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 For nearly half a century, the fundamental problem for statistical analysis in the social 

sciences has been how to make causal inferences from nonexperimental data (Blalock 1961).   

For nearly as long, there has been a widespread consensus that the best kind of nonexperimental 

data for making causal inferences is longitudinal data.  Unfortunately, there has not been nearly 

as much consensus on the best methods for analyzing such data.  The literature on longitudinal 

data analysis is much too vast for a detailed review in this paper, but here are some of the main 

themes. For psychologists and sociologists, the dominant approach has been some version of the 

cross-lagged panel model, originating with the two-wave, two-variable model proposed by 

Duncan (1969) and elaborated by many others (Markus 1979, Kessler and Greenberg 1981, 

Finkel 1995, Kenny and Judd 1996).  A rather different approach has been to model longitudinal 

data as a multi-level or hierarchical linear model (Bryk and Raudenbusch 1992, Goldstein 1995).  

One version of this approach is known as random growth curve modeling (Muthén and Curran 

1992).  Finally, economists have distinguished between fixed- and random-effects models, and 

have developed several novel estimation methods for handling various elaborations of these 

models (Wooldridge 2002, Baltagi 1995).  

 In this article, I consider some linear models for panel data that embody many of the 

elements of these different approaches.  What is particularly attractive about these models is that 

they protect against the two central threats to valid causal inference:  unmeasured confounding 

variables and reverse causation.   The models themselves are not particularly profound or 

original.  What’s novel is the estimation method.  Although economists have developed 
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estimation methods that could be used for these models, their methods are generally unknown in 

the wider social science community and, with a few exceptions have not been incorporated into 

commercial software.  By contrast, I show how these models can be easily estimated using 

widely available software for structural equation modeling.  I also present results from 

simulations which suggest that these methods have superior statistical properties relative to those 

in the econometric literature.   

DATA AND MODELS 

I shall consider data of the following sort.  We have a sample of n individuals, each of whom is 

observed at T points in time (t=1,…,T).  Thus, the data set is “balanced” with the same number of 

observations for each individual.  Although the proposed estimation methods can, in principle, be 

applied to unbalanced data, the initial development is much simpler if we exclude that 

possibility.  At each time point, we observe two quantitative variables, xit and yit, which may 

have a reciprocal causal relationship.  We may also observe a vector of control variables wit 

which vary over both individual and time, and another vector of control variables zi which vary 

over individuals but not over time.  

 The initial goal is to formulate a linear model that embodies a reciprocal relationship 

between x and y while controlling for w and z.  Consider the following set of equations, 
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where µt and τt, are intercepts that vary with time, β1, β2, β3, and β4  are scalar coefficients, δ1, 

δ2, γ1, and γ2 are row vectors of coefficients, and εit and υit are random disturbances.  Although 

all the lags for x and y are shown here as lags of one time unit, the lags could be greater and 

could be different for each variable.  The critical thing is that we do not allow for simultaneous 
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causation, which would require various kinds of problematic and ad hoc assumptions in order to 

estimate and interpret the causal effects.  The terms αi and ηi are “fixed effects”, that is, fixed 

parameters that vary across individuals.  They can be thought of as representing the effects on x 

and y of all unmeasured variables that are both constant over time and have constant effects.

 The equations in (1) are essentially a cross-lagged panel model.  They differ from the 

typical cross-lagged panel model by the incorporation of the fixed effects, which allow for the 

control of unmeasured confounders, and the presumption that the coefficients are constant over 

time.  The latter assumption can certainly be relaxed, but will be maintained for now to keep 

things as simple as possible.   

 More needs to be said about the random disturbance terms, εit and υit.  We’ll assume that 

they are independent of each other (within and between time points) and normally distributed 

with means of 0 and constant variance (at least across individuals, although we could allow for 

variances that change over time).  We’ll also assume that wit is strictly exogenous, meaning that 

for any t and any u, wit is independent of εiu and υiu.  With respect to x and y, we cannot assume 

strict exogeneity because both variables appear as dependent variables.  Instead, we shall assume 

that they are sequentially exogenous (Wooldrige 2002).  For all u ≥ t,  xit is independent of εi  and 

yit is indepenent of υiu, i.e., the disturbance terms are independent of previous values of x and y.   

ESTIMATION 

 Estimation of (1) is not straightforward for reasons that are well known in the 

econometric literature.  First, the presence of lagged dependent variables as predictors in each 

equation means that conventional methods will yield biased estimates of the β coefficients under 

almost any condition. Elswhere (Allison 1990), I have argued that inclusion of lagged dependent 

variables as predictors may not be sensible in many situations.  If we suppress the effects of the 
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lagged dependent variables (i.e., set β2 and β3=0) and if T=3, unbiased estimates of the 

coefficients can be obtained by taking first differences:  
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Note that zi drops out of both equations.  In this form, the equations can be estimated by ordinary 

least squares (OLS). But for T>3, the reciprocal relationship between x and y implies that 

conventional fixed-effects methods will still yield yield biased estimates.   

 Arellano and Bond (1991) proposed an instrumental variables estimator for models like 

those in (1), and this approach (with some variations) has become the standard among 

ecometricians.  The Arellano-Bond estimator is currently available in Stata.  In contrast, I show 

here how to estimate (1) directly using maximum likelihood methods that are readily available 

by way of conventional structural equation modelling (SEM) software, such as LISREL, EQS, 

AMOS, MPLUS and PROC CALIS (SAS).  I first show how to implement the method by way of 

example.  Then I present results of a simulation study showing that the method appears to do 

what is promised: produce unbiased estimates of the reciprocal effects of x and y. 

  As an example, I analyze data for 178 occupations in the U.S. for the years 1983, 

1989, 1995 and 2001 (labeled T1-T4).  The data come from the March “Current Population 

Survey: Annual Demographic File” (CPS). The observations in CPS data are individual persons, 

but the analysis required occupational averages for each year on all the variables.  For each year, 

I calculated the proportion female and the median wage for females for each occupation.  This 

was done only for the 178 occupations that had at least 50 sample members in each of the years.  

Further details can be found in England et al. (2004).  For wages, the variables are labeled 

MDWGF1-MDWGF4, and for proportion female we have PF1-PF4.  
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 For the model in (1) let y be median wage and let x be proportion female. In 1983, the 

correlation between these two variables was -.33, which was highly significant.  There has been 

considerable controversy regarding the possible direction of causality between these two 

variables (England et al. 2004).  One argument is that employers devalue occupations that have a 

high proportion female and, consequently, pay lower wages.  The rival hypothesis is that 

declining wages make occupations less attractive to men; as they leave for better paying work, 

women fill their vacant positions.  I shall assume that changes in either of these variables show 

up in changes in the other variable six years later.  To keep the example simple, we will not 

consider any w variables (time-varying covariates) or z variables (time-invariant covariates). 

 By estimating the equations in (1), using conventional SEM software, we can assess each 

of the two possible causal effects.  Although it’s possible to estimate the two equations 

simultaneously, estimating them separately allows for considerably more flexibility in specifying 

the model.  (The problem with simultaneous estimation is that a given variable has to be 

expressed in the same way as a dependent and independent variable.)  Note that to do maximum 

likelihood estimation, we must strengthen our assumptions by specififying a joint distribution for 

all variables, in this case multivariate normality.   

 There are two key devices that are necessary to implement the method.  First, the fixed 

effects in each equation are modeled as a latent variable that is allowed to be correlated with all 

time-varying predictor variables.  The rationale for this method is described in Teachman et al. 

(2001) and Allison and Bollen (1997).  Second, the assumption of sequential exogeneity is 

modelled by  allowing the error term at each point in time to be correlated with future values of 

the time-dependent covariates, but not past values (Wooldridge 2002).   



 6

 We used the CALIS procedure in SAS to estimate the two equations.  Here is the 

program for estimating the first equation in (1): 

PROC CALIS DATA=my.occ UCOV AUG;  
LINEQS 
  mdwgf4= t4 INTERCEPT + b1 pf3  + b2 mdwgf3 + falpha + e4, 
  mdwgf3= t3 INTERCEPT + b1 pf2  + b2 mdwgf2 + falpha + e3, 
  mdwgf2= t2 INTERCEPT + b1 pf1  + b2 mdwgf1 + falpha + e2; 
STD  
  falpha=s1, e2-e4=sa:;  
COV 
  falpha*mdwgf1 pf1 pf2 pf3=c0 c1 c2 c3:, 
  e2*pf3 =c4; 
RUN; 
 
 
Here is a quick explanation.  The UCOV option specifies that the matrix to be analyzed is a sum 

of squares and cross-products matrix.  The AUG option augments this matrix with a column that 

corresponds to the intercept.  These two options are necessary if it is desired to estimate the 

intercept term.  Otherwise one could analyze the covariance matrix (by specifying the COV 

option).  Following LINEQS (for linear equations) there is a separate equation for each 

dependent variable at each point in time, and those equations correspond directly to the equations 

in (1).   Note that there is no equation predicting median wage or proportion female at time 1 

because we do not observe their lagged values six years earlier (1977).   

 The fixed effects are represented by FALPHA in each equation.  The COV statement 

allows for correlations between FALPHA and the time-varying covariates, thus implementing a 

fixed-effects model.  Note that for the lagged dependent variable, a correlation is only allowed 

between FALPHA and the value of the variable at time 1.  That’s because only the time 1 

variable is exogenous and correlations are only allowed among exogenous variables.  There’s 

actually no need to specify a correlation between FALPHA and the later values of the lagged 

dependent variable because FALPHA is one of the predictors in the equation for each of these 
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variables.  The COV statement also allows a correlation between E2 and the cross-lagged 

variable at time 3, which corresponds to the assumption of sequential exogeneity.   

 To estimate the second equation, we simply repeat the program while interchanging the 

roles of PF and MDWGF: 

PROC CALIS DATA=my.occ UCOV AUG;  
LINEQS 
  pf4= t4 INTERCEPT + b1 mdwgf3 + b2 pf3 + feta + e4, 
  pf3= t3 INTERCEPT + b1 mdwgf2 + b2 pf2 + feta + e3, 
  pf2= t2 INTERCEPT + b1 mdwgf1 + b2 pf1 + feta + e2; 
STD  
  feta=s1, e2 e3 e4=sa:;  
COV 
  feta*pf1 mdwgf1 mdwgf2 mdwgf3=ca:, 
  e2*mdwgf3=cb; 
RUN; 
 

Table 1.  Estimates for Reciprocal Model with Fixed and Lagged Effects 

mdwgf2 = -0.0836 * pf1 + 0.3434 * mdwgf1 + 7.9837 * Intercept + 1.0000 falpha + 1.0000 e2
Std Err  2.4323  b1  0.0640  b2  1.2411  t2     
t Value  -0.0344    5.3680    6.4329  

 
     

pf2 = 0.2994 * pf1 + -0.00054 * mdwgf1 + 0.3353 * Intercept + 1.0000 falpha + 1.0000 e2
Std Err  0.0820  b2  0.00151  b1  0.0384  t2     
t Value  3.6534    -0.3572    8.7220       
 

 Results for the two equations are shown in Table 1.   Not surprisingly, each variable has a 

positive, statistically significant effect on itself six years later. With respect to the “cross-lagged” 

coefficients, however, there is no evidence for an effect in either direction.    

 I also estimated a model that removes the lagged dependent variables, and got essentially 

the same results for the cross-lagged coefficients.  Similarly, a model that includes the lagged 

dependent variables but does not include the fixed effects (the classic 2-wave, 2-variable panel 

model) yields no evidence for a cross-lagged effect in either direction.      
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SIMULATION STUDY 

  To evaluate the proposed method, I generated observations from the following model: 
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for t=1,…,4..  The stable, unmeasured components αi and ηi were generated as bivariate standard 

normal variates with a correlation of .5.  The disturbances uit and vit were each standard normal 

and independent of all exogenous variables.  For each condition, I generated 500 samples.  The 

baseline condition had a sample size of N=500, and β1= β2= β3= β4 =.5.   

 Using the SEM method just described, I estimated the parameters of the model for each 

of the 500 samples, with results reported in the first line of Table 2.  It is sufficient to look at just 

one of the parameters, β1, which represents the effect of x on y.  Table 2 reports the mean of the 

500 estimates, the standard deviation of those estimates and the mean of the estimated standard 

errors.  Ideally, the latter two estimates should be very close.  In the last column, I report the 

“coverage” , that is, the proportion of nominal 95% confidence intervals (calculated in each 

sample using the conventional normal approximation) that contain the true value of the 

parameter.  If the method is performing well, this should be close to .95.   

 The first row of Table 2 indicates excellent performance.  Bias was minimal, the average 

of the standard errors was close to the standard deviation of the estimates and the coverage was 

just a little below the nominal 95% level.  Next, instead of a full factorial design, I varied one 

dimension at a time, leaving the others at their baseline values.    I first varied the sample size, 

with N=100 and N=500.  Then I varied the values of the parameter of interest, from 0 to -.5 to 1.   

Next, I eliminated the lagged effects of the dependent variable by setting β2 = β3 = 0 (although 
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the analysis model still estimated these effects).  And, finally, I varied the value of the other 

cross-lagged effect (β4), setting it to 0 and then to -.5.  The only condition under which the 

performance of the proposed method was less than ideal was when β4 = 0.  Although the bias 

was small, the coverage was somewhat deficient at 88 percent.  

Table 2.  Results of Simulation Study 

Model Parameterb Estimatec Avg. SEd Stan. Dev.e Coveragef 

Baseline .50 .500 .028 .030 .93 
Baseline + N=100 .50 .504 .062 .067 .94 
Baseline + N=500 .50 .500 .020 .022 .94 
Baseline + β1=0 .00 .003 .030 .031 .95 
Baseline + β1 = -.5 -.50 -.500 .031 .034 .93 
Baseline + β1 = 1 1.00 .998 .028 .030 .94 
Baseline + β2 = β3 = 0 .50 .502 .046 .053 .95 
Baseline + β4 = 0 .50 .519 .091 .010 .88 
Baseline + β4 = -.5 .50 .501 .031 .033 .95 
bTrue value of the coefficient in the model producing the data. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
 

In later versions of this paper, I plan to extend the simulations to compare the performance of 

the SEM estimator with conventional cross-lagged panel methods, conventional fixed-effects 

methods, and the Arellano-Bond estimator.   

 

CONCLUSION 

 This paper proposes an SEM estimator of a linear cross-lagged panel model with fixed 

effects.   Effective estimation of such a model should make it possible to draw valid and reliable 

conclusions about the relative magnitudes of reciprocal effects of two or more variables.  This is 

because the method protects against both the possible confounding with unmeasured, stable 

covariates and against the potential biasing effects of reverse causation. By contrast, 
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conventional fixed-effects estimation methods are unsatisfactory because they do not adequately 

address the endogeneity of the two variables.  The instrumental variables estimator of Arellano 

and Bond attempts to accomplish the same goal, but the methods described here may be more 

accessible and familiar to many social scientists.   
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