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ABSTRACT 
 
The most widely used method of multiple imputation is the MCMC algorithm based on the 

multivariate normal model.  While this method is often used to impute binary and polytomous 

data, there is a natural concern about the consequences of violating the normality and linearity 

assumptions. Recent work by Horton et al. suggests that the practice of rounding imputed values 

for binary variables may produce biased estimates of proportions, but that still leaves many 

questions unanswered.  This paper uses simulations to address several questions: How much bias 

is introduced if the imputed values are left unrounded?  What factors affect the degree of bias?  

What effect do these choices have on bias in regression coefficients for binary variables that are 

predictor variables?  The paper also compares the MCMC method to imputation methods based 

on a logistic regression model or a linear discriminant model for monotonic missing data 

patterns.  Key conclusions are that linear imputation with rounding is always inferior to linear 

imputation without rounding.  The latter does well under most conditions, except when 

estimating proportions that are near 0 or 1.   

INTRODUCTION 

The most popular method for multiple imputation of missing data is the Markov Chain Monte 

Carlo (MCMC) algorithm based on the assumption of multivariate normality (Schafer 1997), 

which implies that valid imputations may be generated by linear regression equations.  The 

reasons for the popularity of MCMC are not difficult to fathom. The algorithm is widely 

available, computationally efficient, rarely breaks down, and, most importantly, can handle 

arbitrary patterns of missing data.  Nevertheless, because the method assumes normality and 
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linearity, it may not be well suited for imputing categorical variables.  For a binary (0,1) 

variable, for example, the imputed values can be any real value rather than being restricted to 0 

and 1.  Although most imputed values will be within the (0,1) interval, many will fall outside 

that range.  Several authors (e.g., Schafer 1997, Allison 2001) have recommended rounding the 

imputed values so that imputed values greater than or equal to .5 are set to 1 and anything less is 

set to 0.  However, Horton et al. (2003) have shown that such rounding can produce biased 

estimates of proportions, especially when the true proportion is near 0 or 1.   

This paper uses simulated data to evaluate various approaches to the imputation of binary 

variables under the multivariate normality.  I begin by focusing on the estimation of proportions, 

comparing complete case analysis, linear imputation with rounding, linear imputation without 

rounding, and methods based on logistic regression and the discriminant function. 

ESTIMATION OF PROPORTIONS 

Horton et al. (2003) analytically investigated a case with the following conditions: there is a 

single dummy (0,1) variable D with an expected value p, the goal is to estimate p, there are no 

covariates, and some data on D are missing completely at random (MCAR).  They derived 

formulas for the expected value of two multiple imputation estimators of p, both based on the 

multivariate normal model, one with rounding and one without rounding.  They found that the 

unrounded estimator was unbiased but the rounded estimator was biased. The relative bias 

increased as p approached zero and as the fraction of missing data increased.  

I extend their conditions in two ways.  I introduce a covariate X which is moderately 

correlated with D and which can be used to improve the imputation of D.  Second, I consider the 

case in which the data on D are missing at random, but not missing completely at random.  

Specifically, I allow the probability of missingness on D to depend on the covariate X.   
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For each condition, I draw 500 samples, each with 500 cases.  The dummy variable D is drawn 

from a Bernoulli distribution with probability p.  In the different conditions, p was .50, .20, .05, 

or .01.   For each observation i, the covariate X is generated by the linear equation 

 iii DX τε++−= 1         (1) 

where ε is a random draw from a standard normal distribution and τ is a constant chosen to 

control the correlation between X and D.  Although that correlation varied somewhat from 

condition to condition, it was always between .4 and .5.  Note that equation (1) implies that the 

expected value of D given X is described by a logistic regression function.   

I then set approximately 50 percent of the observations on D to be missing.  For the 

MCAR case, I simply made a random draw from a Bernoulli distribution with probability of .5.  

If the drawn value was 1, the value of D was missing. For the MAR condition, a probability πi 

was generated by the following equation: 

)]exp(1/[1 10 ii Xααπ ++=  (2) 

For each i, a random Bernoulli draw was made with probability πi.  Again, if the drawn value 

was 1, the value of D was missing, otherwise not. The parameters α0 and α1 were adjusted for 

each condition to keep the proportion of cases with missing data at .50 and the correlation 

between X and the missingness indicator between .30 and .45.  

To estimate the proportion p, five different missing data techniques were applied to each 

sample: 

1.  Complete Case Analysis (Listwise Deletion).  Cases with missing data on D were deleted 

from the sample and the mean of D was calculated.  Since the probability of missingness was .5, 

approximately 250 cases were deleted from each sample of 500 cases.   
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2.  Linear Imputation Without Rounding.  To generate imputations under the multivariate normal 

model, I used PROC MI in SAS with X as a covariate.  Five completed data sets were produced 

for each sample, the mean of D was estimated for each data set using PROC MEANS, and the 

results were combined using PROC MIANALYZE.   

3.  Linear Imputation With Rounding.  This technique simply took the completed data sets 

produced by PROC MI in method 2, and rounded the imputed values of D to 0 or 1.  The rule 

was that any value greater than or equal to .5 was assigned a value of 1 and anything less than .5 

was assigned a value of 0.  Using these rounded values, the mean of D was estimated for each 

data set using PROC MEANS, and the results were combined using PROC MIANALYZE.   

4.  Logistic Regression Imputation.  This method is only available for monotonic missing data 

patterns in PROC MI.  Using complete cases, a logistic regression is estimated by maximum 

likelihood.  For each completed data set, a random draw is made from the posterior distribution 

of the parameters.   Based on the resulting logistic regression equation, a probability is generated 

for each case with missing data and a Bernoulli draw is made for that probability, producing 

imputed values of 0 or 1.  As in methods 2 and 3, five completed data sets were produced for 

each sample, the mean of D was estimated for each data set using PROC MEANS, and the 

results were combined using PROC MIANALYZE.   

5.  Discriminant Function Imputation.  This method is only available for monotonic missing data 

patterns in PROC MI. The method is based on the assumption that within each category of the 

categorical variable, the quantitative variables have a multivariate normal distribution with 

means that vary across categories but a covariance matrix that is constant over categories.  

Although this implies a logistic regression for the dependence of the categorical variable on the 

covariates, the estimation method is based on estimating the means and covariance matrix for the 

complete cases.  Compared with the logistic method, the discriminant function method is faster 
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and minimizes potential breakdowns in the estimation process.  Again, the imputed values are 

necessarily 0 or 1.  As with the other imputation methods, five completed data sets were 

produced for each sample, the mean of D was estimated for each data set using PROC MEANS, 

and the results were combined using PROC MIANALYZE.   

RESULTS FOR MCAR 

The SAS code for producing the imputations and calculating the statistics can be found in the 

Appendix.  Table 1 gives the results for the MCAR conditions.  For each condition and method, I 

report the mean of the 500 estimated proportions, the mean of the estimated standard errors, and 

the standard deviation of the estimates.  If the standard error estimates are accurate, their mean 

should be close to the standard deviation. The standard deviation is also a good measure of the 

efficiency of the method. The last column of the table gives the proportion of nominal 95% 

confidence intervals that contain the true value.  Obviously, if a method is performing well, that 

proportion should be close to .95.    

When the true proportion is .50, all five methods appear to be unbiased, have about equal 

standard deviations, and have accurate coverage.  The only surprising thing is that the standard 

deviation for complete case analysis is about the same as for the imputation methods.  This is 

also the case for all the other parameter values in the table. With only half the original 500 cases, 

one would expect the complete case estimator to be noticeably less efficient than the imputation 

methods.  The latter use information from the covariate to generate the imputations. The 

covariate is correlated with the dummy variable at around .40, which would seem large enough 

to give some advantage to the imputation methods.   But even when I increased the correlation to 

.85, the standard deviations for the imputation methods were not lower than the complete case 

standard deviation.   
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Table 1. Estimates of Proportions When Data are MCAR 
 
Method Parameterb Estimatec Avg. SEd Stan. Dev.e Coveragef

Complete Case .50 .501 .032 .032 .94 
Linear No Round .50 .501 .030 .031 .94 
Linear Round .50 .501 .029 .028 .95 
Discriminant .50 .499 .032 .031 .94 
Logistic .50 .501 .030 .031 .94 
Complete Case .20 .200 .025 .025 .96 
Linear No Round .20 .199 .024 .024 .96 
Linear Round .20 .213 .024 .026 .93 
Discriminant .20 .200 .024 .023 .97 
Logistic .20 .200 .024 .024 .94 
Complete Case .05 .050 .014 .014 .91 
Linear No Round .05 .049 .013 .014 .91 
Linear Round .05 .037 .010 .014 .61 
Discriminant .05 .050 .013 .013 .94 
Logistic .05 .050 .013 .013 .92 
Complete Case .01 .011 .006 .006 .94 
Linear No Round .01 .010 .006 .006 .91 
Linear Round .01 .006 .001 .004 .16 
Discriminant .01 .009 .005 .006 .85 
Logisticg .01 -- -- -- -- 
 

bTrue value of the parameter in the model producing the data. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.   
 

When the true proportion is .20, we find some evidence that linear imputation with rounding 

produces slightly biased estimates with a mean of .213.  This is consistent with Horton et al.’s 

analytical results which showed that upward bias peaked when the parameter was around .20.  

We also see a slight worsening of coverage for this method.  By contrast, linear imputation 

without rounding does about as well as the logistic and discriminant methods.   

When the true proportion is .05, performance of linear imputation without rounding is 

still pretty good, while rounding seriously degrades the inferences. The estimate of the 

proportion is biased downward and, more seriously, coverage declines to only 61 percent. This 

may be a consequence of underestimation of the standard errors.  Finally, when the true 

parameter is .01, the rounded imputations produce completely unacceptable estimates.  The 

estimate is about 40% below the true value and the coverage is only 16 percent. Interestingly, the 

linear method without rounding actually does a little better than the discriminant method.   
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RESULTS FOR MAR 

Table 2 gives results for data that are missing at random but not missing completely at random.  

As in the MCAR case, complete case analysis produces estimates whose standard deviations are 

no larger than those for the imputation methods.  Now, however, the complete case estimates are 

severely biased downward, to the point of being unacceptable for all parameter values.  When 

the true proportion is .50, all four imputation methods do a pretty good job.  But when the true 

proportion is .20, both linear methods show some downward bias, as well as coverage rates that 

are only around .80.  The rounded method is a little worse than the unrounded method.   

 
Table 2. Estimates of Proportions When Data Are MAR But Not MCAR.  
 
Method Parameterb Estimatec Avg. SEd Stan. Dev.e Coveragef

Complete Case .50 .392 .031 .032 .08 
Linear No Round .50 .497 .033 .035 .94 
Linear Round .50 .487 .031 .031 .94 
Discriminant .50 .498 .038 .042 .93 
Logistic .50 .498 .032 .033 .94 
Complete Case .20 .131 .021 .022 .14 
Linear No Round .20 .185 .022 .029 .83 
Linear Round .20 .176 .026 .034 .79 
Discriminant .20 .199 .033 .034 .95 
Logistic .20 .201 .028 .029 .95 
Complete Case .05 .017 .008 .008 .07 
Linear No Round .05 .033 .009 .014 .54 
Linear Round .05 .009 .003 .006 .02 
Discriminant .05 .050 .021 .023 .91 
Logisticg .05 -- -- -- -- 
Complete Case .01 .0004 .0004 .0001 .10 
Linear No Round .01 .001 .0004 .003 .10 
Linear Round .01 .0002 4 x 10-7 1 x 10-6 .00 
Discriminant .01 .006 .004 .008 .47 
Logisticg .01 -- -- -- -- 
 
bTrue value of the parameter in the model producing the data. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.   

 

When the true proportion is .05, the problems with the linear methods worsen.  The 

unrounded method is perhaps marginally acceptable, but the rounded method is abominable, 

both with respect to bias and coverage (only 2 percent for a nominal 95 percent interval).  

Finally, when the true proportion is .01, none of the methods is any good—even the discriminant 
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method has coverage below 50 percent.  Note also that when the true proportion is near 0, the 

logistic method runs into insurmountable computational problems.   (The SAS log reports an 

attempt to divide by 0).  My guess is that this is due to complete or quasi-complete separation, 

which implies that the maximum likelihood estimate of the regression coefficient does not exist.   

ESTIMATION OF REGRESSION COEFFICIENTS 

The initial steps in the simulations for regression estimation were just like those for estimating 

proportions. For each condition, I drew 500 samples, each with 500 cases.  In each sample, the 

dummy variable D was drawn from a Bernoulli distribution with probability p.  In the different 

conditions, p was .50, .20, .05, or .01.   For each observation i, the covariate X was generated by 

equation (1) above. As before, for each condition τ  was chosen to keep the correlation between 

X and D between .3 and .4.   

Once X and D had been produced, observations on a response variable Y were generated 

by the following linear equation:   

iiii XDY συββ ++= 21  (3) 

where υi  is random draw from a standard normal distribution.  For the regressions reported here, 

σ  was set equal to 3 and both β1 and β2 were set equal to 1.   

As with estimation of proportions, I then made about 50 percent of the observations on D 

to be missing in each sample.  In the MCAR condition, I simply made random draws from a 

Bernoulli distribution.  For the MAR condition, the probability of missingness for each 

observation was governed by equation (2). I then applied the five missing data methods to each 

sample to produce estimates of β1 and β2. 
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MCAR RESULTS 

Table 3 gives results for estimation of β1, the coefficient of the dummy variable, in the MCAR 

condition.  When p, the proportion of 1’s on the dummy variable, is .05 or greater, all five 

missing data methods do pretty well, with the possible exception of linear imputation with 

rounding.  The rounding method shows about 15-20 percent downward bias but, surprisingly, 

coverage is still quite good.  When p declines to .01, all of the methods suffer some deterioration 

in coverage.  Complete-case analysis and the two linear methods show about 15 percent 

downward bias.  Linear imputation with rounding has terrible coverage, which is somewhat 

surprising given that the standard errors appear to be overestimated.  The discriminant method is 

fairly free from bias but has less than ideal coverage.  

It’s important to note that, as in Table 1, the imputation methods have about the same 

standard errors as the complete case method.  Hence, little was gained by imputing the missing 

data, at least for this coefficient.  

Table 3. Estimates of Coefficients of Dummy Variable When Data Are MCAR.  
 
Method Prop.b Param.h Estimatec Avg. SEd Stan. Dev.e Coveragef

Complete Case .50 1.0 1.021 .437 .445 .95 
Linear No Round .50 1.0 1.004 .437 .458 .94 
Linear Round .50 1.0 .858 .408 .391 .95 
Discriminant .50 1.0 .996 .441 .447 .95 
Logistic .50 1.0 .984 .440 .444 .96 
Complete Case .20 1.0 1.012 .520 .542 .94 
Linear No Round .20 1.0 1.020 .526 .554 .92 
Linear Round .20 1.0 .809 .480 .447 .94 
Discriminant .20 1.0 .989 .522 .513 .94 
Logistic .20 1.0 1.019 .532 .486 .96 
Complete Case .05 1.0 1.035 .933 .948 .95 
Linear No Round .05 1.0 1.006 .953 .980 .93 
Linear Round .05 1.0 .875 .930 .832 .96 
Discriminant .05 1.0 .932 .929 .955 .95 
Logisticg .05 1.0 1.026 .944 .969 .95 
Complete Case .01 1.0 .845 2.069 1.991 .89 
Linear No Round .01 1.0 .863 1.953 2.112 .87 
Linear Round .01 1.0 .841 4.178 1.985 .07 
Discriminant .01 1.0 .985 1.871 2.066 .84 
Logisticg .01 1.0 -- -- -- -- 
bTrue value of the proportion for the dummy variable. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.  
hTrue value of the coefficient in the model generating the data.  
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Table 4. Estimates of Coefficient of Covariate When Data Are MCAR.  
 
Method Prop.b Param.h Estimatec Avg. SEd Stan. Deve Coveragef

Complete Case .50 1.0 .991 .213 .215 .94 
Linear No Round .50 1.0 1.003 .169 .184 .93 
Linear Round .50 1.0 1.056 .158 .169 .91 
Discriminant .50 1.0 1.004 .169 .173 .95 
Logistic .50 1.0 1.017 .168 .160 .96 
Complete Case .20 1.0 .998 .212 .206 .95 
Linear No Round .20 1.0 .998 .164 .151 .96 
Linear Round .20 1.0 1.049 .155 .138 .96 
Discriminant .20 1.0 1.001 .163 .159 .95 
Logistic .20 1.0 1.000 .164 .166 .95 
Complete Case .05 1.0 1.003 .212 .204 .96 
Linear No Round .05 1.0 1.000 .155 .150 .96 
Linear Round .05 1.0 1.026 .146 .144 .94 
Discriminant .05 1.0 .997 .155 .148 .96 
Logistic .05 1.0 .993 .157 .151 .96 
Complete Case .01 1.0 1.008 .212 .216 .93 
Linear No Round .01 1.0 1.002 .143 .159 .88 
Linear Round .01 1.0 1.011 .031 .148 .05 
Discriminant .01 1.0 1.008 .139 .146 .86 
Logisticg .01 1.0 -- -- -- -- 
 
bTrue value of the proportion for the dummy variable. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.  
hTrue value of the coefficient in the model generating the data.  
  

For the variable X, however, which had no missing data, Table 4 shows that the imputation 

methods are markedly superior to complete case analysis in estimating its coefficient.  The 

standard errors for complete case estimates are about one-third larger than those for the 

imputation methods.  None of the methods shows any major biases, although linear imputation 

with rounding yields estimates that are about 5 percent too large when p is .50 or .20.  In the 

former case, coverage is also a bit low. When p is .01, the imputation methods deteriorate in 

coverage, especially linear imputation with rounding, which had coverage of only 5 percent.  

That’s probably because the standard error estimates are way too low in this case.   

MAR RESULTS 

Table 5 gives results for estimating the coefficient of the dummy variable, when data are missing 

at random but not completely at random.  Specifically, the probability of missingness on D 
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depends on the value of the covariate X (but not on D or Y).  When the goal was to estimate a 

proportion in the MAR condition (Table 2), complete case analysis showed substantial bias.  

Here, however, the method produces approximately unbiased estimates, except in the extreme 

condition of p=.01.  That’s not surprising because it has been proven that complete case analysis 

produces unbiased estimates of regression coefficients so long as the probability of missingness 

does not depend on the response variable.  As in Table 3, complete case analysis yields standard 

errors that are no bigger than those from the imputation methods.   

As before, the worst of the five methods is linear imputation with rounding.  It shows 

appreciable bias even when p is .2 or greater, and the coverage is terrible when p is .05 or lower.  

The other four methods do fine until p=.01 when they show both downward bias (around 25 

percent too low) and coverage that is only around 70 percent.   

 
Table 5. Estimates of Coefficients of Dummy Variable When Data Are MAR.  
 
Method Prop.b Param.h Estimatec Avg. SEd Stan. Dev.e Coveragef

Complete Case .50 1.0 .987 .493 .496 .94 
Linear No Round .50 1.0 .980 .494 .513 .95 
Linear Round .50 1.0 .809 .452 .421 .94 
Discriminant .50 1.0 .974 .492 .526 .94 
Logistic .50 1.0 .966 .501 .516 .95 
Complete Case .20 1.0 1.011 .629 .657 .95 
Linear No Round .20 1.0 1.018 .641 .672 .93 
Linear Round .20 1.0 .725 .546 .491 .95 
Discriminant .20 1.0 .981 .625 .678 .93 
Logistic .20 1.0 1.004 .611 .675 .92 
Complete Case .05 1.0 1.017 1.586 1.670 .94 
Linear No Round .05 1.0 .994 1.607 1.714 .93 
Linear Round .05 1.0 .908 2.416 1.611 .46 
Discriminant .05 1.0 .945 1.379 1.461 .93 
Logisticg .05 1.0 -- -- -- -- 
Complete Case .01 1.0 .750 2.444 2.125 .72 
Linear No Round .01 1.0 .768 1.856 2.178 .71 
Linear Round .01 1.0 .721 4.614 2.088 .014 
Discriminant .01 1.0 .681 1.695 1.940 .71 
Logisticg .01 1.0 -- -- -- -- 
 
bTrue value of the proportion for the dummy variable. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.  
hTrue value of the coefficient in the model generating the data.   
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In Table 6, we see results for the coefficient of the covariate in the MAR condition. Here the 

message is pretty much the same as in Table 4 for the MCAR condition.  There is little bias for 

any of the methods, although linear imputation with rounding has the most.  The rounding 

method also has terrible coverage when p=.05 or .01, primarily because of poor estimation of the 

standard errors. When p=.01, complete case analysis still yields pretty good coverage, but 

coverage for the imputation methods deteriorates (especially, as noted, for imputation with 

rounding).  Nevertheless, the imputation methods have substantially smaller standard errors than 

the complete case estimates.   

Table 6. Estimates of Coefficients of Covariate When Data Are MAR.  
 
Method Prop.b Param..h Estimatec Avg. SEd Stan. Dev.e Coveragef

Complete Case .50 1.0 1.011 .258 .253 .95 
Linear No Round .50 1.0 1.006 .178 .177 .95 
Linear Round .50 1.0 1.068 .163 .156 .92 
Discriminant .50 1.0 1.008 .177 .176 .94 
Logistic .50 1.0 1.007 .178 .174 .94 
Complete Case .20 1.0 1.007 .240 .242 .95 
Linear No Round .20 1.0 1.040 .162 .165 .94 
Linear Round .20 1.0 1.085 .153 .151 .92 
Discriminant .20 1.0 1.011 .175 .180 .95 
Logistic .20 1.0 1.005 .175 .183 .95 
Complete Case .05 1.0 1.017 .366 .341 .96 
Linear No Round .05 1.0 1.080 .225 .237 .92 
Linear Round .05 1.0 1.118 .126 .213 .44 
Discriminant .05 1.0 1.040 .258 .254 .95 
Logisticg .05 1.0 -- -- -- -- 
Complete Case .01 1.0 1.003 .390 .402 .94 
Linear No Round .01 1.0 1.012 .243 .309 .71 
Linear Round .01 1.0 1.031 .073 .268 .01 
Discriminant .01 1.0 1.015 .223 .271 .70 
Logisticg .01 1.0 -- -- -- -- 
 
bTrue value of the proportion for the dummy variable. 
cMean of 500 parameter estimates. 
dMean of 500 standard error estimates 
eStandard deviation of 500 parameter estimates 
fPercentage of nominal 95% confidence intervals that include the true value.  
gMethod failed, presumably due to quasi-complete separation.   
hTrue value of the coefficient in the model generating the data.  
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CONCLUSION 

Based on these results, I propose the following conclusions: 

1.  Linear imputation with rounding should never be used.  It’s usually inferior and never 

superior to linear imputation without rounding, which is computationally simpler.   

2.  For estimating proportions, the principal benefit from imputation is reduction in bias when 

data are MAR but not MCAR.  Imputation methods have standard errors that are no smaller than 

those for complete case analysis.  In the MCAR condition, where bias is not an issue, there is no 

particular benefit to imputation.   

3.  For estimating proportions in the MAR condition, linear imputation without rounding is 

inferior to the logistic and discriminant methods, but may be acceptable if the proportion to be 

estimated is above .20.   

4.  For estimating the coefficient of a dummy variable with missing data, all the methods except 

for linear imputation with rounding are about equally good.   

5.  For estimating the coefficient of the covariate that has no missing data, linear imputation with 

rounding is about as good as the logistic or discriminant methods.  Complete case analysis has 

better coverage than the other methods when p is near zero, but it always has substantially higher 

standard errors.   

Overall, linear imputation without rounding comes off pretty well, especially for 

estimating regression coefficients.  Discriminant and logistic methods would be preferable, but 

they are only available when the missing data pattern is monotonic, a situation that rarely occurs 

when estimating regression models with many variables.   

Like any simulation study, this one has its limitations.  Both intuition and previous 

analytic work suggested that linear imputation methods may work well when dummy variables 

have a mean around .50 but may deterioriate markedly when the mean approaches 1 or 0.  For 
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that reason, I chose the mean as the key parameter to vary across different conditions.  But I did 

not look at the effect of variation in the other parameters, which were chosen to be fairly typical 

of social science data.  Clearly, there is a need for further investigation of these parameters, 

including the regression coefficients β1 and β2, the correlation between X and D, the error 

variance σ2 in the regression equation, and the coefficient α2 in the logistic regression predicting 

missingness in the MAR case.  With regard to that logistic regression, it would also be of interest 

to see what happens when missingness on D depends on Y.  All the simulations assumed that all 

the continuous variables were normally distributed, and the consequences of other distributions 

should be investigated.  Finally, I did not investigate the effects of varying sample size or the 

fraction of missing data.   
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 APPENDIX 

SAS code for producing imputations and applying the missing data techniques: 

/*Proportions, single auxiliary covariate, MCAR*/  
%let cut=.50; 
data dumsim; 
cut=&cut; 
do sample = 1 to 500; 
do i=1 to 500; 
d=ranuni(0)<cut; 
x=-1+1*d+1*rannor(0); 
miss=ranuni(0)<.5; 
if miss=1 then dmiss=.; else dmiss=d; 
output; 
end; 
end; 
run; 
proc corr data=dumsim; var d x miss;run; 
proc mi data=dumsim out=outdum noprint; 
var x dmiss; 
monotone regression(dmiss=x); 
by sample; 
run; 
/*The following macros do the analysis. Macros may be found below */ 
%complete 
%analyze 
%round 
%discrim 
%logistic 
 
/*Proportions, single auxiliary covariate, MAR*/  
%let cut=.01; 
data dumsim; 
misslope=2; 
missint=2; 
cut=&cut; 
do sample = 1 to 500; 
do i=1 to 500; 
d=ranuni(0)<cut; 
x=-1+1*d+.3*rannor(0); 
p=1/(1+exp(-missint-misslope*x)); 
miss=ranuni(0)<p;if miss=1 then dmiss=.; else dmiss=d; 
output; 
end; 
end; 
run; 
proc corr data=dumsim; var d x miss;run; 
proc mi data=dumsim out=outdum noprint; 
var x dmiss; 
monotone regression(dmiss=x); 
by sample; 
run; 
%complete 
%noround 
%round 
%logistic 
%discrim 

 
%macro complete; 
proc means data=dumsim nway noprint; 
var dmiss; 
class sample; 
output out=a mean=mean lclm=lclm uclm=uclm stderr=se; 
run;  
data b; 
set a; 
coverage=lclm<&cut<uclm; 
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run; 
proc means data=b; 
var mean se coverage; 
run; 
%mend complete; 
 
%macro noround; 
%do i=1 %to 500; 
proc reg data=outdum outest=a covout noprint; 
where sample=&i; 
model dmiss=; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  intercept; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parms; 
set %do j=1 %to 500; parms&j %end; ; 
coverage=lclmean<&cut<uclmean; 
run; 
ods listing; 
proc means data=parms; 
var Estimate stderr coverage; 
run; 
%mend noround; 
 
%macro round; 
data outround; 
set outdum; 
if dmiss>.5 then dmiss=1; else dmiss=0; 
run; 
%do i=1 %to 500; 
proc reg data=outround outest=a covout noprint; 
where sample=&i; 
model dmiss=; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  intercept; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parms; 
set %do j=1 %to 500; parms&j %end; ; 
coverage=lclmean<&cut<uclmean; 
run; 
ods listing; 
proc means data=parms; 
var Estimate stderr coverage; 
run; 
%mend round; 
 
%macro logistic; 
%do i=1 %to 500; 
proc mi data=dumsim out=outlog noprint ; 
where sample=&i; 
class dmiss; 
var x dmiss; 
monotone logistic(dmiss=x) ; 
run; 
proc reg data=outlog outest=a covout noprint; 
model dmiss=; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  intercept; 
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ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parms; 
set %do j=1 %to 500; parms&j %end; ; 
coverage=lclmean<&cut<uclmean; 
run; 
ods listing; 
proc means data=parms; 
var Estimate stderr coverage; 
run; 
%mend logistic; 
 
%macro discrim; 
%do i=1 %to 500; 
proc mi data=dumsim out=outlog noprint ; 
where sample=&i; 
class dmiss; 
var x dmiss; 
monotone discrim(dmiss=x) ; 
run; 
proc reg data=outlog outest=a covout noprint; 
model dmiss=; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  intercept; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parms; 
set %do j=1 %to 500; parms&j %end; ; 
coverage=lclmean<&cut<uclmean; 
run; 
ods listing; 
proc means data=parms; 
var Estimate stderr coverage; 
run; 
%mend discrim; 

 
/* Regression with dummy predictor, MAR*/  
%let cut=.5; 
%let b=1; 
%let c=1; 
data dumreg; 
b=&b; 
c=&c; 
missint=1; 
misslope=1; 
sig=3; 
cut=&cut; 
cutmiss=.5; 
do sample = 1 to 500; 
do i=1 to 500; 
d=ranuni(0)<cut; 
x=-1+1*d+1*rannor(0); 
y=b*d+c*x+sig*rannor(0); 
p=1/(1+exp(-missint-misslope*x)); 
miss=ranuni(0)<p;if miss=1 then dmiss=.; else dmiss=d; 
output; 
end; 
end; 
run; 
proc reg; model y= x d; run; 
ODS LISTING; 
proc corr data=dumreg;var d x y miss; run; 
proc mi data=dumreg out=outreg noprint; 
var x y dmiss; 
monotone regression(dmiss=x y); 
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by sample; 
run; 
/*The following macros do the analysis. Macros may be found below*/ 
%completereg 
%noroundreg 
%roundreg 
%discrimreg 
%logreg 
 
%macro completereg; 
ods listing close; 
proc reg data=dumreg; 
model y=dmiss x / clb; 
ods output ParameterEstimates=parms; 
by sample; 
run; 
ods listing;  
data dmiss; 
set parms; 
where variable='dmiss'; 
coverage=lowercl<&b<uppercl; 
run; 
proc means data=dmiss; 
var Estimate StdErr coverage; 
run; 
data x; 
set parms; 
where variable='x'; 
coverage=lowercl<&c<uppercl; 
run; 
proc means data=x; 
var Estimate StdErr coverage; 
run; 
%mend completereg; 
 
%macro noroundreg; 
%do i=1 %to 500; 
proc reg data=outreg outest=a covout noprint; 
where sample=&i; 
model y=dmiss x; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  dmiss x; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parmsb; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='dmiss'; 
coverage=lclmean<&b<uclmean; 
run; 
ods listing; 
proc means data=parmsb; 
var Estimate stderr coverage; 
run; 
data parmsc; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='x'; 
coverage=lclmean<&c<uclmean; 
run; 
ods listing; 
proc means data=parmsc; 
var Estimate stderr coverage; 
run; 
%mend noroundreg; 
 
%macro roundreg; 
data outround; 
set outreg; 
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if dmiss>.5 then dmiss=1; else dmiss=0; 
run; 
%do i=1 %to 500; 
proc reg data=outround outest=a covout noprint; 
where sample=&i; 
model y=dmiss x; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  dmiss x; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parmsb; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='dmiss'; 
coverage=lclmean<&b<uclmean; 
run; 
ods listing; 
proc means data=parmsb; 
var Estimate stderr coverage; 
run; 
data parmsc; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='x'; 
coverage=lclmean<&c<uclmean; 
run; 
ods listing; 
proc means data=parmsc; 
var Estimate stderr coverage; 
run; 
%mend roundreg; 
 
%macro logreg; 
%do i=1 %to 500; 
proc mi data=dumreg out=outlog noprint ; 
where sample=&i; 
class dmiss; 
var x y dmiss; 
monotone logistic (dmiss=x y) ; 
run; 
proc reg data=outlog outest=a covout noprint; 
model y=dmiss x; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  dmiss x; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parmsb; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='dmiss'; 
coverage=lclmean<&b<uclmean; 
run; 
ods listing; 
proc means data=parmsb; 
var Estimate stderr coverage; 
run; 
data parmsc; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='x'; 
coverage=lclmean<&c<uclmean; 
run; 
ods listing; 
proc means data=parmsc; 
var Estimate stderr coverage; 
run; 
%mend logreg; 

19 



 
%macro discrimreg; 
%do i=1 %to 500; 
proc mi data=dumreg out=outlog noprint ; 
where sample=&i; 
class dmiss; 
var x y dmiss; 
monotone discrim (dmiss=x y) ; 
run; 
proc reg data=outlog outest=a covout noprint; 
model y=dmiss x; 
by _imputation_; 
run; 
ods listing close; 
proc mianalyze data=a; 
var  dmiss x; 
ods output ParameterEstimates=parms&i; 
run; 
%end; 
data parmsb; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='dmiss'; 
coverage=lclmean<&b<uclmean; 
run; 
ods listing; 
proc means data=parmsb; 
var Estimate stderr coverage; 
run; 
data parmsc; 
set %do j=1 %to 500; parms&j %end; ; 
where parm='x'; 
coverage=lclmean<&c<uclmean; 
run; 
ods listing; 
proc means data=parmsc; 
var Estimate stderr coverage; 
run; 
%mend discrimreg; 
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