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Introduction 
“How do I know if my model is a good model?” 
Translation:  “How can I convince my 

boss/reviewer/regulator that this model is OK?” 
What statistic can I show them that will justify what I’ve 

done? 
The ideal would be a single number that indicates that the 

model is OK if it the number is above or below a certain 
value.  

May be asking too much. Usually, you need at least two 
numbers.  
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Two classes of fit statistics 
1. Measures of predictive power—How well can we explain/predict 

the dependent variable based on the independent variables. 
 R-square measures 
 Rank-order correlations 
 Area under the ROC curve 

2. Goodness-of-fit (GOF) tests 
 Deviance 
 Pearson chi-square 
 Hosmer-Lemeshow. 

Predictive power and GOF are very different things 
 A model can have very high R-square, yet GOF is terrible. 
 Similarly, GOF might be great but R-square is low. 
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R-square for logistic regression  
Many different measures 

PROC LOGISTIC:  Cox-Snell (regular and “max-rescaled) 
PROC QLIM: Cox-Snell, McFadden, 6 others.  
Stata: McFadden 
SPSS: Cox-Snell for binary, McFadden for multinomial.  

I’ve recommended Cox-Snell over McFadden for many years, but recently 
changed my mind.  

Let L0 be the value of the maximized likelihood for a model with no 
predictors, and let LM be the likelihood for the model being estimated. 

Cox-Snell: 

Rationale:  For linear regression, this formula is a identity.   
A “generalized” R-square.   
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McFadden vs. Cox-Snell 
McFadden: 

Rationale: the log-likelihood plays a role similar to residual sum of 
squares in regression.  A “pseudo” R-square.  

Problem with Cox-Snell: An upper bound less than 1. 

 

where p is the overall proportion of events. The maximum upper bound 
is .75 when p=.5.  When p=.9 or .1, the upper bound is only .48.   

Simple solution: divide Cox-Snell by its upper bound yielding “max-
rescaled R-square” (Nagelkerke). But no longer has same 
appealing rationale. Tends to be higher than most other R-squares. 

So, I give the nod to McFadden.    
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Tjur R2 (American Statistician 2009) 
For each category of the response variable, compute the mean of the 

predicted values. Then take the absolute value of the difference 
between the two means. 

Intuitive appeal, upper bound is 1.0, and closely related to R2 for linear 
models.  

Example: Mroz (1987) data 

PROC LOGISTIC DATA = my.mroz DESC; 
  MODEL inlf = kidslt6 age educ huswage city exper; 
  OUTPUT OUT = a PRED = yhat; 
PROC TTEST DATA = a; 
  CLASS inlf; VAR yhat; RUN; 
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Output for Tjur R2 

INLF N Mean Std Dev Std Err Minimum Maximum 

0 325 0.4212 0.2238 0.0124 0.0160 0.9592 

1 426 0.6787 0.2119 0.0103 0.1103 0.9620 

Diff (1-2)   -0.2575 0.2171 0.0160     

The TTEST Procedure  
Variable: yhat (Estimated Probability) 

 

Compare: Cox-Snell = .25, max re-scaled = .33, McFadden = .21, 
squared correlation between observed and predicted = .26. 
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Classic goodness of fit statistics 
Classic GOF statistics can be used when cases can be aggregated into 

“profiles”. A profile is a set of cases that have exactly the same 
values of all predictor variables.  

Aggregation is most often possible when predictors are categorical.   

Example: In MROZ data, CITY has two values (0,1) and NKIDSLT6 
has integer values 0 through 3.  

PROC LOGISTIC DATA = my.mroz DESC; 
  MODEL inlf = kidslt6 city / AGGREGATE SCALE=NONE; 
RUN; 

AGGREGATE says to group the data into profiles, and SCALE=NONE 
requests the Pearson and deviance GOF tests. 
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GOF Output 
Deviance and Pearson Goodness-of-Fit Statistics 

Criterion Value DF Value/DF Pr > ChiSq 

Deviance 4.1109 5 0.8222 0.5336 

Pearson 3.9665 5 0.7933 0.5543 

Number of unique profiles: 8 

High p-values indicate that the model fits well.  
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Formulas 
For each cell in the 8 x 2 contingency table, Let Oj be the observed 
frequency and let Ej be the expected frequency. Then the deviance is 

 

 

The Pearson chi-square is 

 

 

If the fitted model is correct, both statistics have approximately a chi-
square distribution. DF is number of profiles minus number of estimated 
parameters.  
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What are they testing? 
Deviance is a likelihood ratio chi-square comparing the fitted model with a 

“saturated” model, which can be obtained by allowing all possible 
interactions and non-linearities: 

PROC LOGISTIC DATA = my.mroz DESC; 
  CLASS kidslt6; 
  MODEL inlf = kidslt6 city kidslt6*city / AGGREGATE 

SCALE=NONE;  

 Deviance and Pearson Goodness-of-Fit Statistics 

Criterion Value DF Value/DF Pr > ChiSq 

Deviance 0.0000 0 . . 

Pearson 0.0000 0 . . 
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What are they NOT testing? 
 How well you can predict the dependent variable. 

 Whether other predictor variables could improve the 
model. 

 Whether there is unobserved heterogeneity at the 
individual level. 

 If the profiles represent naturally occurring groups (e.g., 
hospitals, companies, litters), GOF tests can be affected 
by unobserved heterogeneity produced by group-level 
characteristics.   
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What if aggregation isn’t possible? 
Nowadays, most logistic regression models have one more continuous 

predictors and cannot be aggregated. 
Expected values in each cell are too small (between 0 and 1) and the 

GOF tests don’t have a chi-square distribution. 
Hosmer & Lemeshow (1980): Group data into 10 approximately equal 

sized groups, based on predicted values from the model. Calculate 
observed and expected frequencies in the 10 x 2 table, and 
compare them with Pearson’s chi-square (with 8 df). 

PROC LOGISTIC DATA = my.mroz DESC; 
  MODEL inlf = kidslt6 age educ huswage city exper / 

LACKFIT; 
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H-L output 
Partition for the Hosmer and Lemeshow Test 

Group Total INLF = 1  INLF = 0  

Observed Expected Observed Expected 

1 75 14 10.05 61 64.95 

2 75 19 19.58 56 55.42 

3 75 26 26.77 49 48.23 

4 75 24 34.16 51 40.84 

5 75 48 41.42 27 33.58 

6 75 53 47.32 22 27.68 

7 75 49 52.83 26 22.17 

8 75 54 58.87 21 16.13 

9 75 68 65.05 7 9.95 

10 76 71 69.94 5 6.06 

Hosmer and Lemeshow Goodness-of-Fit Test 
Chi-Square DF Pr > ChiSq 

15.6061 8 0.0484 
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Problems with Hosmer-Lemeshow 
1. Can be highly sensitive to number of groups, which is arbitrary.  For 

the model just fitted we get 

    Stata:  10 groups p=.05 
             9 groups p=.11 
           11 groups p=.64 

2. Very common that adding a highly significant interaction or non-
linearity to a model makes the HL fit worse. Or adding a non-
significant interaction or non-linearity makes the fit better.  

3. Some simulation studies show low power. 

Many alternative GOF statistics have been proposed (some by Hosmer 
and Lemeshow).   
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New GOF tests 
New tests fall into two groups 
 Those that use alternative methods of grouping. Once the data are 

grouped, apply Pearson’s chi-square.  
 Those that do not require grouping.   

Focus on ungrouped tests here.  Four seem especially promising: 
 Standardized Pearson tests 
 Unweighted sum of squares 
 Information matrix test 
 Stukel test 

For ungrouped data, you can’t create a test based on the deviance−it 
depends only on the fitted values, not the observed values.  
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Standardized Pearson 
When applied to ungrouped data, the Pearson GOF can be written as  

 

 
where the sum is taken over all individuals, y is the observed value of 
the dependent variable (0 or 1) and π-hat is the predicted value.  
This doesn’t have a chi-square distribution but it does have a large-
sample normal distribution. Use its mean and standard deviation to 
create a z-statistic.  At least two ways to get the means and SD: 

McCullagh (1985) 
Osius and Rojek (1992)       These two are usually almost identical. 
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Unweighted sum of squares 
Copas (1989) proposed using 

 

 

This also has a normal distribution in large samples under the null 
hypothesis that the fitted model is correct. 

Hosmer et al. (1997) showed how to get its mean and standard 
deviation, which can be used to construct a z-test.   
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Information matrix test 
White (1982) proposed comparing two different estimates of the 
covariance matrix of the parameter estimates (the negative inverse of 
the information matrix), one based on first derivatives of the log-
likelihood, the other based on second derivatives.  

In this context, we get the following formula 

 

 

where the x’s are the p predictors in the model. After standardization 
with an estimated variance, this has a chi-square distribution with p+1 
DF.   
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Stukel test 
Stukel (1988) proposed a generalization of the logistic regression 
model with two additional parameters. These allow for departures from 
the logit link function at each end of the curve. 

The logit model can be tested against this more general model as 
follows: Let gi = xi’b where xi is the vector of covariate values for 
individual i and b is the vector of estimated coefficients. Create two new 
variables:  

za = g2 if g≥0, otherwise za = 0 
zb = g2 if g<0, otherwise zb = 0. 

Add these two variables to the model and test the null hypothesis that 
both coefficients are equal to 0.  
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Implementing the Stukel test 
PROC LOGISTIC DATA=my.mroz DESC; 
  MODEL inlf=kidslt6 age educ huswage city exper; 
  OUTPUT OUT=a XBETA=xb; 
DATA b; 
  SET a; 
  za=(xb>=0)*xb**2; 
  zb=(xb <0)*xb**2; 
  num=1; /* for use later */ 
PROC LOGISTIC DATA=b DESC; 
  MODEL inlf = kidslt6 age educ huswage city exper za zb; 
  TEST za=0,zb=0; 

Linear Hypotheses Testing Results 
                         Wald 
       Label       Chi-Square      DF    Pr > ChiSq 
       Test 1          0.1195       2      0.9420 
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GOFLOGIT macro for other tests 
Macro developed by Oliver Kuss, presented at SUGI 25 (2001) 

%GOFLOGIT(DATA=b, Y=inlf, XLIST=kidslt6 age educ 
huswage city exper, TRIALS=num) 

NUM is a “variable” that is always equal to 1, indicating that each data 
line corresponds to only 1 observation. 

Problem with the macro: Gives one-sided p-values for standardized 
Pearson statistics. But theory and simulation evidence indicate that 
two-sided tests are needed.   

Change: posius  = 1-probnorm(tosius); 
       to     posius  = 2*(1-probnorm(abs(tosius)); 
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Output from GOFLOGIT 
TEST Value  p-Value 

Standard Pearson Test 751.049 0.421 

Standard Deviance 813.773 0.038 

Osius-Test 0.003 0.499 

McCullagh-Test 0.029 0.489 

Farrington-Test 0.000 1.000 

IM-Test 11.338 0.125 

RSS-Test 136.935 0.876 

Note:  Direct testing finds a highly significant effect of experience squared. 
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Simulation evidence 
Several studies report that all these tests have the right “size”: when a 
correct model is fit with α=.05,  they reject the null about 5% of the time. 

So the important question is how powerful are these tests at detecting 
various kinds of departures from the model.  

Not satisfied with the available simulation studies so I did my own. 

Quadratic: 

 True model:  

 Fitted model:  

 

2
210)(logit xxi βββπ ++=

xi 10)(logit ββπ +=
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Quadratic results 
Quadratic 

Effect Very Low Low Medium High 

N 100 500 100 500 100 500 100 500 

Osius 0.068 0.106 0.328 0.840 0.604 0.990 0.832 1.000 

McCullagh 0.072 0.108 0.344 0.844 0.616 0.990 0.842 1.000 

USS 0.064 0.066 0.348 0.890 0.654 0.994 0.858 1.000 

IM 0.048 0.070 0.292 0.872 0.584 0.994 0.826 1.000 

Stukel 0.030 0.064 0.192 0.866 0.436 0.992 0.708 1.000 

Wald X2 0.044 0.104 0.380 0.912 0.636 1.000 0.980 1.000 
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Interaction 
Correct model: 

 

 

where d is a dichotomous variable. 

 

Fitted model 

 

xddxi 3210)(logit ββββπ +++=

dxi 210)(logit βββπ ++=
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Interaction results 
Interaction Very Low Low Medium High Very High 

N 100 500 100 500 100 500 100 500 100        500 

Osius 
0.083 0.086 0.130 0.262 0.211 0.414 0.338 0.570 0.497 0.639 

McCullagh 
0.093 0.086 0.138 0.264 0.215 0.416 0.348 0.574 0.501 0.639 

USS 
0.079 0.086 0.130 0.254 0.211 0.406 0.340 0.566 0.499 0.631 

IM 
0.032 0.054 0.077 0.310 0.168 0.518 0.320 0.658 0.545 0.745 

Stukel 
0.059 0.214 0.114 0.664 0.274 0.906 0.421 0.952 0.634 0.964 

Wald X2 
0.120 0.426 0.342 0.950 0.666 1.000 0.864 1.000 0.966 1.000 
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Incorrect link function 
Correct model: 

 

i.e., complementary log-log model.   

 

Fitted model 

xi 10))1(log(-log ββπ +=−

xi 10)(logit ββπ +=
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Link function results 

N 
100  

(β1 = .81) 
500  

(β1 = .81) 
1000 

(β1 = .81) 
1000 

    (β1 =.405) 

Osius 0 0.112 0.574 0.428 

McCullagh 0 0.092 0.548 0.428 

USS 0.054 0.290 0.586 0.430 

IM 0.076 0.552 0.884 0.350 

Stukel 0.036 0.478 0.878 0.352 

Why the reversal in the last column? When β1 = .81, the 
predicted probabilities cover a wide range. The two standardized 
Pearson tests put more weight on extreme values.   
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Summary 
 All of the new GOF tests with ungrouped data are potentially useful 

in detecting misspecification.  

 For detecting interaction, the Stukel test was markedly better than 
the others. But it was somewhat weaker for detecting quadratic 
effects.  

 None of the tests was great at distinguishing a logistic model from a 
complementary log-log model, but IM and Stukel were best.  

 Tests for specific kinds of misspecification may be much more 
powerful than global GOF tests. This was particularly evident for 
interactions. For many applications a targeted approach may be the 
way to go.  
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Summary 
 I recommend using all these GOF tests. If your model passes all of 

them, you can feel relieved.  If any one of them is significant, it’s 
probably worth doing targeted tests.  

 As with any GOF tests, when the sample size is quite large, it may 
not be possible to find any reasonably parsimonious model with a  
p-value greater than .05. 

 If you use the GOFLOGIT macro, modify it to calculate two-sided  
p-values for the Osius and McCullagh versions of the standardized 
Pearson statistic.   
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