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Structural Equation Models
The classic SEM includes many common linear models 

used in the behavioral sciences:
• Multiple regression
• ANOVA
• Path analysis
• Multivariate ANOVA and regression
• Factor analysis
• Canonical correlation
• Non-recursive simultaneous equations
• Seemingly unrelated regressions
• Dynamic panel data models

2



What is SEM good for?

• Modeling complex causal mechanisms.
• Studying mediation (direct and indirect effects).
• Correcting for measurement error in predictor variables.
• Avoiding multicollinearity for predictor variables that are

measuring the same thing.
• Analysis with instrumental variables.
• Modeling reciprocal relationships (2-way causation).
• Handling missing data (by maximum likelihood).
• Scale construction and development.
• Analyzing longitudinal data.
• Providing a very general modeling framework to handle all

sorts of different problems in a unified way.
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SEM

Convergence of psychometrics and 
econometrics

• Simultaneous equation models, possibly with
reciprocal (nonrecursive) relationships

• Latent (unobserved) variables with multiple
indicators.

• Latent variables are the most distinguishing feature
of SEM.  For example:

4



X and Y are unobserved variables, x1, x2, y1, and y2 are 
observed indicators, e1-e4 and u are random errors.  
a, b, c, d, and f are correlation coefficients.  

Preview: A Latent Variable SEM

5

Latent Variable Model (cont.)
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• If we know the six correlations among the observed
variables, simple hand calculations can produce
estimates of a through f.  We can also test the fit of
the model.

• Why is it desirable to estimate models like this?
– Most variables are measured with at least some error.
– In a regression model, measurement error in

independent variables can produce severe bias in
coefficient estimates.

– We can correct this bias if we have multiple indicators
for variables with measurement error.

– Multiple indicators can also yield more powerful
hypothesis tests.



Cautions

• Although SEM’s can be very useful, the
methodology is often used badly and
indiscriminately.
– Often applied to data where it’s inappropriate.
– Can sometimes obscure rather than illuminate.
– Easy to get sucked into overly complex modeling.
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Outline
1. Introduction to SEM
2. Linear regression with missing data
3. Path analysis of observed variables
4. Direct and indirect effects
5. Identification problem in nonrecursive models
6. Reliability: parallel and tau-equivalent measures
7. Multiple indicators of latent variables
8. Confirmatory factor analysis
9. Goodness of fit measures
10. Structural relations among latent variables
11. Alternative estimation methods.
12. Multiple group analysis
13. Models for ordinal and nominal data
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Software for SEMs
LISREL – Karl Jöreskog and Dag Sörbom
EQS – Peter Bentler
PROC CALIS (SAS) – W. Hartmann, Yiu-Fai Yung
Amos – James Arbuckle
Mplus – Bengt Muthén
sem, gsem (Stata)
Packages for R:

OpenMX – Michael Neale
sem – John Fox
lavaan – Yves Rosseel
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Favorite Textbook
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Linear Regression in SEM
The standard linear regression model is just a special case of SEM:

y  =  β0 + β1 x1 + β2 x2 + ε

We make the usual assumptions about ε:
 uncorrelated with the x’s.
 mean of 0
 homoskedastic (variance is constant)
 normally distributed.

By default, all SEM programs do maximum likelihood (ML) 
estimation. Under these assumptions, ML is equivalent to ordinary 
least squares (OLS). 

Why do it in SEM? Because SEM can handle missing data by 
maximum likelihood—one of the best methods available.
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GSS2014 Example
Data from the 2014 General Social Survey (GSS). There were a total of 2538 respondents. 
Here are the variables that we will use, along with their ranges and the number of cases 
with data missing: 
AGE Age of respondent (18-89), 9 cases missing
ATTEND Frequency of attendance at religious services (0-8), 13 cases missing
CHILDS Number of children (0-8), 8 cases missing
EDUC Highest year of school completed (0-20), 1 case missing
FEMALE 1=female, 0=male
HEALTH Condition of health (1 excellent – 4 poor), 828 cases missing; 824 of these were not 

asked the question
INCOME Total family income (in thousands of dollars), 224 cases missing
MARRIED 1=married, 0=unmarried, 4 cases missing
PAEDUC Father’s highest year school completed, father (0 – 20), 653 cases missing
PARTYID Political party identification (1 strong democrat – 6 strong republican); 88 cases missing
POLVIEWS Think of self as liberal or conservative (1 liberal – 7 conservative)

89 cases missing
PROCHOICE Scale of support for abortion rights (1 – 6), 1033 cases missing; 824 of these were not 

asked the question (dependent variable)
WHITE 1=white race, 0= non-white 12




