop out           Continue 

 

  Source: Maddala, 1983, p. 266 

Sources of Selection

Assignment based on 

need or other criteria 

may create groups that 

are not balanced.
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Overview of Corrective Methods: 
Four Models Described by Guo & Fraser (2014)

1. Heckman’s sample 

selection model 

(Heckman, 1976, 

1978, 1979) and its 

revised version 

estimating treatment 

effects (Maddala, 

1983)

Overview of Corrective Methods: 
Four Models Described by Guo & Fraser (2014)

2. Propensity score 

matching 

(Rosenbaum & 

Rubin, 1983), 

optimal matching 

(Rosenbaum, 

2002), propensity 

score weighting, 

modeling 

treatment dosage, 

and related 

models
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Overview of Corrective Methods: 
Four Models Described by Guo & Fraser (2014)

3. Matching 

estimators 

(Abadie & 

Imbens, 2002, 

2006)

Overview of Corrective Methods: 
Four Models Described by Guo & Fraser (2014)

4. Propensity score 

analysis with 

nonparametric 

regression 

(Heckman, 

Ichimura, & Todd, 

1997, 1998)
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Other Corrective Models

Instrumental variables approaches (Guo & 

Fraser [2010] reviews this method)

Regression discontinuity design

Interrupted time series design

Bayesian approaches to inference for 

average treatment effects 

Marginal structural models (Robins, 

1999a, 1999b)

Directed acyclic graphs (Pearl, 2000)

http://www.biostat.jhsph.ed

u/~estuart/propensityscores

oftware.html

List of Programs Conducting 

Propensity Score Analysis 

(Elizabeth Stuart)

http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html
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Propensity Score Analysis

2. Conceptual Frameworks & Assumptions

2.1 The Neyman-Rubin counterfactual framework

2.2 The assumption of strongly ignorable treatment 

assignment

2.3 The stable unit treatment value assumption

2.4 Heckman’s Scientific Model of Causality

2.5 Two Traditions

Readings for Session 2
Guo & Fraser, chapter 2.

Rubin, D. B. (1974). Estimating causal effects of treatments in 

randomized and nonrandomized studies. Journal of Educational 

Psychology, 66, 688-701.

Heckman, J. J. (2005). The scientific model of causality. Sociological 

Methodology, 35, 1-97.

Holland, P. (1986). Statistics and causal inference (with discussion). 

Journal of the American Statistical Association, 81, 945-970.

Rubin, D.B. (2008). For objective causal inference, design trumps 

analysis. Annals of Applied Statistics,2, 808-840.

Sobel, M. E. (2005). Discussion: “The scientific model of causality.” 

Sociological Methodology, 35, 99–133.
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Background Information (1)

A factual account (regularity): “A has caused B”. 
A counterfactual account (i.e., abandoning the 
regularity account): “B would not have occurred 
if it were not for A”.

The logic here is analogous to hypothesis 
testing (Ha and H0).

Counterfactuals are at the heart of science. 
Much of the discussion about counterfactuals is 
philosophical (e.g., ancient Greek philosophers 
such as Aristotle; David Hume 1748; John Stuart 
Mill 1843; David Lewis, 1973; Galileo Galilei 
1564-1642).

Background Information (2)
 The formal use of the counterfactual framework to 

define unit-level causal effects is due to Neyman in 
1923 in the context of randomized experiments, and 
was marvelously clarifying contribution.

 Important studies using counterfactual framework for 
randomized experiment are: Fisher (1935), 
Kempthorne (1952), Cochran and Cox (1950), and 
Cox (1958). 

 Rubin (1974) was the first to define causal effects in 
both randomized experiments and observational 
studies. This is a milestone. It signifies that the same 
underlying principles can be used to design both types 
of studies. 

 Observational studies guided by this framework can 
be thought as a correction of, or balancing, data to 
make crucial assumptions embedded in the 
randomized experiment tenable.
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The Neyman-Rubin Counterfactual Framework (1)

Counterfactual: what would have happened to the treated 

subjects, had they not received treatment?

The Neyman–Rubin counterfactual framework (CF) states 

that individuals selected into treatment and nontreatment 

groups have potential outcomes in both states: the one in 

which they are observed and the one in which they are not 

observed. This framework is expressed as:

Yi = WiY1i + (1 - Wi)Y0i

The key message conveyed in this equation is that to infer a 

causal relationship between Wi (the cause ) and Yi (the 

outcome) the analyst cannot directly link Y1i to Wi under the 

condition Wi =1; instead, the analyst must check the outcome 

of Y0i under the condition of Wi =0, and compare Y0i with Y1i. 

The Neyman-Rubin Counterfactual Framework (2)

There is a crucial problem in the above formulation: Y0i is not 

observed. Holland (1986, p. 947) called this issue the 

“fundamental problem of causal inference.” 

The Neyman-Rubin CF holds that a researcher can estimate 

the counterfactual by examining the average outcome of the 

treatment participants (i.e., E(Y1|W=1)]) and the average 

outcome of the nontreatment participants [i.e., E(Y0|W=0)] in 

the population. Because both outcomes are observable, we 

can then define the treatment effect as a mean difference (the 

equation is known as “standard estimator for the average 

treatment effect”): 

 = E(Y1|W=1) - E(Y0|W=0)

With sample data, the estimator becomes:

)0|ˆ()1|ˆ(ˆ
01  wyEwyE
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The Strongly Ignorable Treatment 

Assignment Assumption (1)

 The strongly ignorable treatment assignment 

(SITA) assumption (Rosenbaum & Rubin, 

1983):

 Different versions: “unconfoundedness” and 

“ignorable treatment assignment” (Rosenbaum 

& Robin, 1983), “selection on observables” 

(Barnow, Cain, & Goldberger, 1980), 

“conditional independence” (Lechner 1999), 

and “exogeneity” (Imbens, 2004)

.|),( 10 XWYY 

The Strongly Ignorable Treatment 

Assignment Assumption (2)

The SITA assumption is the same assumption 

embedded in OLS regression 

Yi = + Wi +Xi +ei

about the independence of the error term ei

from Wi (i.e., the “contemporaneous 

independence” assumption or “exogeneity”).
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Comments about the SITA Assumption (1)

 When the treatment assignment is not 

ignorable, the use of the dummy variable W

leads to endogeneity bias. Conceptualizing W 

as a dummy endogenous variable motivated 

Heckman (1978, 1979) to develop the sample 

selection model and Maddala (1983) to 

develop the treatment effect model. 

Comments about the SITA Assumption (2)

 The endogeneity problem leads to a biased 

and inconsistent estimation of the regression 

coefficient. 

Assuming all variables are centered, we have y|x = 1x + e. The least 

squares estimate is                            This leads to

Hence,  when x and e are correlated, the expected value for the far right-

hand term will be nonzero, and the numerator will not go to zero as the 

sample size increases without limit. The least squares estimate then will 

be biased and inconsistent. 
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Comments about the SITA Assumption (3)

The problem is also known as “inflated slope” 

and “asymptotical bias” (Kennedy, 2003):

Independent 

Variable

Dependent 

Variable

.

.

. . .
. .

.

. .
. .

. .
.

OLS estimating line

True relationship

Source: Kennedy (2003), p.158

Comments about the SITA Assumption (4)

 In observational studies, the problem is often reflected as 
a “unmeasured variables” problem:

Suppose that a correctly specified regression model would be

y = X11 + X22 + . 

If we regress y on X1 without including X2, then the estimator becomes:

Taking the expectation, we see that unless                or 2 = 0, b1 is 
biased. The well-known result is the omitted variable formula

where P1.22 is the bias.                        

1 1 1

1 1 1 1 1 1 1 1 2 2 1 1 1( )  ( )   ( ) .  b X X X y X X X X X X X             

1 2 0X X 

E[b1|X] = 1 + P1.22,
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Implications of the SITA Assumption
 Observational studies can be viewed as a process 

to reconstruct the data to correct for the violation 
of SITA.

 Recently, Rubin (2008) formally and explicitly 
defines this work (i.e., balance data to correct for 
violation of SITA) as the design stage of an 
observational study. 

 Six essential steps for the design:
1. Conceptualize the observational study as having arisen from a complex 

randomized experiment. 

2. What was the hypothetical randomized experiment that led to the 
observed dataset?

3. Are sample sizes in the dataset adequate?

4. Who are the decision makers for treatment assignment and what 
measurements were available to them?

5. Are key covariates measured well?

6. Can balance be achieved on key covariates?

The SUTVA Assumption (1)
To evaluate program effects, statisticians also 

make the Stable Unit Treatment Value Assumption, 

or SUTVA (Rubin, 1980, 1986), which says that 

the potential outcomes for any unit do not vary 

with the treatments assigned to any other units, 

and there are no different versions of the 

treatment.  

 Imbens (on his Web page) uses an aspirin 

example to interpret this assumption, that is, the 

first part of the assumption says that taking aspirin 

has no effect on your headache, and the second 

part of the assumption rules out differences on 

outcome due to different aspirin tablets. 




